
XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

1 of 92 11/02/10 15:35

0. XAS Programmer Guide Table of Content

Preliminaries 

* cover page (for PostScript version only)
i introduction
ii contributors
iii standard disclaimer
* motto (for PostScript version only)
0. table of content (this page)

Textual help pages 

Top menu1.
The XAS directory tree

The bin directory
The calib directory
The config directory
The doc directory
The external directory
The include directory
The lib directory
The libsource directory
The local directory
The source directory
The vos directory

2.

How to build XAS3.
How to write a XAS program4.
XAS libraries

The vos library
The general library
The xaslib library
The graphserv library
The xasgraph library
The fotlib library
The MECS library
The LECS library
The PDS library
The HPGS library

5.

the include files6.
the programming support files

error code listings
font listings
graphics marker listings
postscript prologues
tape command definition

7.

the calibration files8.
the instrument support files

packetcap
PCF
Experiment Configuration parameter files

9.

details about specific programs10.
XAS graphics11.
XAS file formats reference12.

1. XAS Programming Help top menu

Introduction to be written. See table of content of existing document.

2. The XAS directory tree

The XAS installation comes as a directory tree rooted under a logical position referred to by environment
variable $XASTOP. It shall not contain any file (except for makefiles created by xasbuild or other compilation 
support files, but only the subdirectories listed below.
This does not refer to the area where the data is stored, which is instead arranged freely by each individual 
users according to the guidelines described elsewhere

The subdirectories are

The bin directory
The calib directory
The config directory
The demo directory and whatever other additional source directories may be provided with contributed or
user software (they are all functionally equivalent to the source directory and are therefore not described



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

2 of 92 11/02/10 15:35

in any further detail).
The doc directory
The external directory
The include directory
The lib directory
The libsource directory
The local directory
The source directory
The vos directory

[Previous][Next] [Up][Down]

2.1 The bin directory

The $XASTOP/bin directory is the target directory of build, i.e. the place where all the binary executables of XAS 
commands (main programs) will reside.

As such it is the only directory which will need to go in each user's path.
Note that all "official" XAS commands are binary executables, there are no such thing as officially 
supported XAS (shell) scripts because of the original architectural choice of XAS to be system-independent (at
the time it was designed that meant running on VAX VMS and several Unix flavours), i.e. not dependent of any
shell.

As such this directory will contain system-dependent files. A multi-architecture support of XAS will require
separate bin directories under different $XASTOPs

Note that because of the above architectural choice, some XAS commands are implemented as front end 
wrappers which chain to another executable (i.e. they run for a while then are overlaid by another executable).
This will be specified in the program specific manual page.

[Previous][Next] [Up][Down]

2.2 The calib directory

The $XASTOP/calib directory is not actually a software directory like all others in the typical XAS tree, but is
more a data directory.

It is intended to contain calibration data files, which are described elsewhere.
The software will look (at open time, for files designated in the CALIB category) in the appropriate subdirectory
of $XASTOP/calib for such files, although one can override the standard calibration files with private copies
using the mycaldir XAS variable to point to an alternate location.

The directory has the following subdirectory arrangement :

general

currently empty, intended for spacecraft independent data
one directory for any other spacecraft mission (this can be accessed setting the spacecraft XAS variable.
The only one officially supported so far is
sax

For calibration data related to the BeppoSAX mission, arranged in subdirectories
sc

contains descriptive files on spacecraft telemetry packet and HK parameters
lecs

contains unofficial files for the LECS instrument (both descriptive of telemetry and HK and
instrument calibration data)
mecs

contains files for the MECS instrument (both descriptive of telemetry and HK and full instrument
calibration data)
hpgs

contains files for the HPGSPC instrument (both descriptive of telemetry and HK and a few
instrument calibration data)
pds

contains files for the PDS instrument (both descriptive of telemetry and HK and the needed
instrument calibration data)
wfc

is reserved for files for the WFC instruments (currently unused)

[Previous][Next] [Up][Down]



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

3 of 92 11/02/10 15:35

2.3 The config directory

The $XASTOP/config directory is not actually a software directory like all others in the typical XAS tree, but a
support directory for the xasbuild software tool used for the building (compilation or recompilation) of XAS.

The directory has the following subdirectory arrangement (the functions are described elsewhere) :

Depend

contains the dependency files for all main programs, all libraries and (subdirectories for) the frozen
versions (all this stuff is generated by xasbuild)
Lists

contains the list files listing components like subroutines in a library, main programs in a source
directory, supported source directories, etc. (plus subdirectories for the frozen versions). This stuff is
updated and mantained by xasbuild from a minimal bootstrap version.
Log

contains the log files of the xasbuild runs (can be cleared at user's will)
Proto

contains the prototypes (plus subdirectories for the frozen versions) of the Makefiles which xasbuild will
use to install the system dependent ones in the (program and library) source code directories. These are
the most important bootstrap files in the distribution.
Scripts

contains the shell scripts which constitute the xasbuild software package

[Previous][Next] [Up][Down]

2.4 The doc directory

The $XASTOP/doc directory contains a few (ASCII) documentation files :

the release notes for the major "releases" of XAS (these have names like xas11.relnotes for release 1.1)
the XAS porting note port.txt to be read by those intending to port XAS to another operating system
the buglist notes for the major "releases" of XAS (these have names like xas20.buglist for release 2.0)

Note that the concept of releases is quite relaxed. XAS was not intended to have formal releases, but to be
updated dynamically, with users picking up updated files and integrating them in their own version with
xasbuild. After an early attempt at TESRE, this was not supported by SDC. At the moment there is no longer
any active support to XAS at SDC,

[Previous][Next] [Up][Down]

2.5 The external directory

The $XASTOP/external directory contains the source files of library subroutines which were not developed as
part of XAS, but were procured externally. The resulting relocatable libraries must be generated in the same 
place as XAS libraries, but this will not be done using xasbuild (it is either done by tools provided with the
library or has to be done by the user).

Current external libraries are the following (it shall be noted that each of them is used only by a very small 
number of XAS programs) ; there is a subdirectory per library.

fitsio

Fortran sources for FITSIO 4.14. FITSIO routines are used only by the fromfits, tofits, fromogip, toogip
command. They were compiled and tested with version 4.14. Usage with later release at user's risk.
ssdaux

Fortran and C routines provided by SSD (with a front-end wrapper by Daniele Dal Fiume) used mainly by
the saxauxcalc command to compute auxiliary quantities (function of orbit and attitude data).
pgplot

currently empty, preserved for historical reasons (PGPLOT was used in some early graphics demos, and
replaced by a dummy wrapper on non-VMS systems). No longer in use.

[Previous][Next] [Up][Down]

2.6 The include directory



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

4 of 92 11/02/10 15:35

The $XASTOP/include directory contains the Fortran INCLUDE files used by main programs and subroutines (and
managed by xasbuild at compile time), plus some other support files read by programs (since they are not
properly data files they are located here and not with calibration files.

Fortran include files have all extensions .inc
Files of type .list are miscellaneous support files like error code lists, font lists or graphics marker lists.
Files of type .prologue are miscellaneous support files , and namely are Postscript prologues used by the
Postscript-based graphics servers.

[Previous][Next] [Up][Down]

2.7 The lib directory

The $XASTOP/lib directory is a target directory of build, i.e. the place where all the relocatable libraries will 
reside.

As such this directory will contain system-dependent files. A multi-architecture support of XAS will require
separate lib directories under different $XASTOPs

The following is a list of XAS libraries (external libraries are also present here, and other libraries used by
unofficially contributed programs can also be placed in the lib directory) The respective routines in source
form are located in libsource or vos. The name of the relocatable library file depends on the operating system
(e.g. libname.a under Unix or name.OLB under VMS).

library 
name

purpose

fotlib routines specifically used to access SAX telemetry on Final Observation Tapes

general general purpose routines (e.g time-and-date, byteswap etc.)

graphserv low level library for the graphics servers, and the relevant clients

hpgslib routines specific of the SAX HPGSPC instrument

lecslib routines specific of the SAX LECS instrument (unofficially supported)

mecslib routines specific of the SAX MECS instrument

pdslib routines specific of the SAX PDS instrument

vos system dependent routines

xasgraph high level graphics library

xaslib routines independent of SAX data formats, but specific to handle mission-independent XAS data
files and features

[Previous][Next] [Up][Down]

2.8 The libsource directory

The $XASTOP/libsource directory is a source directory of build and is system-independent.

It contains a directory per library, and each directory contains Fortran source files (one per routine, except for
service routines called only by other routines, which are included in the same source file as the caller), or
exceptionally C source files (two cases).

Individual routines are listed in a separate section. The following is a list of XAS libraries (external libraries are
described elsewhere). The system dependent vos library has sources elsewhere.

library 
name

purpose

fotlib routines specifically used to access SAX telemetry on Final Observation Tapes

general general purpose routines (e.g time-and-date, byteswap etc.)

graphserv low level library for the graphics servers, and the relevant clients

hpgslib routines specific of the SAX HPGSPC instrument

lecslib routines specific of the SAX LECS instrument (unofficially supported)

mecslib routines specific of the SAX MECS instrument

pdslib routines specific of the SAX PDS instrument



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

5 of 92 11/02/10 15:35

xasgraph high level graphics library

xaslib routines independent of SAX data formats, but specific to handle mission-independent XAS data
files and features

[Previous][Next] [Up][Down]

2.9 The local directory

The $XASTOP/local directory is intended as a repository for site-dependent support files which can be 
customized at each site or machine.

At the moment there a single file in this directory, tape.cmds, which is used to customize the system tape
handling commands used by the fotfile program (actually by the system script written by fotfile). A second
template tape.cmds_remote is provided as example for the case one wishes to access a remote type drive via rsh.
The relevant file is described together with other miscellaneous support files

[Previous][Next] [Up][Down]

2.10 The source directory

The $XASTOP/source directory is a source directory of build and is system-independent.

It contains Fortran source files (one per XAS command main program, eventually inclusive of any routine called
exclusively by such program, or by any routine overriding a library routine of same name), or exceptionally C
source files (one case).

Details of individual programs are described elsewhere

[Previous][Next] [Up][Down]

2.11 The vos directory

The $XASTOP/vos directory is a source directory of build and is the only one to contain system-dependent code.

It is a single directory (which exists in many different versions for each supported system, of which only the
one corresponding to your architecture shall be installed in $XASTOP/vos), which contains Fortran source files
(one per routine, except for service routines called only by other routines, which are included in the same
source file as the caller), and eventually C source files.

Individual routines are listed in a separate section.

VOS high level routines are Fortran-callable routines, and generally are actually Fortran routines with a very
few exceptions.
Under VMS most of them call directly system libraries or services (with the exception of the memory allocation
interface which uses a couple of C jacket routines).
Under Unix they call a tier of lower level C jacket routines (Fortran-callable) which in turn call C system
routines (which may not be callable directly by Fortran, usually because of the underscore loader convention).

While the majority of VOS (Virtual Operating System) Unix routines are the same for all Unix flavours, there
are a few routines supplied in different forms for the various supported Unix flavours.

[Previous][Next] [Up][Down]

3. How to build XAS

XAS executables are compiled and linked from source code using the xasbuild command, which generates
appropriate Makefiles and runs them. This applies only to the Unix version, and is in principle capable of 
dealing with XAS updates as well as with XAS module addition by the user.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

6 of 92 11/02/10 15:35

The VMS version of XAS has no general build utility, only a bootstrap script useful for rebuilding the entire
distribution from scratch could be supplied.

[Previous][Next] [Up][Down]

4. How to write a XAS program

This section is intended to give an overview of XAS idioms used in writing typical XAS programs.

Details specific of individual programs or calling syntax of individual routines are supplied elsewhere, as well
as specifics of graphic programs.

typical user interface
accessing environment
dealing with errors
interrupting loops
usage of dynamic memory
chaining more programs
writing a dispatcher
opening typical files (seq and direct)
dealing with XAS image files
dealing with XAS tabular files
dealing with XAS headers
dealing with data conversion
dealing with times
a SAX accumulator
pipe communication (randomizer)
using bit images
pick some from list in section 10

[Previous][Next] [Up][Down]

5. XAS libraries

This section provides an index of XAS library routines in alphabetic order and by subject, which point to the
appropriate syntax description in the relevant library section (XAS libraries are listed also in section 2.7). 

Note that in the following sections a consistent notation and color code is used for routine synopsis, with a
table entry like the following :

routine name

Library library name pointer to Fortran or C code

Calling sequence CALL routine(arg1,arg2,arg3)

Arguments

Fortran type ARG1 for intent=input

Fortran type ARG2 for intent=output (returned values)

Fortran type ARG3 for intent=inout (modified values)

Library list

library 
name

purpose

fotlib routines specifically used to access SAX telemetry on Final Observation Tapes

general general purpose routines (e.g time-and-date, byteswap etc.)

graphserv low level library for the graphics servers, and the relevant clients

hpgslib routines specific of the SAX HPGSPC instrument

lecslib routines specific of the SAX LECS instrument (unofficially supported)

mecslib routines specific of the SAX MECS instrument

pdslib routines specific of the SAX PDS instrument

vos system dependent routines



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

7 of 92 11/02/10 15:35

xasgraph high level graphics library

xaslib routines independent of SAX data formats, but specific to handle mission-independent XAS data
files and features

Routine alphabetic list

quick search from initial letter : ABCDE FGHIJ KLMNO P Q RST UVWXY Z

A

abs_co_be
add_end add_file add_init add_rew_tape add_skip_tape
addhistory
alum
annotate_new annotate_old
area_mr
askbin asktime

B

bewin_trasp
bindex
bit_init_handle
blkbincommon blkctxcommon blkhcommon blkpipecommon blksyscommon blkxrcommon
blrng blsel
broad2 buf_read
buildpath

C

check_overtrace check_packet checkerr
close_xas_file
coda cofas
collapse
config_read
connectserver conversion_needed copy_table_desc
correct
cpuclk
create_image create_photon create_spectrum create_time
cross_sec
curft

D

decodetform
depath depath_1
deregister
detpointing
df_axes df_pen_colours df_viewport df_window
dotproduct

E

e2fwhm
edit_cmd
effmed
ein eout escape
exposure_b1s1 exposure_b1s3
extrp extrpd

F

f2x
fchi fder
filecorr_read fileinp_read fopen_rmf fopen_rmf
free_lu
fuga fuga_1

G
gas_cell
get_datastyle get_global_default get_obs_chain get_start_end get_table_desc
getmisalign gnomonic

H

h_add_keyword h_copy_all_header h_current_file h_find_keyword h_flush_header
h_flush_minih h_load_header h_load_minih h_modify_keyword h_next_keyword
h_read_keyword h_update_datasize
hexi4
hp_gain_time hp_keywords hpcorrect

I

init_correct init_correct_hp init_correct_le init_correct_me init_correct_me_fast init_correct_pds
init_timewindow
inst_key_copy inst_key_find inst_key_flush inst_key_load inst_key_mult inst_key_read inst_key_set
instr_keywords instrument_keys
interpolate
isregistered

J julia

K kapton2

L

lb_axis lb_number lb_tics
le_gain_time lecs_keywords lecscorrect
leftnumber
lexan
lintomm
loadwindow
lowcase



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

8 of 92 11/02/10 15:35

M

maketform
matproduct
me_gain_time me_init_map mecs_arf mecs_keywords mecs_matkeywords mecs_rmf mecscorrect
misalign mmtopix
mtinv
multiply_rmfarf

N nice_axes nicer_lin_axes nicer_log_axes
no_keyword

O

open_image open_matrix
open_new_xas_file open_old_xas_file
open_photon open_spectrum open_time
open_xas_ascii
openwindow

P

pad_table
parameter
pds_arf pds_ein pds_en_resol pds_fotunits pds_freq
pds_keywords pds_matinfo pds_matkeywords pds_matout pds_ogip
pds_opnrmf pds_response pds_wrtrmf pds_wrtrmfebo pds_wrtrmfmat
pdscorrect pdsmat_coef pdsmat_init
pipeexist
pktcap_load pktcap_lookup
plot_xxy_bar plot_xxy_histo plot_xxy_join plot_xy_join
poly poly_carbo
preparse
psf_mir psf_rad

Q

R

radecroll
ran1
read_bin read_image
reader reader_1
rearrange_instrec
register
rminmax

S

satpointing
sax_acc_b1s1_i sax_acc_b1s1_y sax_acc_b1s2_i sax_acc_b1s2_y sax_acc_b1s3_y sax_acc_b2s1_y
sax_acc_b3s1 sax_acc_b3s2 sax_acc_b3s3 sax_acc_b3s4 sax_acc_b3s5 sax_acc_b3s6
sax_acc_bt_1 sax_acc_bt_2 sax_acc_bt_3
sax_acc_hkrange sax_acc_loop
sax_acc_open_sc_tlm sax_acc_open_tlm
sax_acc_other_range sax_acc_preload sax_acc_range sax_acc_select
sax_df_keywords sax_froot_name sax_open_dir
sax_pcf_load sax_pcf_lookup
sax_pktcap_load
sax_which_data
set_table_desc
shell_fact shell_prob
skytoxy
spread
swapi2 swapi4 swapr8

T

tapechar
tetafi_xy
time_1970 time_70s2mjd time_a2mjd time_array time_ascii time_cldj
time_constants_setup
timebin_b1s1
tmed
tofits toqdp
trimroot
true_length

U

udouble
unlintomm
upcase
update_start_end

V voserror

W

winbe
write_arf write_arf
write_bin
write_rmf write_rmf_ebo write_rmf_ebo write_rmf_mat write_rmf_mat

X

x_echo x_echo_error x_prompt x_read
xasmatout
xdofit
xytosky

Y

y_clear_viewport y_closeplot y_colour y_coordinates
y_draw y_fill y_get_cursor
y_lines y_move y_openplot
y_page y_readlut y_scale y_text
y_viewport y_width y_window y_write_image y_writelut



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

9 of 92 11/02/10 15:35

Z

z_alloc z_aux_envfile
z_break z_channel z_close_stream
z_dealloc z_delete_file z_dieee_to_vms z_dvms_to_ieee
z_exit z_fullname
z_get_command z_get_global z_hostname
z_ieee_to_vms z_initenv z_inquire z_logintime
z_op_sys z_open z_open_stream z_print_file z_read_stream z_rename_file z_run
z_schedule z_seek_stream z_set_global z_spawn z_sys_name z_syserror
z_tape_open z_terminal z_ttyname z_username
z_vms_to_ieee z_write_stream
zc_alloc zc_break zc_cuserid zc_dtime
zc_execvp zc_fclose zc_fopen zc_fork zc_fread zc_free zc_fseek zc_fwrite
zc_getdomainname zc_getenv zc_gethostname
zc_memcpy zc_mknod zc_putenv zc_pwnam
zc_rename zc_stat zc_system
zc_terminal zc_time zc_ttyname zc_unlink zx_get_parameter

Routine subject list

You can locate a routine by subject using the following lookup table. A routine may eventually appear in more
than one category. Routines in a category are grouped by further subject, and finally in alphabetic order.

Routines which are similar, or are called exclusively one by another, are listed side by side.

General [files] [type conversion] [string manipulation] [time] [user i/f] [environment] [miscellanea]
[initialization]

System [memory] [pipes] [process control] [misc high level VOS] [misc low level VOS]
[environment]

XAS file format [files] [binary tables] [keywords]

XAS 
miscellanea

[time window] [attitude]

Graphics [server communication] [high level] [low level]

SAX specific 
stuff

[FOT tape] [FOT telemetry] [support] [accumulation]

SAX 
instruments

MECS [calibration parameters] [matrix support] [accumulation]

LECS [everything together] NB : unofficially supported

PDS [everything together] NB : code by ITESRE, no full support by the author

HPGSPC [everything together] NB : most code by IFCAI, no full support by the author ; rest of code
unofficially supported

general file access

These routines shall be used to deal with generic files (in replacement of the standard Fortran OPEN and INQUIRE
calls). Note that for the majority of data files one uses the XAS file routines (which in turn call these as
underlying layer).

file opening

assign logical unit free_lu

convert sys to VOS filename z_sys_name

open generic file z_open

open ASCII table open_xas_ascii

error handling
VOS errors voserror

Fortran errors z_syserror

file status (INQUIRE) z_inquire zc_stat

file handling
delete z_delete_file zc_unlink

rename z_rename_file zc_rename

Data type conversion support

XAS data is kept in native binary format. However some programs must (or are capable to) deal with data in
foreign binary format. These routines are used to assist in the conversion.

preliminaries
operating system identification z_op_sys blksyscommon

identify required conversion conversion_needed

IEEE to VMS and v.v. z_ieee_to_vms z_vms_to_ieee z_dieee_to_vms
z_dvms_to_ieee

byte swapping (little-big endian and 
v.v.)

swapi2 swapi4 swapr8



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

10 of 92 11/02/10 15:35

conversion

miscellanea
unsigned DOUBLE PRECISION udouble

hex formatting hexi4

General string manipulation

string length without trailing blanks true_length

remove multiple blanks collapse

smart replacement for INDEX bindex

Case conversion lowcase upcase

unsupported ? trimroot

General date and time handling

time conversion

time array to Unix time_1970

Unix to time array time_array

Unix to string time_ascii

System times
current time zc_time

time of login z_logintime

Unsupported HPGSPC routines time_70s2mjd time_a2mjd time_cldj

User interface

These routines are used to enforce the XAS user interface reading from standard input, run string or command
file. They shall be used as replacement for the WRITE(*,'prompt') and READ(*,*) Fortran idioms.

Basic routines

issue prompt x_prompt

read reply x_read

parse string arrays preparse

Low level routines retrieve and parse run string z_get_command zx_get_parameter blkxrcommon

Unsupported PDS routines x_echo x_echo_error

Environment access

These routines are used to access XAS environment variables. The technical implementation of such variables
is system dependent :

on VAX VMS uses naturally DCL global symbols prefixed with XAS_
on Unix uses environment variables prefixed with XAS_ but saves them to a disk file to allow inheritance
from child to parent processes.

XAS environment variables are accessed without the XAS_ prefix. The system, searching for var looks first for 
XAS_var, but falls back to the system variable var if not found (system variables are however readonly for what 
XAS programs are concerned).

Get variable value get_global_default z_get_global zc_getenv

Set variable value z_set_global zc_putenv

Service routines (Unix) z_aux_envfile
z_initenv

General miscellanea

CURFIT fitting package curft fchi fder mtinv

interpolation extrp extrpd interpolate

matrix/vector operations dotproduct matproduct

Random number generator ran1

Bit array handling bit_init_handle

Block data initialization

These BLOCK DATA routines are used/referred to initialize some specific common blocks, described in the include 
file section.

Binary table descriptors blkbincommon

Current context blkctxcommon

XAS file buffers blkhcommon



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

11 of 92 11/02/10 15:35

for communication channels blkpipecommon

For data conversion blksyscommon

For user interface blkxrcommon

VOS memory allocation

routines are used to allow dynamic memory allocation in f77. z_alloc z_dealloc zc_alloc zc_free

VOS communication channel support

Communication channels are used to allow interprocess communication, typically for graphics servers. The
implementation is system dependent :

on VAX VMS uses mailboxes and Fortran unformatted sequential i/o
on Unix uses named pipes, but differs according to the flavour.
on Ultrix and Digital Unix uses Fortran unformatted sequential i/o
on other Unixes uses a jacket routine to C i/o

create/open/delete channel z_channel zc_mknod z_open_stream zc_fopen

close channel z_close_stream zc_fclose

input/output routines z_read_stream zc_fread z_write_stream zc_fwrite

unsupported z_seek_stream zc_fseek

VOS process control

These routines are used either to control the current process, or to generate a new process.

terminate (replaces Fortran STOP) z_exit

Handle interrupt (control-C) z_break zc_break

Chain another process (overlay) z_run zc_execvp

Schedule process in background (no wait) z_spawn zc_fork

Schedule process with wait z_schedule zc_system

VOS misc high level calls

The VOS library groups all system dependent calls. Those which are not listed elsewhere are listed here,
limiting however to the routines which are called by user programs directly.

Error handling voserror

Query functions

user name (GECOS and account) z_fullname z_username

hostname z_hostname

time of login z_logintime

terminal name and characteristics z_terminal z_ttyname

Debugging utilities checkerr cpuclk

Unsupported (used by non XAS programs) z_print_file z_tape_open

VOS misc low level calls

These are all C routines and all (with one exception) required on Unix only as underlying layer to the VOS high
level calls.

support to query calls zc_cuserid zc_getdomainname zc_gethostname zc_pwnam zc_terminal zc_ttyname

miscellanea zc_dtime zc_memcpy

XAS file support

XAS (mission-independent) format data files are accessed via dedicated routines. We list here the general or
generic ones, leaving out those related to tabular files and those used for the (common) XAS file header

Path related routines
locate path for file buildpath

strip path from filename depath depath_1

generic XAS file
create/open open_new_xas_file open_old_xas_file

close close_xas_file

image format files
generic images create_image open_image read_image

Response matrices open_matrix
xasmatout



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

12 of 92 11/02/10 15:35

XAS binary table support

Spectra, time profiles and photon lists are XAS files sharing a common tabular format. The related routines are
listed here. 

file opening
creation of new file create_photon create_spectrum create_time

existing file open_photon open_spectrum open_time

read/write a generic record read_bin write_bin

preliminaries
handling table descriptors copy_table_desc get_table_desc set_table_desc

space for dummy columns pad_table

service routines for FITS-like TFORM keywords decodetform leftnumber maketform

XAS file header and keyword handling

All XAS file share a common header format, composed of named binary keywords. There are high level routines
to manipulate keywords, and low level service ones.

user routines

add and format HISTORY keyword addhistory

add/modify keyword h_add_keyword h_modify_keyword

read keyword value h_read_keyword

copy entire header h_copy_all_header

if file size changed h_update_datasize

service routines

point to different file h_current_file

load header from disk h_load_header h_load_minih

flush header to disk h_flush_header
h_flush_minih

Keyword seek support h_find_keyword h_next_keyword

Accumulation : time window management

XAS accumulation program are mission dependent (although this is hidden under a mission-independent
interface). They however use a common (mission-independent) concept of time windows, therefore the relevant 
routines are listed here.

prepare to open time window file init_timewindow

open time window file openwindow

read time window file loadwindow

Attitude handling

These routines are designed in a mission-independent way, but are used only by unofficial programs using
celestial coordinates

Determine pointing

get detector pointing detpointing

get spacecraft pointing satpointing

get/apply misalignments getmisalign misalign

Eulker matrix to sky coordinates radecroll

Coordinate conversion
Pixel to mm and v.v. lintomm unlintomm mmtopix

Sky to pixel and v.v. skytoxy xytosky gnomonic

Graphics server (communication)

A graphics server has to be created, and communication has to be set up over a communication channel from 
server and client sides.

Connection

establishment connectserver

verify channel existence pipeexist

server registration isregistered register
deregister

Xlib interface for X window server f2x

High level graphics

This set of routines correspond to relatively complex graphics functions implemented in graphics clients.

plot annotations (two styles) annotate_new annotate_old



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

13 of 92 11/02/10 15:35

Default arrangements

axis frame with annotations df_axes

pen colours df_pen_colours

plotting window and viewport df_viewport df_window

Setup from environment
clear screen on overtrace check_overtrace

plot style (solid, error bars 
etc.)

get_datastyle

Axis frames
labelling routines lb_axis lb_number lb_tics

various axis styles nice_axes nicer_lin_axes nicer_log_axes

Data array plotting various forms plot_xxy_bar plot_xxy_histo plot_xxy_join
plot_xy_join

Low level graphics

These routines are implemented at device independent level and send standard opcodes (with operands) on a
communication channel to a graphics server (and eventually receive replies).

Establish communication (or close) y_openplot y_closeplot

set up

viewport and window y_clear_viewport y_viewport y_window y_page

reference frame y_coordinates y_scale

look and style y_colour y_text y_width

Plotting primitives

vector y_draw y_move y_lines

text y_text

image and 2-d y_fill y_readlut y_write_image y_writelut

graphics input y_get_cursor y_readlut

FOT tape access

There is no intrinsic (system and device-dependent) tape handling in XAS. SAX FOT tapes are dealt with via
system-specific shell scripts which are generated based on a template file (which can be customized locally) 
which contains template commands which are adjusted by the following routines.

service functions

load template tapechar

begin and end operations add_init add_end

edit template command edit_cmd

handle specific commands
file copy add_file

tape functions add_rew_tape add_skip_tape

FOT (telemetry) data reading

SAX data is in form of (FOT reformatted) telemetry data files, or other auxiliary files assimilated to them. This
family of low level routines deals with telemetry records (or events in a record) themselves, and are called at a
bottom of a sequence of higher level routines by the accumulation programs.
The low level routine may call a front end correction routine (which in turn calls further instrument specific
corrections), and do call an instrument-independent "increment routine" which depends on the XAS data type
being accumulated.

basic type 
switching

1 direct mode data 
(events)
2 indirect (spectra)
3 Housekeeping

sax_acc_bt_1
sax_acc_bt_2
sax_acc_bt_3

specific type 
handling

1 direct event handling sax_acc_b1s1_i sax_acc_b1s1_y sax_acc_b1s2_i
sax_acc_b1s2_y sax_acc_b1s3_y

exposure computation exposure_b1s1 exposure_b1s3 timebin_b1s1

instrument dep. event 
correction

correct

2 indirect sax_acc_b2s1_y

3 Housekeeping sax_acc_b3s1 sax_acc_b3s2 sax_acc_b3s3 sax_acc_b3s4
sax_acc_b3s5 sax_acc_b3s6

instrument 
directory

record decoding rearrange_instrec

Telemetry data reading support

Accumulation program are mission specific, but try to be as mission-independent and instrument-dependent as
possible using external packetcap files to describe the content of telemetry packets and dispatching to the
above low level routines according to such description.

which packets are available ? check_packet



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

14 of 92 11/02/10 15:35

load packet info
mission-independent i/f pktcap_load pktcap_lookup

SAX specific i/f sax_pktcap_load

HK parameter info similar to above sax_pcf_load sax_pcf_lookup

Open files

instrument telemetry sax_acc_open_tlm

spacecraft telemetry sax_acc_open_sc_tlm

directory information sax_open_dir

dispatcher to packet specific routines sax_acc_loop

Accumulation program setup (user dialogue)

The accumulation programs must ask the user about the choice of limits for the accumulation, based on the
content and layout of telemetry packets, and also perform other initializations.

operator 
dialogue

choose packet type sax_which_data

load packetcap 
information

sax_acc_preload

select fields and ranges sax_acc_select sax_acc_hkrange sax_acc_other_range
sax_acc_range

time profile binning askbin asktime

initializations

spacecraft to XAS time time_constants_setup get_start_end update_start_end

obaervation chain get_obs_chain

instrument dep. 
corrections

init_correct

XAS keywords in output instr_keywords sax_df_keywords

MECS calibration parameters

SAX MECS specific routines are presented in a detailed breakdown. A first class is represented by the routines
accessing calibration parameters, used mainly for response matrix generation, but not only (e.g. they are also
used for the WWW MECS guided tour)

Mirror system area_mr psf_mir psf_rad

Windows and filter incl. materials abs_co_be bewin_trasp alum kapton2 lexan poly poly_carbo

Detector components coda cross_sec escape gas_cell spread

MECS matrix generation support

The MECS matrix generation programs (besides the above "physical" routines) includes some specific service
routines.

parameter choices blsel ein eout

service computations mecs_arf mecs_rmf multiply_rmfarf tetafi_xy

Output to XAS or OGIP fopen_rmf mecs_matkeywords write_arf write_rmf write_rmf_ebo write_rmf_mat

MECS data accumulation

Data accumulation programs call instrument specific routines for event corrections, or to add instrument
specific keywords to the output files.

corrections init_correct_me init_correct_me_fast me_gain_time me_init_map mecscorrect

keywords mecs_keywords

PDS support

PDS support routines have been written at ITESRE and are unsupported by the author of this document. No
detail is given so far.

pds_arf pds_ein pds_en_resol pds_matinfo pds_matkeywords pds_matout pds_ogip pds_opnrmf pds_response
pds_wrtrmf pds_wrtrmfebo pds_wrtrmfmat pdsmat_coef pdsmat_init pds_freq

init_correct_pds pdscorrect

inst_key_copy inst_key_find inst_key_flush inst_key_load inst_key_mult inst_key_read inst_key_set
instrument_keys no_keyword pds_keywords

pds_fotunits rminmax sax_froot_name xdofit

LECS support

LECS support is unofficial. The routines below were either been written by the author mimicking the MECS
arrangement, or were adapted from SSD routines.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

15 of 92 11/02/10 15:35

adapted from SSD blrng e2fwhm

MECS-style corrections lecscorrect init_correct_le le_gain_time lecs_keywords

HPGSPC support

HPGSPC is partially unofficial supported by the author, mimicking the MECS arrangement. However most of
the routines here were written at IFCAI for the original release of HPGSPC software (and their status of
support is unknown).

supplied by IFCAI

broad2 cofas fuga fuga_1 shell_fact shell_prob winbe
fopen_rmf reader reader_1 write_arf write_rmf_ebo write_rmf_mat
effmed filecorr_read fileinp_read parameter tmed tofits
buf_read config_read julia toqdp

MECS-style corrections init_correct_hp hpcorrect hp_gain_time hp_keywords

[Previous][Next] [Up][Down]

5.1 The vos library

The vos library groups system-dependent routines (the Virtual Operating System) whose top layer has a
standard system-independent calling sequence. There is a variant of each routine at least for Unix and VMS,
and often for each flavour of Unix. The routines in the bottom layer (when existing) can be radically different.

Use the subject list in the previous page, or the quick alphabetic index here below to locate the routine of
interest.

Note that the zc_* routines are C jacket routines in the lower layer, and will generally not exist for VMS. The 
code pointers will indicate the different versions for the various operating systems :

Unix indicates a common version for all Unix and Linux flavours
Linux indicates something specific of Linux (tested with the Intel compiler)
DEC indicates a common version for Ultrix and Alpha (OSF1 aka DU aka Tru64)
Ultrix indicates the Ultrix version
OSF indicates the Alpha (OSF1 aka DU aka Tru64) version
Sun indicates a common version for SunOS and Solaris on Suns
SunOS indicates SunOS specific routines
Solaris indicates Solaris specific routines
HP-UX is supported via code produced at ITESRE, but not available to the author of this document, and
therefore is not listed here (where different from the common Unix set)
VMS indicates code tested and used under an old release of VAX VMS (there is no support to OpenVMS)

The Linux version has been (mostly) set up in 2005 by Giorgio Calderone and Luciano Nicastro at IASF Palermo
in a different build arrangement (they tried to set up a VOS generated by cpp-like directives from a source
common to all systems), and tested under the Intel compiler. The VOS (with sources different from OS to OS
where required) presented here is based mainly on the result of their cpp-like preprocessor, has been finalised
in 2009 and is also intended for use with the Intel compiler. The main differences with either their sources, or
the typical Unix sources, concern respectively the routine Z_LOGINTIME (which they did not test and required a
Linux adhoc fix) and all the memory allocation routines, in which their version is followed, at variance with the
common Unix version.

A-Y blkxrcommon checkerr cpuclk

Z_A-Z_C z_alloc z_aux_envfile z_break z_channel z_close_stream

Z_D-Z_E z_dealloc z_delete_file z_dieee_to_vms z_dvms_to_ieee z_exit

Z_F-Z_H z_fullname z_get_command z_get_global z_hostname

Z_I-Z_N z_ieee_to_vms z_initenv z_inquire z_logintime

Z_O-Z_Q z_op_sys z_open z_open_stream z_print_file

Z_R-Z_S
z_read_stream z_rename_file z_run z_schedule z_seek_stream

z_set_global z_spawn z_sys_name z_syserror

Z_T-Z_U z_tape_open z_terminal z_ttyname z_username

Z_V-Z_Z z_vms_to_ieee z_write_stream

Zc_A-Zc_E zc_alloc zc_break zc_cuserid zc_dtime zc_execvp

Zc_F
zc_fclose zc_fopen zc_fork zc_fread

zc_free zc_fseek zc_fwrite

Zc_G-Zc_N zc_getdomainname zc_getenv zc_gethostname zc_memcpy zc_mknod

Zc_P-Zc_S zc_putenv zc_pwnam zc_rename zc_stat zc_system

Zc_T-Zc_Z zc_terminal zc_time zc_ttyname zc_unlink



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

16 of 92 11/02/10 15:35

this first family is made almost exclusively of Fortran code, and represents the layer
of routines callable by the user (except where otherwise stated)

blkxrcommon

Library vos Fortran code Unix [VMS]

Calling sequence EXTERNAL BLKXRCOMMON

This BLOCK DATA routine is implicitly called by x_read and defines in a COMMON block the information
concerning the logical units associated to stdin, stdout and stderr, the largest logical unit number, and
the FORMAT to be used for echoing a prompt.

checkerr

Library vos C code Unix

Calling sequence INTEGER ERRNO=CHECKERR()

A debugging aid (unofficial) dto make the C errno available to Fortran programs.

cpuclk

Library vos Fortran code Unix [VMS]

Calling sequence CALL CPUCLK('START')

CALL CPUCLK('any text')

A debugging aid (unofficial) which prints the CPU time spent since last call i.e. during a phase of the
program indicated by a label 'any text' (the routine must be initialized once by a START call)

z_alloc

Library vos Fortran code Unix [Linux] [VMS]

Calling sequence CALL Z_ALLOC(nelem,elsize,array,address,offset)

Arguments

INTEGER NELEM

INTEGER ELSIZE

any ARRAY

INTEGER ADDRESS

INTEGER OFFSET

This routine is the dynamic memory allocation interface. One formally requests an extension of NELEM
elements of size ELSIZE (in bytes, 1 for characters, 2 for INTEGER*2, 4 for INTEGER or REAL, 8 for
DOUBLE PRECISION) to the ARRAY handle (it is usually enough to declare it ARRAY(1) in the caller). The
routine returns the ADDRESS of the allocated area (which is unused except by the z_dealloc call, and the 
OFFSET (in units of ELSIZE) which allows to access the extension elements as ARRAY(i+OFFSET).
On all operating systems it uses an underlying zc_alloc call to do the actual job. 
Note that addresses are assumed to be 32-bit quantities, hence on 64-bit systems like Alpha OSF all code
must be compiled with the -taso (Truncated Address Space Option).

See elsewhere for the idioms about usage of this routine.

z_aux_envfile

Library vos Fortran code Unix

Calling sequence CALL Z_AUX_ENVFILE(FILE)

Arguments CHARACTER*(*) FILE

This routine is not intended for public use and must no be called. It is used on Unix by the z_get_global
and z_set_global calls (actually by z_initenv) to build the name of a file used to save a copy of the XAS
environment.
This is necessary only in Unix to allow back-inheritance (child to parent) of changes to the environment
done by children processes.
The name of the file (residing in the user home directory) is of the form ttypn_hostname.environment. The 
content of the file is not intended to survive a login session. If you wish to preserve the XAS environment
of the last login session, do a touch of such file as first operation after login before issuing any XAS 
command.

z_break

Library vos Fortran code Unix [VMS]

Calling sequence IF( Z_BREAK() )THEN ...

This logical function allows to detect if an interrupt of the current program has been requested (pressing



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

17 of 92 11/02/10 15:35

the control-C key) and allows the program to jump to a dedicated piece of code (usually intended as a
"gracious" way of interrupting prematurely a long loop).

The Unix version uses signal handling via zc_break while the VMS version handles an AST internally.

z_channel

This routine is used to manage communication channels and has two entry points.

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_CHANNEL(pipename,myop)

Arguments
CHARACTER*(*) PIPENAME

CHARACTER*(*) MYOP ('CREATE'|'TEST'|'DELETE')

The generic call above allows to perform on the named channel PIPENAME the operation specified by MYOP :

'CREATE' : creation of the channel
'TEST' : testing channel existence
'DELETE' : deleting the channel

In Unix communication channels are named pipes on /tmp created by zc_mknod, tested and deleted as 
normal files (using zc_stat and z_delete_file).
In VMS communication channels are mailboxes in the job table created and tested via system services
and automatically deleted when unused.

Calling sequence CALL Z_CHANNEL_OPEN(lu,pipename,'OPEN')

Arguments INTEGER LU

The open entry point above allows to perform on the named channel PIPENAME the opening operation
MYOP='OPEN' which connects the channel to the Fortran logical unit LU.
For all operating systems opening is dealt with by z_open_stream

z_close_stream

Library vos Fortran code Unix [Sun, HP-UX] [VMS]

Calling sequence CALL Z_CLOSE_STREAM(lu)

Arguments INTEGER LU

Closes a stream communication channel on logical unit LU. According to OS, it is either just a wrapper to 
a Fortran CLOSE or to the zc_fclose C jacket routine. See z_open_stream for details.

z_dealloc

Library vos Fortran code Unix [Linux] [VMS]

Calling sequence CALL Z_DEALLOC(address)

Arguments INTEGER ADDRESS

Deallocates the memory block at ADDRESS allocated by z_alloc. Used seldom (memory is deallocated
anyhow at exit) unless one wants to reallocate with a different size.
On all operating systems it uses an underlying call to zc_free do the actual job, except on Linux where it 
calls zc_alloc with the extra last argument set to 1.

z_delete_file

Library vos Fortran code Unix [VMS]

Calling sequence Z_DELETE_FILE(vosname)

Arguments CHARACTER*(*) VOSNAME

Deletes a file with VOS file name VOSNAME using a call to zc_unlink(Unix) or a library function (VMS)

z_dieee_to_vms

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_DIEEE_TO_VMS(DATA,N)

Arguments
DOUBLE PRECISION DATA(N)

INTEGER N

Category: data type conversion
Converts an array DATA of N double precision values from IEEE format to VMS D-format. On Unix is not
implemented (no-op), on VMS calls the NOAO assembler routines IEEUPD or IEEVUD.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

18 of 92 11/02/10 15:35

z_dvms_to_ieee

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_DVMS_TO_IEEE(DATA,N)

Arguments
DOUBLE PRECISION DATA(N)

INTEGER N

Category: data type conversion
Converts an array DATA of N double precision values from VMS D-format to IEEE format. On VMS is not
implemented (no-op), on Unix is currently not implemented (but should be ! see ideas in the code !).

z_exit

Library vos Fortran code Unix [Sun] [VMS]

Calling sequence CALL Z_EXIT(RETCODE)

Arguments INTEGER RETCODE

Replacement for Fortran statement STOP retcode, used to terminate a program passing back a return
code or status code (use RETCODE=0 for normal termination, use a positive return code for errors, use a
negative retcode only for graphics servers for which saving the environment to disk is not desired).

VMS version just handles appropriately the return code, while the Unix version actually passes control to
(z_runs) an auxiliary C program savenv which saves the XAS environment to disk (via z_aux_envfile).
There is a difference among Unix flavours concerning the fact whether logical units must be closed
unconditionally or only if open, and whether stdin, stdout, stderr must be closed. On Sun this might
interfere with i/o redirection.

z_fullname

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_FULLNAME(USER,FULL)

Arguments
CHARACTER*(*) USER

CHARACTER*(*) FULL

Category: Query calls
This routine returns the full user name (GECOS field) FULL given the account username USER. Uses 
zc_pwnam in Unix and system services in VMS.

z_get_command

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_GET_COMMAND(runstring)

Arguments CHARACTER*(*) RUNSTRING

Category: User interface
Returns the entire RUNSTRING used to invoke the program. In Unix this is done by repeating IARGC() calls
to GETARG and reassembling invidual arguments together. in VMS a single LIB$GETFOREIGN call
suffices (the run string is then massaged a bit).

z_get_global

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_GET_GLOBAL(NAME,VALUE)

Arguments
CHARACTER*(*) NAME

CHARACTER*(*) VALUE

Category: Environment access
Returns the VALUE of the XAS environment variable of given NAME (if missing, tries a system environment 
variable of same name, and if missing returns a blank string).
The VMS version uses global symbols, while the Unix version uses environment variables (however
initialized from a disk saved environment via z_initenv

z_hostname

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_HOSTNAME(HOST,DOMAIN)

Arguments
CHARACTER*(*) HOST

CHARACTER*(*) DOMAIN

Category: Query calls



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

19 of 92 11/02/10 15:35

This routine returns the current hostname HOST and also the Internet domain name DOMAIN. Uses 
zc_gethostname and zc_getdomainname in Unix while in VMS accesses UCX logicals or, if undefined,
gets the SYS$NODE logical and assigns .decnet as domain.

z_ieee_to_vms

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_IEEE_TO_VMS(DATA,N)

Arguments
REAL DATA(N)

INTEGER N

Category: data type conversion
Converts an array DATA of N REAL values from IEEE format to VMS format. On Unix is not implemented
(no-op), on VMS calls the NOAO assembler routines IEEUPR or IEEVUR.

z_initenv

Library vos Fortran code Unix

Calling sequence CALL Z_INITENV

This routine is not intended for public use and must no be called. It is used on Unix by the z_get_global
and z_set_global calls. It builds the name of a file used to save a copy of the XAS environment via
z_aux_envfile, then, if the file is older than the beginning of the current login session, deletes it and
creates an empty one, otherwise it restores the current process environment from the list of variables
stored in the disk file. The above operations are done only in the first call in a given program 
This is necessary only in Unix to allow back-inheritance (child to parent) of changes to the environment
done by children processes.

This routine contains imbedded system-dependent code to handle the different Fortran conventions
about record lengths in file opening (this is the only routine which must use a Fortran OPEN instead of a 
call to z_open

z_inquire

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_INQUIRE(vosname,query,return,creturn)

Arguments

CHARACTER*(*) VOSNAME

CHARACTER*(*) QUERY

INTEGER or LOGICAL RETURN

CHARACTER*(*) CRETURN

Replacement for the Fortran INQUIRE statement. Issues a query about a file with VOS file name VOSNAME
and returns the appropriate value. Types of QUERY are :

'EXIST' tests file existence and returns a LOGICAL value in RETURN
'RECL' returns an INTEGER value in RETURN, the record length in bytes. For unopened file this
information is unavailable in Unix, however for XAS files it can be derived from the mini-header,
while for other files is emulated asking the user. The information is native in VMS.
'OPENED' tests if file is open and returns a LOGICAL value in RETURN
'PROTECT' returns in CRETURN the file protections in the form 'RWXRWXRWX' (user, group and
other, ignore VMS system protection) or e.g. 'RWXR--R--' where a dash indicates a protection is
unset.
'CDATE' returns the creation date in RETURN as an Unix time
'MDATE' returns the modification date in RETURN as an Unix time
'SIZE' returns an INTEGER value in RETURN, the file size in bytes

The Unix version uses in general the zc_stat call to get information, while the VMS version either
"normalizes" the output of an INQUIRE statement or uses auxiliary RMS calls.

z_logintime

Library vos Fortran code [Linux] [Alpha] [Ultrix] [SunOS] [Solaris] [VMS]

Calling sequence CALL Z_LOGINTIME(TIME)

Arguments INTEGER TIME

Category: Query calls
This routine returns the Unix TIME of the beginning of the current login session. This information for
Unix is read in Fortran from /etc/utmp (however each Unix flavour has itw own peculiarities about such
file), while for VMS is obtained via a system service.

z_op_sys

Library vos Fortran code [Linux] [Alpha] [Ultrix] [SunOS] [Solaris] [VMS]



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

20 of 92 11/02/10 15:35

Calling sequence CALL Z_OP_SYS(system) 

Arguments CHARACTER*3 SYSTEM

Category: Query calls
This routine returns an hardwired three-character code SYSTEM identifying the operating system. By
definition a different version of this routine is necessary for each operating system.

z_open

Library vos Fortran code Unix [Sun] [VMS]

Calling sequence CALL Z_OPEN(lu,vosname,access,status,recl)

Arguments

INTEGER LU

CHARACTER*(*) VOSNAME

CHARACTER ACCESS ('Seq'|'Dir')

CHARACTER*2 STATUS ('New'|'OLd'|'Unknown'|'OVerwrite',|'Append')

INTEGER RECL

This routine is the replacement for the Fortran OPEN statement and associates a file with VOS file name
VOSNAME with the logical unit LU.

Only two types of ACCESS are supported : sequential on formatted files and direct on binary files (in the
latter case a record length (in byte for all systems) RECL must be supplied, use 0 for sequential files),
specified by a (at least one-letter) code.

The opening STATUS is normalized as follows for all systems :

an 'OLD' file shall exist already
a 'NEW' file shall not exist already
an 'OVERWRITE' file will be deleted and recreated as new
an 'UNKNOWN' file covers any other case
opening for 'APPEND' is foreseen but not implemented

The routine is written entirely in Fortran (does not call any underlying routine) and takes care of
system-dependent peculiarities, like : for Unix (except Sun) and VMS systems, the fact the record length
in OPEN statements are in longwords (4 bytes) ; for DEC and VMS systems opening unwritable files in the
allowed READONLY mode ; for VMS systems comparing the uer supplied record length with the one native
of the system ; for VMS new sequential files, forcing them to STREAM_LF format.

z_open_stream

Library vos Fortran code Unix [Sun, HP] [VMS]

Calling sequence CALL Z_OPEN_STREAM(lu,pipename,access,status)

Arguments

INTEGER LU

CHARACTER*(*) PIPENAME

CHARACTER ACCESS ('Binary'| 'Pipe'| 'Text')

CHARACTER*2 STATUS ('New'| 'OLd'| 'Unknown'| 'OVerwrite',| 'Append')

Opens a stream communication channel on logical unit LU. The channel name PIPENAME is passed by
z_channel_open, which is the only publicly supported way to call this routine using ACCESS='Pipe' and 
STATUS='OLd'

The remaining values of ACCESS and STATUS (mimicked on z_open) are presently not supported by the basic 
version of this routine (like the Unix bases or VMS versions), which use plain Fortran sequential
unformatted i/o (this is the only case in which this inherently unportable i/o is used, since no disk files are
created (no exchange of data across machines), but just inter-process communication on the same
machine.
The Sun and HP version, where Fortran sequential unformatted i/o cannot be used, is based on a
wrapper zc_fopen to C stream i/o. This can in principle support also disk files but this is not used nor 
supported in any XAS program.

z_print_file

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_PRINT_FILE(file)

This private routine is not part of XAS but has been used by other programs using the VOS library to
programmatically print a file in a site dependent way.

z_read_stream

Library vos Fortran code Unix [Sun, HP] [VMS]



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

21 of 92 11/02/10 15:35

Calling sequence CALL Z_READ_STREAM(lu,buffer,recl)

Arguments

INTEGER LU

CHARACTER*(RECL) BUFFER

INTEGER RECL

This routine performs input on the communication channel opened on logical unit LU, namely reads a byte 
BUFFER of RECL bytes.
As explained for z_open_stream the basic implementation of channel input uses Fortran unformatted
READ. On those Unix systems where this is not possible, C stream i/o via zc_fread is used.

z_rename_file

Library vos Fortran code Unix [VMS]

Calling sequence CALL SUBROUTINE Z_RENAME_FILE(vosnameold,vosnamenew)

Arguments CHARACTER*(*) VOSNAMEOLD, VOSNAMENEW

This routine performs programmatically renaming of files using VOS file names VOSNAMEOLD and 
VOSNAMENEW. In Unix it calls zc_rename, and in VMS a system library call.

z_run

A family of three routines dealing with process scheduling and control.

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_RUN(PROGRAMSTRING)

Arguments CHARACTER*(*) PROGRAMSTRING

This routine overlays the current process with (passes control to) a new command (this implicilty
terminates the current program, the new one continues in the same process space). PROGRAMSTRING can be 
another program or a shell script, followed by a list of arguments. Typically used by dispatchers, or
multi-stage processes.
It is invoked in Unix via zc_execvp and in VMS via LIB$DO_COMMAND.

z_schedule

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_SCHEDULE(PROGRAM,RETCODE)

Arguments
CHARACTER*(*) PROGRAMSTRING

INTEGER RETCODE

This routine schedules another process with wait (returns when finished with the status return code
RETCODE of the child). PROGRAM can be another program or a shell script, followed by a list of arguments.
Currently not used by any XAS program
It is invoked in Unix via zc_system and in VMS via a system process creation call.

z_spawn

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_SPAWN(PROGRAM)

Arguments CHARACTER*(*) PROGRAM

This routine schedules another process without wait (in background). PROGRAM can be another program (or 
perhaps a shell script), followed by a list of arguments. Typically used to start a (graphics) server.
It is invoked in Unix via zc_fork and in VMS via LIB$SPAWN.

z_seek_stream

Library vos Fortran code Unix

Calling sequence CALL Z_SEEK_STREAM(lu,n,recl)

This routine is not supported nor used by any XAS program. It can be used in conjunction with the C
variant of the communication channel stream i/o (explained with z_open_stream) to support random
access to stream disk files (using zc_fseek).

z_set_global

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_SET_GLOBAL(NAME,VALUE)

Arguments
CHARACTER*(*) NAME

CHARACTER*(*) VALUE



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

22 of 92 11/02/10 15:35

Category: Environment access
Sets the VALUE of the XAS environment variable of given NAME (use a blank VALUE=' ' to effectively delete 
the variable).
The VMS version uses global symbols, while the Unix version uses environment variables (however
initialized from a disk saved environment via z_initenv

z_sys_name

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_SYS_NAME(VOSNAME,SYSNAME)

Arguments
CHARACTER*(*) VOSNAME

CHARACTER*(*) SYSNAME

This routine is not normally called publicly, but is called by any routine operating on files to convert a
VOS file name VOSNAME to a system dependent filename SYSNAME to be passed to lower level calls.

A VOS file name is system independent, and assumes one of the following forms (most of them are Unix
resemblant, but all work on all systems) :

~/dir/dir/file.typ

expanded as $HOME/dir/dir/file.typ (in VMS $HOME is equated to logical SYS$LOGIN)
$VARIABLE/dir/dir/file.typ :
the XAS or system environment variable is resolved by z_get_global before proceeding to further 
expansion
-/dir --/dir ---/dir

expanded as ../dir ../../dir ../../../dir
/DIR/dir/dir/file.typ

interpreted as in Unix (in VMS this includes recognizing whether the first /DIR is a logical device 
name)
./dir/dir/dir/file.typ

interpreted as in Unix

z_syserror

Library vos Fortran code Unix [VMS]

Calling sequence IF (Z_SYSERROR (ierr,ivoserr,isyserr)) THEN ...

Arguments

INTEGER IERR

INTEGER IVOSERR

INTEGER ISYSERR

This logical function shall be called after each Fortran (i/o) statement which returns a status code IERR, 
and should take care to convert it to a standard VOS error code. VOS error codes can be looked at in the
error code listings (but at present all Fortran errors are converted to a single VE_FORIOERR code).
It is used to branch to an error message or handler in case of error (returns .TRUE. if error occurred). It
also returns the standard (VOS) error code IVOSERR and the corresponding system-dependent code 
ISYSERR.

z_tape_open

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_TAPE_OPEN(TAPE,IERR)

This private routine is not part of XAS but has been used by other programs using the VOS library to
programmatically handle tapes in a site dependent way.

z_terminal

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_TERMINAL(ROWS,COLUMNS)

Arguments INTEGER ROWS,COLUMNS

Category: Query calls
This routine returns the number of ROWS and COLUMNS for the current terminal device. Uses zc_terminal in
Unix and LIB$GETDVI in VMS.

z_ttyname

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_TTYNAME(TTY)

Arguments CHARACTER*(*) TTY

Category: Query calls
This routine returns the identifier of the current terminal TTY. Uses zc_ttyname in Unix (stripping the 
/dev/ prefix) and LIB$GETJPI in VMS.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

23 of 92 11/02/10 15:35

z_username

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_USERNAME(USER)

Arguments CHARACTER*(*) USER

Category: Query calls
This routine returns the current account name USER. Uses zc_cuserid in Unix and LIB$GETJPI in VMS.

z_vms_to_ieee

Library vos Fortran code Unix [VMS]

Calling sequence CALL Z_VMS_TO_IEEE(DATA,N) 

Arguments
REAL DATA(N)

INTEGER N

Category: data type conversion
Converts an array DATA of N REAL values from VMS format to IEEE format. On VMS is not implemented
(no-op), on Unix it does trivial byte handling. Note that this routine converts big endian IEEE floating 
point (i.e. Sun, HP-UX), for little endian IEEE (i.e. DEC) a previous call to swapi4 is necessary care of the 
caller.

z_write_stream

Library vos Fortran code Unix [Sun, HP] [VMS]

Calling sequence CALL Z_WRITE_STREAM(lu,buffer,recl)

Arguments

INTEGER LU

CHARACTER*(RECL) BUFFER

INTEGER RECL

This routine performs output on the communication channel opened on logical unit LU, namely writes a 
byte BUFFER of RECL bytes.
As explained for z_open_stream the basic implementation of channel input uses Fortran unformatted
WRITE. On those Unix systems where this is not possible, C stream i/o via zc_fwrite is used.

this second family is made mainly of C code, and represents a layer of routines not
intended to be called by the user (except where otherwise stated)

They are usually defined only for the various Unix flavours (VMS, except where stated, has routines
directly callable by Fortran) as C jacket calls to system libraries (often not directly Fortran callable
because of the underscore convention used by the loader, or inconveniently called because of awkward
argument types).

zc_alloc

Library vos C codeUnix [Linux] [VMS]

Calling sequence IERR=ZC_ALLOC(nelem,elsize,array,address,offset [,mode])

Back end of z_alloc, jacket to calloc. On Linux it is also back end to z_dealloc, jacket to free. This is
supported by the extra argument mode (0 allocates, 1 deallocates), present only on Linux.

zc_break

Library vos C codeUnix

Calling sequence IERR=ZC_BREAK(1,Z_AUX_INTERRUPT_HANDLER)

Back end of z_break, jacket to signal, enables the Z_AUX_INTERRUPT_HANDLER defined in z_break.

zc_cuserid

Library vos C codeUnix

Calling sequence IERR=ZC_CUSERID(name,length)

Back end of z_username, jacket to cuserid.

zc_dtime

Library vos C codeUnix [Ultrix, HP]



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

24 of 92 11/02/10 15:35

Calling sequence DOUBLE TIME=DTIME(TIMES)

Arguments REAL TIMES(2)

Back end of cpuclk, jacket to times.

zc_execvp

Library vos C codeUnix

Calling sequence IERR=ZC_EXECVP(command,runstring)

Back end of z_run, jacket to execvp, inclusive of extensive reparsing of the runstring parameters.

zc_fclose

Library vos C codeUnix [Sun,HP]

Calling sequence unsupported

Back end of z_close_stream, is dummy on systems using Fortran unformatted stream i/o, while the the
Sun-HP variant used to support stream i/o in C is not officially supported.

zc_fopen

Library vos C codeUnix [Sun]

Calling sequence unsupported

Back end of z_open_stream, is dummy on systems using Fortran unformatted stream i/o, while the the
Sun-HP variant used to support stream i/o in C is not officially supported.

zc_fork

Library vos C codeUnix

Calling sequence IERR=ZC_FORK(command,runstring)

Back end of z_spawn, jacket to fork and execvp, inclusive of extensive reparsing of the runstring
parameters.

zc_fread

Library vos C codeUnix [Sun, HP]

Calling sequence unsupported

Back end of z_read_stream, is dummy on systems using Fortran unformatted stream i/o, while the the
Sun-HP variant used to support stream i/o in C is not officially supported.

zc_free

Library vos C codeUnix [Linux] [VMS]

Calling sequence IERR=ZC_FREE(address)

Back end of z_dealloc, jacket to free. On Linux it is unused (untested ?) since free is jacketed in zc_alloc

zc_fseek

Library vos C codeUnix [Solaris]

Calling sequence unsupported

Back end of z_seek_stream, is not officially supported.

zc_fwrite

Library vos C codeUnix [Sun, HP]

Calling sequence unsupported

Back end of z_write_stream, is dummy on systems using Fortran unformatted stream i/o, while the the
Sun-HP variant used to support stream i/o in C is not officially supported.

zc_getdomainname



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

25 of 92 11/02/10 15:35

Library vos C codeUnix

Calling sequence IERR=ZC_GETDOMAINNAME(name,length)

One of the back ends of z_hostname, jacket to getdomainname

zc_getenv

Library vos C codeUnix [Solaris]

Calling sequence IERR=ZC_GETENV(variable,value)

Back end of z_get_global, jacket to getenv

zc_gethostname

Library vos C codeUnix [Solaris]

Calling sequence IERR=ZC_GETHOSTNAME(name,length)

One of the back ends of z_hostname, jacket to gethostname (or uname for Solaris)

zc_memcpy

Library vos C codeUnix [VMS]

Calling sequence CALL ZC_MEMCPY(BUFIN,BUFOUT,LOC,NBYTE) 

Arguments

any BUFIN

any BUFOUT

INTEGER LOC

INTEGER MBYTE

Copies MBYTE bytes from the input area BUFIN to location BUFOUT(LOC:) (using a character notation). This 
routine is currently used for (also misaligned) memory copies by read_bin and by write_bin
It is a jacket to memcpy.

zc_mknod

Library vos C codeUnix

Calling sequence IERR=ZC_MKNOD(path)

Back end of z_channel, jacket to mknod

zc_putenv

Library vos C codeUnix

Calling sequence IERR=ZC_PUTENV(variable,value)

Back end of z_set_global, jacket to putenv

zc_pwnam

Library vos C codeUnix [Solaris]

Calling sequence

Back end of z_fullname, jacket to getpwnam

zc_rename

Library vos C codeUnix [Solaris]

Calling sequence IERR=ZC_RENAME(oldpath,newpath)

Back end of z_rename_file, jacket to rename

zc_stat

Library vos C codeUnix [Sun,Ultrix]

Calling sequence IERR = ZC_STAT(file,buffer)

Back end of z_inquire (and others), jacket to stat



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

26 of 92 11/02/10 15:35

zc_system

Library vos C codeUnix

Calling sequence IERR=ZC_SYSTEM(command,runstring)

Back end of z_schedule, jacket to fork, execvp and signal. The code has been derived by (and is closely
resemblant to) a Sun listing of the system call, except that it runs a command directly, without any
intermediate shell.

zc_terminal

Library vos C codeUnix [Solaris]

Calling sequence IERR=ZC_TERMINAL(ROWS,COLUMNS)

Back end of z_terminal, jacket to isatty and an ioctl

zc_time

Library vos C codeUnix [Solaris] [VMS]

Calling sequence INTEGER TIME=ZC_TIME()

Callable directly by Fortran, returns the current system TIME as an Unix time.
The Unix version is a C jacket to time, while the VMS version is written in Fortran and uses SYS$GETTIM
and SYS$NUMTIM.

zc_ttyname

Library vos C codeUnix [Solaris]

Calling sequence IERR=ZC_TTYNAME(name,length)

Back end of z_ttyname, jacket to ttyname

zc_unlink

Library vos C codeUnix

Calling sequence IERR=ZC_UNLINK(path)

Back end of z_delete_file, jacket to unlink

[Previous][Next] [Up][Down]

5.2 The general library

The general library groups all (system-independent) routines which do not belong to any XAS, topic or
instrument specific library.

Use the subject list in the previous page, or the quick alphabetic index here below to locate the routine of
interest.

A-C bindex bit_init_handle blksyscommon collapse conversion_needed curft

D-F dotproduct extrp extrpd fchi fder free_lu

G-M gnomonic hexi4 interpolate lowcase matproduct mtinv

N-S radecroll ran1 swapi2 swapi4 swapr8

T-Z time_1970 time_array time_ascii true_length udouble upcase

bindex

Library general Fortran code

Calling sequence INTEGER FUNCTION BINDEX(all,part,i)

Arguments

CHARACTER*(*) ALL

CHARACTER*(*) PART

INTEGER I

This function is a replacement for INDEX which returns the absolute position of the n=th occurrence of



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

27 of 92 11/02/10 15:35

string PART in string ALL, or better in substring ALL(I:), where the returned value I is used to keep
context as in the following example which looks recursively for subsequent occurrences of the same
string.

IS=BINDEX('pqrABCdefgABCxyz','ABC',1)           returns 4

PARTEND=IS+3-1                                  3 is the true length of PART

IS=BINDEX('pqrABCdefgABCxyz','ABC',PARTEND+1)   returns 11

The coding is just a trivial use of INDEX keeping account of the offsets.

bit_init_handle

This LOGICAL function has 4 different entry points and is used to simulate a bit array (8 bits at a time are
stored in a character array, thus NX*NY/8 bytes are used) using portable "character arithmetics" (ICHAR
and CHAR functions).

Library general Fortran code

Calling sequence LOGICAL dummy=BIT_INIT_HANDLE(nx,ny)

Arguments INTEGER NX,NY

The initialization call allocates memory space for a bit array of dimensions NX times NY initialized to all 
zeroes.

Calling sequence LOGICAL dummy=BIT_SET(ix,iy,value)

Arguments
INTEGER IX,IY

INTEGER VALUE [1|0]

The SET call sets (to 1, or resets to 0, according to VALUE the bit at position IX,IY.

Calling sequence IF (BIT_GET(ix,iy) THEN ...

Arguments INTEGER IX,IY

The GET call returns a .TRUE. value if the bit at position IX,IY is 1, and .FALSE. otherwise.

Calling sequence LOGICAL dummy=BIT_NUMBER(ne)

Arguments INTEGER N

while the NUMBER call returns the number N of bits in the array set to 1.

blksyscommon

Library general Fortran code

Calling sequence EXTERNAL BLKSYSCOMMON

This BLOCK DATA routine is called implicitly by conversion_needed to initialize the SYSCOMMON common 
block used to keep track of the data conversion needed between a foreign operating system and the
target (local) operating system. The initialization assumes no conversion needed.

collapse

Library general Fortran code

Calling sequence CALL COLLAPSE(string)

Arguments CHARACTER*(*) STRING

This trivial routine collapses in place all duplicated blanks in STRING into a single blank. I.e. a string
'ABC  DEF' is returned as 'ABC DEF'

conversion_needed

Library general Fortran code

Calling sequence CALL CONVERSION_NEEDED(local,foreign) 

Arguments
CHARACTER*(3) LOCAL

CHARACTER*(3) FOREIGN

This call is used to fill the SYSCOMMON common block with the flags indicating specific data 
conversions are necessary (for integer, real, and character data respectively) between the FOREIGN
operating system and the LOCAL operating system, where LOCAL and FOREIGN are the operating system 
codes returned by z_op_sys.

curft

Library general Fortran code



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

28 of 92 11/02/10 15:35

Calling 
sequence

See Bevington's book "Data reduction and Error Analysis for the Physical 
Sciences", McGraw-Hill, 1969,

Arguments See Bevington's book

The CURFT routine is part of the CURFIT fitting package, used for the line Gaussian fits in the gain history
accumulation programs, as well as by unofficial software. It includes also the following auxiliary routines.

fchi

Library general Fortran code

Calling sequence See Bevington's book

Arguments See Bevington's book

Chisquare computation routine in the CURFIT package.

fder

Library general Fortran code

Calling sequence See Bevington's book

Arguments See Bevington's book

Partial derivative computation routine in the CURFIT package.

mtinv

Library general Fortran code

Calling sequence See Bevington's book

Arguments See Bevington's book

Matrix inversion routine in the CURFIT package.

dotproduct

Library general Fortran code

Calling sequence DOUBLE PRECISION val=DOTPRODUCT(a,b,n)

Arguments
DOUBLE PRECISION A(*),B(*)

INTEGER N

A trivial function which returns the dot product of two arrays A and B of dimension N.

extrp

A couple of trivial functions which return the linear interpolation at coordinate X between two points
(X1,Y1) and (X2,Y2) with a protection to avoid divide checks when X1=X2.
Comes in two flavours for different precision.

Library general Fortran code

Calling sequence REAL y=EXTRP(y1,y2,x1,x2,x)

Arguments

REAL X1,Y1

REAL X2,Y2

REAL X

extrpd

Library general Fortran code

Calling sequence DOUBLE PRECISION y=EXTRP(y1,y2,x1,x2,x)

Arguments

DOUBLE PRECISION X1,Y1

DOUBLE PRECISION X2,Y2

DOUBLE PRECISION X

free_lu

Library general Fortran code

Calling sequence CALL FREE_LU(lu)

Arguments INTEGER LU

A trivial routine which returns the next free (unopened) logical unit in range 1-99, or the value -1 if no



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

29 of 92 11/02/10 15:35

free units exist.

gnomonic

Library general Fortran code

Calling sequence CALL GNOMONIC(TRA,TDEC,ZRA,ZDEC,CSI,ETA)

Arguments

DOUBLE PRECISION TRA,TDEC

DOUBLE PRECISION ZRA,ZDEC

DOUBLE PRECISION CSI,ETA

Spherical trigonometry routine which returns the gnomonic angular coordinates CSI,ETA of a target 
TRA,TDEC with respect to a pointing ZRA,ZDEC according to the prescriptions of C A Murray, Vectorial 
Astrometry, pag. 191 ff.
All angular quantities shall be in radians.

hexi4

Library general Fortran code

Calling sequence CALL HEXI4(hex,i4)

Arguments
CHARACTER*(1-8) HEX

INTEGER I4

A trivial routine which converts a (zero-padded on the left) hexadecimal digit HEX (as a string of 1 to 8
characters) into a 32-bit integer value I4

interpolate

Library general Fortran code

Calling sequence CALL INTERPOLATE(DATUM,X,Y,N) 

Arguments

REAL DATUM

REAL X(*),Y(*)

INTEGER N

This interpolation routine takes x=DATUM, locates the two X values X(i),X(i+1) in the X array which 
comprise it, and returns in the same DATUM the y coordinate linearly interpolated between X(i),Y(i) and
X(i+1),Y(i+1) using values in the Y array, and the extrp routine.
Both arrays are of dimension N.
If x=DATUM lies outside X, an extrapolation from the first or last two points is made.

lowcase

Library general Fortran code

Calling sequence CALL LOWCASE(string)

Arguments CHARACTER*(*) STRING

Trivial routine to convert in place a STRING to lower case.

matproduct

Library general Fortran code

Calling sequence CALL MATPRODUCT(A,B,C,N)

Arguments

DOUBLE PRECISION A(n,n),B(n,n)

DOUBLE PRECISION C(n,n)

INTEGER N

A trivial routine which returns the matricial product C of two square arrays A and B of dimension N*N.

radecroll

Library general Fortran code

Calling sequence CALL RADECROLL(EULER,RA,DEC,ROLL) 

Arguments
DOUBLE PRECISION EULER(3,3)

DOUBLE PRECISION RA,DEC,ROLL

Spherical trigonometry routine which returns a pointing RA,DEC and ROLL angle (in radians) given an
input EULER matrix.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

30 of 92 11/02/10 15:35

ran1

Library general Fortran code

Calling sequence REAL value=RAN1(ISEED)

Arguments INTEGER ISEED

Random number generator of values uniformly distributed in the range 0.0-1.0. Must be initialized calling
it with a negative seed and then called repeatedly to extract random values, as in the example

ISEED=-123456789

dummy=RAN1(ISEED)

...

DO i=1,n

VAL(i)=RAN1(ISEED)

ENDDO

swapi2

A family of in-place byte swapping routines for 16-bit, 32-bit and 64-bit quantities. They operate on an
array DATA of dimension N exploiting an equivalence with a local array of characters.

Library general Fortran code

Calling sequence CALL SWAPI2(DATA,N)

Arguments
INTEGER*2 DATA(*)

INTEGER N

The above version is specific of 16-bit integers.

swapi4

Library general Fortran code

Calling sequence CALL SWAPI4(DATA,N)

Arguments
any*4 DATA(*)

INTEGER N

The 32-bit version can be user with both INTEGER and REAL arguments.

swapr8

Library general Fortran code

Calling sequence CALL SWAPR8(DATA,N)

Arguments
REAL*8 DATA(*)

INTEGER N

The above version is specific of 64-bit real data (DOUBLE PRECISION).

time_1970

A family of routines to handle conversion of times. An Unix time I70 is defined as the 32-bit number of
seconds since 1 Jan 1970. A time array ITIME(7) is an array containing 
year,month,day,hour,minute,seconds and hundredth of seconds (the latter usually zero). An ASCII time 
string TIME is in the form YYYY-MON-DD HH:MM:SS.FF with three-letter codes for months.

Library general Fortran code

Calling sequence CALL TIME_1970(ITIME,I70)

Arguments
INTEGER ITIME(7)

INTEGER I70

The above converts from time array to Unix time.

time_array

Library general Fortran code

Calling sequence CALL TIME_ARRAY(I70,ITIME)

Arguments
INTEGER I70

INTEGER ITIME(7)

The above converts from Unix time to time array 

time_ascii



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

31 of 92 11/02/10 15:35

Library general Fortran code

Calling sequence CALL TIME_ASCII(I70,TIME)

Arguments
INTEGER I70

CHARACTER*(23) TIME

The above converts from Unix time to an ASCII time string (at least 23 characters are necessary.

true_length

Library general Fortran code

Calling sequence INTEGER l=TRUE_LENGTH(string)

Arguments CHARACTER*(*) STRING

A trivial routine which returns the "true" length of STRING, i.e. excluding any trailing blanks.

udouble

Library general C code

Calling sequence DOUBLE PRECISION var=UDOUBLE(i)

Arguments INTEGER I

This routine takes a 32-bit integer I which might contain an unsigned value (unsupported in Fortran) and
uses C to cast it into a DOUBLE PRECISION value.

In practice this is used for the support of spacecraft times.

upcase

Library general Fortran code

Calling sequence CALL UPCASE(string)

Arguments CHARACTER*(*) STRING

Trivial routine to convert in place a STRING to upper case.

[Previous][Next] [Up][Down]

5.3 The xaslib library

The xaslib library groups all (system-independent) routines which are not mission-specific, nor topic-specific,
but typically apply to the XAS data format files.

Use the subject list in the previous page, or the quick alphabetic index here below to locate the routine of
interest.

A addhistory askbin asktime

B blkbincommon blkctxcommon blkhcommon buildpath

C-F
close_xas_file copy_table_desc create_image create_photon create_spectrum

create_time decodetform depath depath_1 detpointing

G get_global_default get_obs_chain get_table_desc getmisalign

H

h_add_keyword h_copy_all_header h_current_file h_find_keyword h_flush_header

h_flush_minih h_load_header h_load_minih h_modify_keyword h_next_keyword

h_read_keyword h_update_datasize

I-L init_timewindow leftnumber loadwindow

M maketform misalign multiply_rmfarf

N-O
open_image open_matrix open_new_xas_file open_old_xas_file open_photon

open_spectrum open_time open_xas_ascii openwindow

P-Q pad_table pipeexist pktcap_load pktcap_lookup preparse

R-S read_bin read_image satpointing set_table_desc skytoxy

T-W time_constants_setup trimroot update_start_end voserror write_bin

X-Z x_prompt x_read xasmatout xytosky zx_get_parameter



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

32 of 92 11/02/10 15:35

addhistory

Library xaslib Fortran code

Calling sequence CALL ADDHISTORY(string)

Arguments CHARACTER*(*) STRING

Category : XAS file header keywords
This routine writes a sequence of one or more HISTORY keywords splitting the user-supplied STRING into 
pieces shoter or equal to 68 characters and by repeated calls to h_add_keyword
Side effects : STRING is modified to collapse multiple blanks, and the in-memory header is entirely flushed
to disk (this is considered normal since this should be the last call when processing an output file).

askbin

Category : Accumulation
These two routines concerning the setup of time profile accumulations are not intended to be called
directly, but by satellite specific "range setup" routines like sax_acc_range and alike.

Library xaslib Fortran code

Calling sequence CALL ASKBIN(DEFBIN,ZOOM)

Arguments
INTEGER DEFBIN

INTEGER ZOOM

This routine, being passed a default minimum bin size for a time profile DEFBIN (in spacecraft OBT units),
asks the user for the wished bin size (in seconds), and returns the corresponding ZOOM factor (as multiple 
of the default minimum).

asktime

Library xaslib Fortran code

Calling sequence CALL ASKTIME(KEY,TIMED)

Arguments
CHARACTER*(*) KEY ('Start'|'End')

DOUBLE PRECISION TIMED

This routine, being passed a default time TIMED (in spacecraft OBT units ?), asks the user for the wished
time (as y m d h m s f time array), and returns the corresponding TIMED as elapsed seconds from a
reference time.
The call must be done separately for start and end times of an accumulation using the appropriate value
of KEY

blkbincommon

Library xaslib Fortran code

Calling sequence EXTERNAL BLKBINCOMMON 

This BLOCK DATA routine is called implicitly by the create or open calls for tabular XAS files (spectra, time
profiles or photon lists) to initialize the BINCOMMON common block used to keep track of binary table 
characteristics.

blkctxcommon

Library xaslib Fortran code

Calling sequence EXTERNAL BLKCTXCOMMON 

This BLOCK DATA routine is called implicitly by buildpath to initialize a small CTXCOMMON common block 
containing the current instrument and context codes (the context is the wished type of data to be
created, e.g. spectrum, image etc.).

blkhcommon

Library xaslib Fortran code

Calling sequence EXTERNAL BLKHCOMMON

This BLOCK DATA routine is called implicitly by header read or modification routines and by the low level
XAS file opening routines) to initialize the HCOMMON common block used to keep track of XAS file 
characteristics, inclusive of the in-memory header buffers.

buildpath

Library xaslib Fortran code



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

33 of 92 11/02/10 15:35

Calling sequence CALL BUILDPATH(NAMEIN,CODE,NAMEOUT)

Arguments

CHARACTER*(*) NAMEIN

CHARACTER*(*) CODE ('FOT'|'DATA'|'PRINT'|'CALIB')

CHARACTER*(*) NAMEOUT

This widely used call takes a pathless or relative filename NAMEIN and returns a full path NAMEOUT which 
locates the file in the appropriate directory according to the specification of CODE and also adds the
appropriate file extension according to context :

if NAMEIN is an absolute path, it is assumed already qualified (only file extension processing)
for CODE='DATA' the path is constructed concatenating the environment variables rootdir, datadir,
date, target, instrument in the order mandated by order
for CODE='FOT' the path is constructed similarly but using also fotdir and fotorder
for CODE='PRINT' the path is constructed similarly but using printdir and printorder
for CODE='CALIB' the file is searched in the private directory pointed by the user defined
environment variable mycaldir and, if such variable is not defined, or the specific file is not present,
in the spacecraft and instrument specific subdirectory of the calibration directory

close_xas_file

Library xaslib Fortran code

Calling sequence CALL CLOSE_XAS_FILE(lu)

Arguments INTEGER LU

This routine closes the XAS file open on logical unit LU, flushing its header to disk, and freeing the
associated memory buffers.
A call to this routine is not necessary if the header is flushed to disk by other means and the same XAS 
file number will not be reused in the same program.
It is recommended to close XAS files in the reverse order in which they were opened (this is a feature of
the association between logical units and XAS file numbers).

copy_table_desc

Library xaslib Fortran code

Calling sequence CALL COPY_TABLE_DESC (in,out)

Arguments INTEGER IN,OUT

Copies the BINCOMMON table descriptor for table number IN into the one for table number OUT, where 
IN,OUT are XAS file numbers.

create_image

Library xaslib Fortran code

Calling sequence CALL CREATE_IMAGE(lu,filename,sizex,sizey,array,nx,ny,type)

Arguments

INTEGER LU

CHARACTER*(*) FILENAME

INTEGER SIZEX,SIZEY

any*4 ARRAY

INTEGER NX,NY

CHARACTER*(3) TYPE ('FLO'|'INT')

This routine creates and writes a new XAS image file with VOS name FILENAME using logical unit LU. It
writes an image of logical sizes SIZEX,SIZEY taking it from the array ARRAY of physical sizes NX,NY (the 
distinction hardly matters if one uses dynamic memory allocation).
ARRAY is normally REAL (TYPE='FLO'), although the routine will correctly write it even if INTEGER*4,
however the TYPE='INT' is not honored at present (the BITPIX keyword is set to -32, i.e. real data).
An image file written this way shall be immediately usable (has a minimal header), however it is
recommended to complete writing of header keywords.

create_photon

Library xaslib Fortran code

Calling sequence CALL CREATE_PHOTON(lu,filename,nbins,izoff)

Arguments

INTEGER LU

CHARACTER*(*) FILENAME

INTEGER NBINS

INTEGER IZOFF

This routine creates a new XAS photon file with VOS name FILENAME using logical unit LU. It reserves
space for NBINS records (photons) and returns the zero-record offset IZOFF to be passed to other calls like
write_bin.
It prepares a minimal header with the binary table keywords according to the content of a table



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

34 of 92 11/02/10 15:35

descriptor prepared in advance, but does not write any data.

create_spectrum

Library xaslib Fortran code

Calling sequence CALL CREATE_SPECTRUM(lu,filename,nbins,izoff)

Arguments

INTEGER LU

CHARACTER*(*) FILENAME

INTEGER NBINS

INTEGER IZOFF

This routine creates a new XAS spectrum file with VOS name FILENAME using logical unit LU. It reserves
space for NBINS records (channels) and returns the zero-record offset IZOFF to be passed to other calls 
like write_bin or used as offset to write records directly.
It prepares a minimal header with the binary table keywords according to the content of a table
descriptor prepared in advance, but does not write any data.

create_time

Library xaslib Fortran code

Calling sequence CALL CREATE_TIME(lu,filename,nbins,izoff)

Arguments

INTEGER LU

CHARACTER*(*) FILENAME

INTEGER NBINS

INTEGER IZOFF

This routine creates a new XAS time profile with VOS name FILENAME using logical unit LU. It reserves
space for NBINS records (time bins) and returns the zero-record offset IZOFF to be passed to other calls 
like write_bin.
It prepares a minimal header with the binary table keywords according to the content of a table
descriptor prepared in advance, but does not write any data.

decodetform

Library xaslib Fortran code

Calling sequence CALL DECODETFORM(TFORM,IBIT,N)

Arguments

CHARACTER*(*) TFORM

INTEGER IBIT

INTEGER N

Category: binary table support
This routines receives a FITS-style TFORM keyword (only 'nB','nI','nJ','nE','nD' are recognised) and
returns the corresponding number of bits IBIT (in FITS BITPIX usage, i.e. 8,16,32,-32,-64) and depth
(N=n)

depath

Library xaslib Fortran code

Calling sequence CALL DEPATH(NAME)

Arguments CHARACTER*(*) NAME

This routine modifies in place the filename NAME stripping its path and the file extension.

depath_1

Library xaslib Fortran code

Calling sequence CALL DEPATH_1(NAME)

Arguments CHARACTER*(*) NAME

This routine modifies in place the filename NAME stripping its path but leavin the file extension intact.

detpointing

Library xaslib Fortran code

Calling sequence CALL DETPOINTING(RA,DEC,ROLL)

Arguments DOUBLE PRECISION RA,DEC,ROLL



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

35 of 92 11/02/10 15:35

Category: attitude
Side effects: loading info in PIXCOMMON
This routine returns in radians the detector pointing coordinates RA,DEC and ROLL angle. If they are 
present in the current image file header, it just returns them.
Otherwise it calls misalign to get the misalignments, satpointing to get the spacecraft pointing, computes
Euler angles and applies the rotation matrix with radecroll

get_global_default

Library xaslib Fortran code

Calling sequence CALL GET_GLOBAL_DEFAULT(name,default,value)

Arguments

CHARACTER*(*) NAME

CHARACTER*(*) DEFAULT

CHARACTER*(*) VALUE

Category: environment access
This is the standard recommended way to obtain the VALUE of an enviroment variable of given NAME. It 
calls the VOS z_get_global routine but, if the variable does not exist, returns the user supplied DEFAULT

get_obs_chain

Library xaslib Fortran code

Calling sequence CALL GET_OBS_CHAIN(IOBS,KEEP) 

Arguments
INTEGER IOBS

CHARACTER*(5) KEEP ('Keep'|'Reset'|'Any')

Category:accumulation support
This routine is called by (SAX packetcap based) telemetry reading routines to know what is the next
observation in the current chain (stored in the environment). The observation number is returned in IOBS, 
or zero if there is no further observation.

KEEP='Reset' returns in IOBS the first observation of the chain.
KEEP='Keept' returns in IOBS the current observation of the chain and does not advance the
observation pointer (the same IOBS will be returned next time)
any other value advances the observation pointer

get_table_desc

Library xaslib Fortran code

Calling sequence CALL GET_TABLE_DESC (table,column,offset,bitpix,dimens)

Arguments

INTEGER TABLE

INTEGER COLUMN

INTEGER OFFSET,BITPIX,DIMENS

Category: binary table support
This routines returns the characteristics (i.e. the physical column number OFFSET, the bit width in FITS 
syntaxBITPIX and the depth or dimensionality DIMENS) of the column at logical number COLUMN in the binary
table file with XAS file number tt>TABLE, reading it from the BINCOMMON common block.

getmisalign

Library xaslib Fortran code

Calling sequence CALL GETMISALIGN(ALPHA,BETA,GAMMA)

Arguments DOUBLE PRECISION ALPHA,BETA,GAMMA

Category: attitude
This routine returns the Z,Y and X misalignments ALPHA,BETA,GAMMA reading them from the appropriate
calibration file or asking the user.
Side effect: loads instrument focal length in COMMON block.

h_add_keyword

This routine has 5 entry points and is used to add an header keyword of appropriate type, given NAME and 
VALUE. For all calls one can specify if the keyword is just added to the in-memory copy of the header
(FLUSHFLAG=0) or if the header is also flushed to disk (FLUSHFLAG=0). It is suggested to defer flushing only to 
significant points (adding a complete series of keywords, or closing the file).

Library xaslib Fortran code



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

36 of 92 11/02/10 15:35

CHARACTER*(*) VALUE

INTEGER FLUSHFLAG (0|1)

The above call is for CHARACTER keywords (i.e. VALUE is a string)

Calling sequence CALL H_ADD_IKEYWORD(name,value,flushflag,n)

Arguments
INTEGER*2 VALUE(*)

INTEGER N

The above call is for 16-bit integer keywords (discouraged). See below for the explanation of the extra
arguments and above for the common arguments (not shown).

Calling sequence CALL H_ADD_JKEYWORD(name,value,flushflag,n)

Arguments
INTEGER VALUE(*)

INTEGER N

The above call is for 32-bit integer keywords. In this case, as for all numeric keywords, the values can be
an array VALUE(*) of at least N elements. If VALUE is a scalar, N shall be a variable with value 1. N shall 
always be a variable.

Calling sequence CALL H_ADD_RKEYWORD(name,value,flushflag,n)

Arguments
REAL VALUE(*)

INTEGER N

Similar call for numeric 32-bit floating point REALs

Calling sequence CALL H_ADD_DKEYWORD(name,value,flushflag,n)

Arguments
DOUBLE PRECISION VALUE(*)

INTEGER N

Similar call for numeric 64-bit floating point DOUBLE PRECISION values.

h_copy_all_header

Library xaslib Fortran code

Calling sequence CALL H_COPY_ALL_HEADER(in,out)

Arguments INTEGER IN,OUT

Copies the in-memory header for XAS file number IN into the one for XAS file number OUT. The headers 
are not flushed to disk. The destination is overwritten entirely (thus any keyword which shall be different
must be saved and restored care of the program).

h_current_file

Library xaslib Fortran code

Calling sequence CALL H_CURRENT_FILE(XASNO)

Arguments INTEGER XASNO

Most header operations (typically all keyword access routines) operate on the current XAS file (typically 
the last one opened). This routine allows to switch future operations to another file identified by its XAS
file number XASNO.

h_find_keyword

Library xaslib Fortran code

Calling sequence CALL H_FIND_KEYWORD(name,found,type,length,nelem,pointer)

Arguments

CHARACTER*(*) NAME

LOGICAL FOUND

INTEGER TYPE

INTEGER LENGTH

INTEGER NELEM

INTEGER POINTER

This dedicated routine is not intended for general use. It locates a kewyord with given NAME in the 
memory copy of the header. A successful search returns FOUND=.TRUE.. In such case TYPE is the keyword 
type (0 chracter, 1 INTEGER*2, 2 INTEGER*2, 3 REAL*4, 4 REAL*8 ) LENGTH is the number of bytes 
occupied by the data field value in the memory buffer, NELEM is the number of elements (in arrays, 1 is 
scalar) and POINTER is the location of the keyword in the memory buffer
The scope of the search can be controlled by the HCOMMON_CONTEXT variable (since this is not intended for
public use, it is documented only in the code)



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

37 of 92 11/02/10 15:35

h_flush_header

Library xaslib Fortran code

Calling sequence CALL H_FLUSH_HEADER 

This service routine flushes the in-memory header buffer to disk. Not intended for public use.

h_flush_minih

Library xaslib Fortran code

Calling sequence CALL H_FLUSH_MINIH(zoff) 

Arguments INTEGER ZOFF

This service routine flushes the file mini-header buffer to disk. Not intended for public use. Called by the
previous routine.
The mini-header is represented by 28 bytes of information which are always stored at the beginning of
the file (the remainder of the header is stored after the data, being actually a trailer), and spans ZOFF
records (typically 1, but more if the file record length is very short).

h_load_header

Library xaslib Fortran code

Calling sequence CALL H_LOAD_HEADER

This service routine reads the in-memory header buffer from disk. Not intended for public use. It takes
also care of initial dynamic memory allocation for the header.

h_load_minih

Library xaslib Fortran code

Calling sequence CALL H_LOAD_MINIH(recl,zoff) 

Arguments
INTEGER RECL

INTEGER ZOFF

This service routine reads a file mini-header from disk. Not intended for public use. 
The mini-header is described above and spans ZOFF records. This call is usually the first after a file has 
been opened (opening makes known the file record length in bytes RECL, required by this routine).

h_modify_keyword

This routine, similary to h_add_keyword, has 5 entry points and is used to modify an header keyword of
appropriate type, given NAME and VALUE. The calling sequence is the same used for h_add_keyword, to 
which one is referred for all details.
In fact this routine calls h_add_keyword if a keyword with given NAME does not exist. Otherwise it locates 
the existing keyword and changes its value (but cannot extend the data field length, therefore a string
keyword cannot be made longer, and an array keyword cannot have more elements)
Normal keywords are not "duplicatable". Only a given keyword with a given NAME can be present in a file.
There are however some "duplicatable" keywords (namely COMMENT, HISTORY and PARENTS which
cannot be modified by this routine (a new keyword will always be added)

Library xaslib Fortran code

Calling sequence

CALL H_MODIFY_KEYWORD(name,value,flushflag)

CALL H_MODIFY_IKEYWORD(name,value,flushflag,n)

CALL H_MODIFY_JKEYWORD(name,value,flushflag,n)

CALL H_MODIFY_RKEYWORD(name,value,flushflag,n)

CALL H_MODIFY_DKEYWORD(name,value,flushflag,n)

For character, INTEGER*2, INTEGER*4, REAL and DOUBLE PRECISION keywords respectively

h_next_keyword

Library xaslib Fortran code

Calling sequence CALL H_NEXT_KEYWORD(NAME,NORDER,POINTER)

Arguments

CHARACTER*(*) NAME

INTEGER NORDER

INTEGER POINTER

This dedicated routine is not intended for general use and is used only by some specific programs which
need to scan the header from the beginning. It returns the NAME of the next keyword (or a null, i.e.
CHAR(0) if there are no more keywords), its sequence number NORDER and the location of the keyword in



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

38 of 92 11/02/10 15:35

the memory buffer POINTER.

h_read_keyword

This routine has 5 entry points and is used to retrieve the VALUE of an header keyword of appropriate
type, given its NAME. For all calls, if the named keyword is not found, an user supplied DEFAULT is returned
in VALUE.

All calls return also an ERROR code, which is 0 for no errors, 1 for keyword not found, 2 for type mismatch
(keyword is not of the type implied by the call), 3 if the header has not yet been loaded from disk, and -1
for a truncation error (the space provided in VALUE is not enough to contain the actual value). Error codes
less or equal to zero imply that the partial or full value is returned. Error codes greater than zero imply
that DEFAULT is returned in its stead.

Library xaslib Fortran code

Calling sequence CALL H_READ_KEYWORD(name,value,default,error)

Arguments

CHARACTER*(*) NAME

CHARACTER*(*) VALUE

CHARACTER*(*) DEFAULT

INTEGER ERROR

The above call is for CHARACTER keywords (i.e. VALUE is a string)

Calling sequence CALL H_READ_IKEYWORD(name,value,default,error,n)

Arguments

INTEGER*2 VALUE(*)

INTEGER*2 DEFAULT

INTEGER N

The above call is for 16-bit integer keywords (discouraged). See below for the explanation of the extra
arguments and above for the common arguments (not shown).

Calling sequence CALL H_READ_JKEYWORD(name,value,default,error,n)

Arguments

INTEGER VALUE(*)

INTEGER DEFAULT

INTEGER N

The above call is for 32-bit integer keywords. In this case, as for all numeric keywords, the values can be
an array VALUE(*) of at least N elements. N shall always be a variable initialized to the number of wished
elements to be retrieved. If VALUE is a scalar, N shall be a variable with value 1. This because N is
modified by the program which returns the actual number of keywords retrieved : if the array is longer,
no more than than the requested N are returned, but if it is shorter only the first actual N are returned. 
The rest of the VALUE(*) array is filled with the (scalar) DEFAULT (which in case of errors is used to fill the
entire array).

Calling sequence CALL H_READ_RKEYWORD(name,value,default,error,n)

Arguments

REAL VALUE(*)

REAL DEFAULT

INTEGER N

Similar call for numeric 32-bit floating point REALs

Calling sequence CALL H_READ_DKEYWORD(name,value,default,error,n)

Arguments

DOUBLE PRECISIO VALUE(*)

DOUBLE PRECISIO DEFAULT

INTEGER N

Similar call for numeric 64-bit floating point DOUBLE PRECISION values.

h_update_datasize

Library xaslib Fortran code

Calling sequence CALL H_UPDATE_DATASIZE(NDATA)

Arguments INTEGER NDATA

This routine shall be used in the following case :
one has created a XAS data file reserving space for a number of records (or even for zero records)
this has implicitly written to disk the header after the data area for such records (which can also be
filled later)
one has either written more records, or decided that less records have to be used (in which case
the disk header is at the wrong place) where NDATA is the final number of actual records
one might have also updated the in-memory copy of the header

In all this cases one must call this routine to update the 28-byte mini-header, change the NAXIS2
keyword (which for all XAS files is the number of records), and flush the header to disk at the correct
place.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

39 of 92 11/02/10 15:35

init_timewindow

Library xaslib Fortran code

Calling sequence CALL INIT_TIMEWINDOW(FILE)

Arguments CHARACTER*(*) FILE

Category: time window / accumulation support
The routine retrieves the name of the timewindow file from the environment and returns it in FILE (a 
blank string is returned if no timewindow is defined). 
If a file is defined it calls openwindow and loadwindow to read the file (an ASCII file containing a list of
start and end times in time array form) and store the times in a COMMON block in the appropriate time 
units.

leftnumber

Library xaslib Fortran code

Calling sequence CHARACTER*3 FUNCTION LEFTNUMBER(N,ISIZE)

Arguments
INTEGER N

INTEGER ISIZE

Category: binary table support
This function formats a number N (0-999) into a 3-digit left-justified, blank padded string (i.e. '1 ','10
','100') and returns in ISIZE the number of non-blank digits (in the example respectively 1,2,3), or zero
in case of errors (including N out of range) when the string '***' is returned.
This routine is used by maketform to build FITS-style TFORM values.

loadwindow

Library xaslib Fortran code

Calling sequence CALL LOADWINDOW(LU,N,START,END)

Arguments

INTEGER LU

INTEGER N

DOUBLE PRECISION START(*),END(*)

Category: time window
This routine reads from the timewindow file opened by openwindow on logical unit LU a number N of start 
and end times into the START and END arrays (as a number of seconds since 1970 but in double precision
format).

maketform

Library xaslib Fortran code

Calling sequence CHARACTER*(*) FUNCTION MAKETFORM(IBIT,N)

Arguments
INTEGER IBIT

INTEGER N

Category: binary table support
This routine receives the number of bits IBIT (in FITS BITPIX usage, i.e. 8,16,32,-32,-64) and depth (N=n) 
of a binary table column and returns a formatted FITS-style TFORM keyword (only 'nB','nI','nJ','nE','nD'
are supported in XAS)

misalign

Library xaslib Fortran code

Calling sequence CALL MISALIGN(EULER,NEWMAT)

Arguments
DOUBLE PRECISION EULER(3,3)

DOUBLE PRECISION NEWMAT(3,3)

Category: attitude
This routines takes an input attitude EULER matrix (typically the spacecraft attitude) and rotates it by the
Z,Y,X misalignments (retrieved via getmisalign producing a new attitude matrix tt>NEWMAT

multiply_rmfarf

Library xaslib Fortran code



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

40 of 92 11/02/10 15:35

REAL ARF(NEBN)

REAL ELOW(NEBN),EUP(NEBN)

INTEGER NEBN,NEOUT

This routine takes a "pure" (adimensional) response matrix function from RMF, and returns in the same RMF
the product (cm2 keV) of it by the ARF (cm2) and by the energy grid bin width (computed from the lower
and upper energy bounds in ELOW and EUP. The units are consistent with the XAS convention for response
matrices.
NEBN is the number of input energies, while NEOUT is the number of PHA channels.

open_image

Library xaslib Fortran code

Calling sequence CALL OPEN_IMAGE(lu,filename,sizex,sizey,bitpix,izoff)

Arguments

INTEGER LU

CHARACTER*(*) FILENAME

INTEGER BITPIX

INTEGER SIZEX,SIZEY

INTEGER IZOFF

This routine opens an existing XAS image file with VOS name FILENAME using logical unit LU. It returns
the image size SIZEX,SIZEY, the number of bits/pixel BITPIX (in FITS convention, -32 for floating point
images is the recommended usage) and the zero-record offset IZOFF to be passed to other calls like
read_image.

open_matrix

Library xaslib Fortran code

Calling sequence CALL OPEN_MATRIX(lu1,lu2,filename,sizex,sizey,izoff1,izoff2) 

Arguments

INTEGER LU1,LU2

CHARACTER*(*) FILENAME

INTEGER SIZEX,SIZEY

INTEGER IZOFF1,IZOFF2

This routine opens simulatenously on logical units LU1,LU2 a response matrix (a floating point XAS image
file) with VOS name FILENAME and its associated histogram (the associated histogram is a 1-d XAS image
file, containing the input energy grid, and whose name is stored in a keyword in the matrix header). It
returns the matrix size SIZEX,SIZEY and the zero-record offsets IZOFF1,IZOFF2 to be passed to other calls
like read_image to actually read the matrix and histogram.

open_new_xas_file

Library xaslib Fortran code

Calling sequence CALL OPEN_NEW_XAS_FILE(lu,file,type,recl,nrec,xasno,zoff)

Arguments

INTEGER LU

CHARACTER*(*) FILE

CHARACTER*(*) TYPE

INTEGER RECL

INTEGER NREC

INTEGER XASNO

INTEGER ZOFF

This routine (normally not called by users, which use the higher level type-specific "create" routines like
create_image) creates (associating it with logical unit LU) a new XAS file of name FILE and given TYPE with 
NREC data records of record length of RECL bytes (the number of actual records is larger, since it includes
the header and mini-header). It returns the XAS file number XASNO and the zero-offset record ZOFF after 
which data can be written.
Recognised file types are :

'FLO' for normal real images,
'INT' for normal integer images (deperecated)
'MAT' for response matrix images
'SPE' for spectra (binary tables)
'TIM' for time profiles (binary tables)
'PHO' for photon files (binary tables)
'GEN' for generic binary tables

open_old_xas_file

Library xaslib Fortran code



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

41 of 92 11/02/10 15:35

Calling sequence CALL OPEN_OLD_XAS_FILE(lu,file,type,recl,nrec,xasno,zoff)

Arguments

INTEGER LU

CHARACTER*(*) FILE

CHARACTER*(*) TYPE

INTEGER RECL

INTEGER NREC

INTEGER XASNO

INTEGER ZOFF

This routine (normally not called by users, which use the higher level type-specific "open" routines like
open_image or open_photon) opens (associating it with logical unit LU) an existing XAS file of name FILE,
returning its TYPE, the number of data records NREC records, and the record length of RECL bytes. It 
returns also the XAS file number XASNO and the zero-offset record ZOFF after which data can be written.
Note that the syntax (except for the argument intent) is identical to the one of open_new_xas_file to 
which one is referred (except that any non-matrix image is returned as TYPE='IMG').

open_photon

Library xaslib Fortran code

Calling sequence CALL OPEN_PHOTON(lu,filename,recl,nbins,nfields,izoff)

Arguments

INTEGER LU

CHARACTER*(*) FILENAME

INTEGER RECL

INTEGER NBINS

INTEGER NFIELDS

INTEGER IZOFF

This routine opens an existing XAS photon list file with VOS name FILENAME using logical unit LU. It 
returns the number of photons NBINS, the number of data fields (columns) per event NFIELDS, the record 
length RECL in bytes, and the zero-record offset IZOFF to be passed to other calls like read_bin. It also 
loads a table descriptor according to the characteristics of the table columns (fields), in the order in
which they appear, ignoring any unnamed physical column (TTYPE blank) which is used for pad columns.

open_spectrum

Library xaslib Fortran code

Calling sequence CALL OPEN_SPECTRUM(lu,filename,recl,nbins,nfields,izoff)

Arguments

INTEGER LU

CHARACTER*(*) FILENAME

INTEGER RECL

INTEGER NBINS

INTEGER NFIELDS

INTEGER IZOFF

This routine opens an existing XAS spectrum file with VOS name FILENAME using logical unit LU. It returns
the number of channels NBINS, the number of data fields (columns) NFIELDS (usually 4), the record length 
RECL in bytes, and the zero-record offset IZOFF to be passed to other calls like read_bin or used to read the
records directly. It also loads a table descriptor according to the characteristics of the table columns
(fields), only for the 4 columns with canonic names in a spectrum.

open_time

Library xaslib Fortran code

Calling sequence CALL OPEN_TIME(lu,filename,recl,nbins,nfields,izoff)

Arguments

INTEGER LU

CHARACTER*(*) FILENAME

INTEGER RECL

INTEGER NBINS

INTEGER NFIELDS

INTEGER IZOFF

This routine opens an existing XAS time profile (light curve file) with VOS name FILENAME using logical
unit LU. It returns the number of time bins NBINS, the number of data fields (columns) per bin NFIELDS, the 
record length RECL in bytes, and the zero-record offset IZOFF to be passed to other calls like read_bin. It 
also loads a table descriptor according to the characteristics of the table columns (fields), assigning
logical column numbers only for the those columns actually present whose name is one of the canonic
names in a light curve (or in unofficially supported folded light curves).



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

42 of 92 11/02/10 15:35

open_xas_ascii

Library xaslib Fortran code

Calling sequence CALL OPEN_XAS_ASCII(LU,NAME,NROW,NCOL)

Arguments

INTEGER LU

CHARACTER*(*) NAME

INTEGER NROW

INTEGER NCOL

This routine opens an existing "XAS ASCII" tabular file of given NAME on logical unit LU. Such file is just a 
plain ASCII file with NROW records with NCOL numeric columns, preceded by as many as wished nh header
records in free format, preceded by a single pseudo-miniheader line in the form XAS1ASC2GEN31234 nh nrow 
ncol. The routine skips the nh+1 header records and stays positioned for reading the first data record, at
the same time returning NROW and NCOL.

There is instead no explicit routine interface to create new "XAS ASCII" tabular files.

openwindow

Library xaslib Fortran code

Calling sequence CALL OPENWINDOW(LU,NAME,N)

Arguments

INTEGER LU

CHARACTER*(*) NAME

INTEGER N

Category: time window
This routine is used to open a timewindow file with given NAME on logical unit LU before calling 
loadwindow. The routine does a consistency format check on the content of each time window. It returns
the number of timewindows N or N=0 in case of any error.

pad_table

Library xaslib Fortran code

Calling sequence CALL PAD_TABLE(TABLE,PADCOL,PADDED)

Arguments

INTEGER TABLE

INTEGER PADCOL

LOGICAL PADDED

This service routine shall be called during creation of new XAS binary table files, to ensure that the
record length is padded to a multiple of 4 bytes (constraint imposed for Fortran direct access support on
Digital systems). One passes the XAS file number TABLE, and the number of a non-existing free column 
PADCOL (i.e. the first unused column). The routine reads the table descriptor, adds the column sizes to
verify the toal size is a multiple of 4 bytes, and if not adds to the descriptor a pad column of type 1B, 2B
or 3B as appropriate. It returns a logical flag PADDED=.TRUE. if the pad column has been added.

pipeexist

Library xaslib Fortran code

Calling sequence IF( PIPEEXIST(pipe) ) THEN ..

Arguments CHARACTER*(*) PIPE

This logical function is a convenience utility front end to the VOS z_channel routine to test the existence
of a named communication channel PIPE.

pktcap_load

Library xaslib Fortran code

Calling sequence CALL PKTCAP_LOAD(SATELLITE,INSTRUMENT,MODE,PACKET)

Arguments

CHARACTER*(*) SATELLITE

CHARACTER*(*) INSTRUMENT

CHARACTER*(*) MODE

CHARACTER*(*) PACKET

Category: accumulation support
This routine is a mission-independent way to load mission-specific information about a named telemetry
PACKET. It opens the appropriate packetcap file, whose name is built according to SATELLITE, INSTRUMENT
and MODE (typically one of 'DIR'|'INDIR'|'HK'), and which is located in the appropriate calibration 
directory.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

43 of 92 11/02/10 15:35

Side effect:loads in COMMON block PKCOMMON the entire reconstructed content of the packetcap entry for
the named PACKET, inclusive of the resolution of any tc reference (similar tp termcap tc capabilities).

pktcap_lookup

Library xaslib Fortran code

Calling sequence CALL PKTCAP_LOOKUP(FIELD,TYPE,IVAL,STRVAL,FOUND)

Arguments

CHARACTER*(*) FIELD

INTEGER TYPE

INTEGER IVAL

CHARACTER*(*) STRVAL

LOGICAL FOUND

Category: accumulation support
This routine scans the packetcap entry currently loaded in memory by the last call to pktcap_load for a 
named FIELD. It returns a TYPE which can be :

0 for a boolean field, in which case FOUND=.TRUE. means the field is set.
1 for a numeric field, in which case the field value is in IVAL
2 for a string field, in which case the field value is in STRVAL
-1 in case of errors

preparse

Library xaslib Fortran code

Calling sequence CHARACTER*(*+2) OUT=PREPARSE(STRING)

Arguments CHARACTER*(*) STRING

Category: user interface
This function is widely used after a call to x_read which returns an argument STRING containing one or 
more blank or comma separated character items. It parses a string of the form AAA,BBB,CCC or AAA BBB CCC
returning the corresponding string 'AAA','BBB','CCC' / which is suitable for list-directed reading.
The receiving variable OUT shall have enough space to contain the expanded value. It is customary to
allocate at least two characters more (at least for the blank-slash list-directed terminator added at the
end).

read_bin

Library xaslib Fortran code

Calling sequence CALL READ_BIN(LU,IREC,IZOFF,F1,F2,F3,F4,F5,F6,F7)

Arguments

INTEGER LU

INTEGER IREC

INTEGER IZOFF

any*4 F1(*),F2(*),F3(*),F4(*),F5(*),F6(*),F7(*)

Category: binary tables
This routine reads a generic data record at position IREC (after the zero-offset IZOFF passed by the file 
opening routine) from the binary table open on logical unit LU. The Fi arguments can be scalar or arrays 
of any numeric data type, as appropriate according to the type and depth of the corresponding column in
the table. All seven variables shall be supplied (seven is the maximum number of columns in a table, if
more are required the code shall be recompiled !) but those unused may point to a dummy variable. Only
logical columns marked as present in the table descriptor will be returned a value.
Note that byte and 16-bit columns are always returned in 32-bit INTEGER Fi.

read_image

Library xaslib Fortran code

Calling sequence CALL READ_IMAGE(lu,array,sizex,sizey,nx,ny,izoff)

Arguments

INTEGER LU

REAL ARRAY

INTEGER SIZEX,SIZEY

INTEGER NX,NY

INTEGER IZOFF

This routine reads an entire XAS image file opened on logical unit LU by open_image which has also 
passed the zero-offset record IZOFF. It fills an image of logical sizes SIZEX,SIZEY taking it from the array
ARRAY of physical sizes NX,NY (the distinction hardly matters if one uses dynamic memory allocation).
The routine supports only REAL*4 floating point images (other deprecated types can be dealt with by the
user directly in Fortran).



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

44 of 92 11/02/10 15:35

satpointing

Library xaslib Fortran code

Calling sequence CALL SATPOINTING(RA,DEC,ROLL)

Arguments DOUBLE PRECISION RA,DEC,ROLL

Category: attitude
This routine returns in radians the satellite pointing coordinates RA,DEC and ROLL angle. If they are 
present in the current image file header, it just returns them, otherwise asks the user.

set_table_desc

Library xaslib Fortran code

Calling sequence CALL SET_TABLE_DESC(table,column,offset,bitpix,dimens)

Arguments

INTEGER TABLE

INTEGER COLUMN

INTEGER OFFSET,BITPIX,DIMENS

Category: binary table support
This routines saves the characteristics (i.e. the physical column number OFFSET, the bit width in FITS 
syntaxBITPIX and the depth or dimensionality DIMENS) of the column at logical number COLUMN of the binary
table file with XAS file number tt>TABLE into a descriptor in the BINCOMMON common block.

skytoxy

Library xaslib Fortran code

Calling sequence CALL SKYTOXY(TRA,TDEC,ZRA,ZDEC,ZROLL,X,Y)

Arguments

DOUBLE PRECISION TRA,TDEC

DOUBLE PRECISION ZRA,ZDEC,ZROLL

DOUBLE PRECISION X,Y

Category: attitude
This routine receives (in radians) the celestial coordinates of an object TRA,TDEC and a (detector) attitude 
ZRA,ZDEC,ZROLL and returns the X,Y coordinates in mm on the focal plane (pixelization is left to the user).
It firsts converts in gnomonic angular coordinates, then rotates them by the roll angle, and then use the
platescale to convert into mm.

time_constants_setup

Library xaslib Fortran code

Calling sequence CALL TIME_CONSTANTS_SETUP(SCLSB)

Arguments INTEGER SCLSB

Category: accumulation support
This routine prepares all quantity necessary for conversion between on board times and meaningful time
units (default is seconds, but can be controlled by the timeunits environment variable). Two kind of on
board times are dealt with, those in current packet units (whose time resolution is derived internally via a
packetcap lookup of the tr field), and those in spacecraft units (whose time resolution is derived by the
SCLSB argument (negative, e.g. -16) as 2SCLSB s) Side effects: stores relevant values in TIMECOMMON

trimroot

Library xaslib Fortran code

Unsupported (variant of depath ?)

update_start_end

Library xaslib Fortran code

Calling sequence CALL UPDATE_START_END

Category: keyword header support
This routine is called by accumulation program just before writing the HISTORY keyword, to write in the
HISTORY the correct start and end times, whose values in COMMON may have been altered during the
processing.

voserror

Library xaslib Fortran code



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

45 of 92 11/02/10 15:35

Calling sequence IF( VOSERROR (ivoserr,isyserr) ) THEN ...

Arguments
INTEGER IVOSERR

INTEGER ISYSERR

This logical function shall be called after each routine which sets a standard error code in VOSCOMMON
to branch to an error message or handler in case of error (returns .TRUE. if error occurred). It also
returns (extracting it from the common block) the standard (VOS) error code IVOSERR and the 
corresponding system-dependent code ISYSERR.
VOS error codes can be looked at in the error code listings.

write_bin

Library xaslib Fortran code

Calling sequence CALL WRITE_BIN(LU,IREC,IZOFF,F1,F2,F3,F4,F5,F6,F7)

Arguments

INTEGER LU

INTEGER IREC

INTEGER IZOFF

any*4 F1(*),F2(*),F3(*),F4(*),F5(*),F6(*),F7(*)

Category: binary tables
This routine writes a generic data record at position IREC (after the zero-offset IZOFF passed by the file 
opening routine) into the binary table open on logical unit LU. The Fi arguments can be scalar or arrays 
as explained for read_bin. Only logical columns marked as present in the table descriptor will be written.
Note that byte and 16-bit columns are converted care of this routine from 32-bit INTEGER Fi.

x_prompt

Library xaslib Fortran code

Calling sequence CALL X_PROMPT(string,k) 

Arguments
CHARACTER*(*) STRING

INTEGER K

Category: user interface
This routine is a replacement for the WRITE(*,*)'prompt' idiom to write a terminal prompt. Note that
prompts are always echoed to the terminal even if the input is taken from command file or run string
arguments, unless the environment variable echo disables it.
The prompt is passed in STRING and issued without advancing to the next line so that the reply will be on
the same line, starting at column K (or immediately after the prompt if K=0). The idiom is :

WRITE(BUFFER,*)' Enter your value [df=',I,'] '

CALL X_PROMPT(BUFFER,0)

x_read

Library xaslib Fortran code

Calling sequence CALL X_READ(npar,mpar,string) 

Arguments
INTEGER NPAR,MPAR

CHARACTER*(*) STRING

Category: user interface
This routine is a replacement for the READ(*,*)values idiom to read an user reply to a terminal prompt.
The routine can read from the terminal, from a command file, or from the run string positional
parameters as controlled by environment variables TBD REF). The user can ask for MPAR parameters
(usually 1) asking at a specific position NPAR (or just the next parameter if NPAR=0) and the routine returns 
the parameters in STRING.
STRING is suitable for list-directed i/o for numeric values, but must be preparsed for list-directed i/o for 
string values, specially for multiple strings, which are also allowed, according to the following idioms :

CALL X_PROMPT('Enter one integer and two reals ',0)

CALL X_READ(0,3,BUFFER)

READ(BUFFER,*)I,R1,R2

CALL X_PROMPT('Enter filename ',0)

CALL X_READ(0,1,BUFFER)

BUFFER2=PREPARSE(BUFFER)

READ(BUFFER2,*)NAME

CALL X_PROMPT('Enter two strings ',0)

CALL X_READ(0,2,BUFFER)

BUFFER2=PREPARSE(BUFFER)

READ(BUFFER2,*)STRING1,STRING2

xasmatout



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

46 of 92 11/02/10 15:35

Library xaslib Fortran code

Calling sequence CALL XASMATOUT(LU1,LU2,NAME,RMF,ELOW,EUP,NEBN,NEOUT)

Arguments

INTEGER LU1,LU2

CHARACTER*(*) NAME

REAL RMF(NEBN,NEOUT)

REAL ELOW(NEBN),EUP(NEBN)

INTEGER NEBN,NEOUT

This utility routine writes a XAS response matrix RMF into a .mat file named NAME. It uses two logical units 
LU1,LU2, where the second is for the associated histogram file which contains the middle points of the
energy grid (i.e. the mean of the low and upper bounds ELOW and EUPP). Both files are written via
create_image 
NEBN is the number of input energies, while NEOUT is the number of PHA channels.

xytosky

Library xaslib Fortran code

Calling sequence CALL XYTOSKY(X,Y,ZRA,ZDEC,ZROLL,TRA,TDEC)

Arguments

DOUBLE PRECISION X,Y

DOUBLE PRECISION ZRA,ZDEC,ZROLL

DOUBLE PRECISION TRA,TDEC

Category: attitude
This routine receives the X,Y coordinates in mm of point on the focal plane (de-pixelization is left to the
user) and a (detector) attitude ZRA,ZDEC,ZROLL (in radians) and returns the celestial coordinates of an 
object TRA,TDEC (also in radians).

zx_get_parameter

Library xaslib Fortran code

Calling sequence CALL ZX_GET_PARAMETER(npar,string,length)

Arguments

INTEGER NPAR

CHARACTER*(*) STRING

INTEGER LENGTH

Category: user interface
This routine is not normally called by users, which use x_read (which calls this) instead (unless they need
specific repeated access to a positional parameter on the runstring and are really sure of what they do).
The routine retrieves (from runstring, command file or terminal) a single parameter at position NPAR into
STRING. It also returns the LENGTH of the string (or zero if the parameter is not present).

[Previous][Next] [Up][Down]

5.4 The graphserv library

The graphserv library groups low level graphics routines, which fall in three specific categories :

communication channel management routines, used to setup and control the couple of channels used to
communciate between a graphics client and its server.
a single piece of code f2x, represeneing the Fortran callabe Xlib interface used by the X window graphics
server
low level graphics proper (the y_*.f family) which implement the graphics primitives described in doc 
TBD

Use also the quick alphabetic index here below to locate the routine of interest.

blkpipecommon connectserver deregister f2x isregistered

register y_clear_viewport y_closeplot y_colour y_coordinates

y_draw y_fill y_get_cursor y_lines y_move

y_openplot y_page y_readlut y_scale y_text

y_viewport y_width y_window y_write_image y_writelut

blkpipecommon



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

47 of 92 11/02/10 15:35

Library graphserv Fortran code

Calling sequence EXTERNAL BLKPIPECOMMON

This BLOCK DATA routine is called implicitly by the isregistered call to initialize the PIPECOMMON
common block used to keep track of the list of registered graphics servers.

connectserver

Library graphserv Fortran code

Calling sequence CALL CONNECTSERVER(CODE,N,lu1,lu2,IERR)

Arguments

CHARACTER*(*) CODE

INTEGER N

INTEGER LU1,LU2

INTEGER IERR

This call establishes the connection to the N-th instance of the graphics server of type CODE (chosen among 
'XW'|'BW'|'CP'|'C2'), verifying the correct registration and the existence of the communication channels
which are open on a couple of logical units LU1,LU2 (there are always an input and an output channel per
server !) using the VOS z_channel routine.

The returned error code IERR can be 0 in case of successful opening or 2 (server not registered), 3
(communication channels not set up correctly) or 5 (VOS error opening communication channels).

deregister

Library graphserv Fortran code

Calling sequence CALL DEREGISTER(CODE,N)

Arguments
CHARACTER*(*) CODE

INTEGER N

This call removes the registration entry of the N-th instance of the graphics server of type CODE (chosen 
among 'XW'|'BW'|'CP'|'C2') from the PIPECOMMON common block and from the XAS environment

f2x

Library graphserv C code

Calling sequence

EXTERNAL F2X

...

F2C_element=value

F2C_element=value

...

CALL F2X_routine

Arguments none

This piece of C code is the Fortran-callable Xlib interface used only by the X window server xwserver. All 
routines are (from the Fortran point of view) argumentless entry points in the same C code file.
All communication with the caller occurs via a struct (actually a couple of them to preserve the usual
separation between numeric and character data) seen by the Fortran program as a COMMON block : the
caller sets specific elements, call one of the f2x routines (without arguments) and reads any return value
in other elements of the COMMON.
All C routines in the f2x.c file share a local set of variables among themselves.
The entry points are the following (for further details see the code) :

f2x : no-op (for relocation only)
f2x_init : open display, create and map window, set up graphic context etc.
f2x_winsize : i/f to XGetGeometry
f2x_clear : i/f to XClearWindow
f2x_clearview : i/f to XClearArea
f2x_clip : i/f to XSetClipRectangles
f2x_clipoff : i/f to XSetClipMask
f2x_draw : i/f to XDrawLine
f2x_polyl : i/f to XDrawLines
f2x_polyg : i/f to XFillPolygon
f2x_wrima : i/f to XAddPixel and XPutImage
f2x_text : i/f to XDrawString
f2x_colour : i/f to XSetForeground
f2x_bkg : i/f to XSetBackground
f2x_attrib : i/f to XSetLineAttributes
f2x_font : i/f to XSetFont
f2x_lutquery : i/f to XQueryColors
f2x_lutalloc : i/f to XAllocColorCells and XStoreColors
f2x_lutchange : i/f to XStoreColors
f2x_lutdummy : internal i/f
f2x_curson : i/f to XWindowEvent etc. (cursor management)
f2x_disconn : send XSync before disconnecting
f2x_end : i/f to XCloseDisplay



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

48 of 92 11/02/10 15:35

isregistered

Library graphserv Fortran code

Calling sequence CALL ISREGISTERED(code,n,ok)
IF (OK) THEN ...

Arguments

CHARACTER*(*) CODE

INTEGER N

LOGICAL OK

This call verifies a registration entry for the N-th instance of the graphics server of type CODE (chosen 
among 'XW'|'BW'|'CP'|'C2') is present in the XAS environment, and returns a flag OK=.TRUE. if the server 
is registered.
Side effects: The environment is loaded in the PIPECOMMON common block while at the same time the
index of the server and the next free slot for a server are computed.

register

Library graphserv Fortran code

Calling sequence CALL REGISTER(CODE,N)

Arguments
CHARACTER*(*) CODE

INTEGER N

This call records a registration entry of the N-th instance of the graphics server of type CODE (chosen 
among 'XW'|'BW'|'CP'|'C2') in the next free slot of the PIPECOMMON common block and in the XAS
environment

y_clear_viewport

Library graphserv Fortran code

Calling sequence CALL Y_CLEAR_VIEWPORT(LUS)

Arguments INTEGER LUS(2)

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 8 which causes the graphics viewport to be cleared.

y_closeplot

Library graphserv Fortran code

Calling sequence CALL Y_CLOSEPLOT(LUS)

Arguments INTEGER LUS(2)

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 0 which notifies the server of the disconnection of the client. Note that the
communication channel is not closed (that is responsibility of the server, not of the client !).

y_colour

Library graphserv Fortran code

Calling sequence CALL Y_COLOUR(LUS,ICOL) 

Arguments
INTEGER LUS(2)

INTEGER ICOL

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 105 with operand the colour ICOL, which sets the current "pen colour" to the 
appropriate value (colours 0-7 are the standard simple colours, while a negative ICOL points to location
ABS(ICOL) of the current colour lookup table.

y_coordinates

Library graphserv Fortran code

Calling sequence CALL Y_COORDINATES(LUS,icode)

Arguments
INTEGER LUS(2)

INTEGER ICODE

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 103 with operand the colour ICODE, which tells the server to interpret all 
further coordinates in raw device coordinates (ICODE=0), normalized device coordinates (NDC, 0.0-1.0,
ICODE=1), world coordinates (ICODE=2), cm or inch (respectively ICODE=3 or 4)



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

49 of 92 11/02/10 15:35

y_draw

Library graphserv Fortran code

Calling sequence CALL Y_DRAW(LUS,X,Y)

Arguments
INTEGER LUS(2)

REAL X,Y

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 3 with operands the coordinates of a point in the current coordinate system
X,Y, which tells the server to draw a line from the current point to X,Y.

y_fill

Library graphserv Fortran code

Calling sequence CALL Y_FILL(LUS,N,X,Y)

Arguments

INTEGER LUS(2)

INTEGER N

REAL X(N) ,Y(N)

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the polyfill opcode 6 with operands the number of points N, and an array of coordinates
in the current coordinate system X,Y, which tells the server to fill (with the current pen colour) the
polygon enclosed by points X,Y.

y_get_cursor

Library graphserv Fortran code

Calling sequence CALL Y_GET_CURSOR(LUS,X,Y,A) 

Arguments

INTEGER LUS(2)

REAL X,Y

CHARACTER A

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 11 (which causes the server to read the current cursor position at a key or
button press) and reads from the server output channel the coordinate of the point in the current
coordinate system X,Y, and the character of the pressed key A (mouse buttons currently return '?').

y_lines

Library graphserv Fortran code

Calling sequence CALL Y_LINES(LUS,N,X,Y)

Arguments

INTEGER LUS(2)

INTEGER N

REAL X(N) ,Y(N)

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the polyline opcode 4 with operands the number of points N, and an array of coordinates
in the current coordinate system X,Y, which tells the server to draw (with the current pen colour) a
(poly)line connecting points X,Y.

y_move

Library graphserv Fortran code

Calling sequence CALL Y_MOVE(LUS,X,Y)

Arguments
INTEGER LUS(2)

REAL X,Y

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 2 with operands the coordinates of a point in the current coordinate system
X,Y, which tells the server to move the current point to X,Y.

y_openplot

Library graphserv Fortran code



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

50 of 92 11/02/10 15:35

CHARACTER*(*) CODE

INTEGER N

This routine is called by a graphics client to establish a plotting connection (via connectserver) to the N-th 
instance of the graphics server of type CODE (chosen among 'XW'|'BW'|'CP'|'C2' or '  ' in which case the 
default server xw1 is used). The couple of logical units LUS, associated to the communication channels,
are used in all subsequent graphics calls.

y_page

Library graphserv Fortran code

Calling sequence CALLY_PAGE(LUS)

Arguments INTEGER LUS(2)

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 1 , which causes the server to clear the entire page or screen.

y_readlut

Library graphserv Fortran code

Calling sequence CALL Y_READLUT(LUS,START,NSTEP,ISIGN,R,G,B) 

Arguments

INTEGER LUS(2)

INTEGER START

INTEGER NSTEP

INTEGER ISIGN

REAL R(NSTEP), G(NSTEP),G(NSTEP)

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 13 (which causes the server to read the current colour lookup table) and
reads from the server output channel the red, green and blue components (0.0-1.0) R,G,B of NSTEP
locations of the lookup table, starting at location START. The starting location can be relative (ISIGN=+1) to
the beginning of the colour table loaded with y_writelut, or absolute (ISIGN=-1), referred to the origin of 
the system colour table (the XAS colour table loaded with y_writelut occupies only a portion of the typical
X colour table).

y_scale

Library graphserv Fortran code

Calling sequence CALL Y_SCALE(LUS,X,Y)

Arguments
INTEGER LUS(2)

CHARACTER X,Y ('LIN'|'LOG')

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 104 with a couple of 0 or 1 operands, which tells the server to plot all further
data converting to linear or logarithmic scale as specified for the X,Y axes by the appropriate 'LIN' or
'LOG' codes.

y_text

Library graphserv Fortran code

Calling sequence CALL Y_TEXT(LUS,STRING,IFONT)

Arguments
INTEGER LUS(2)

CHARACTER*(*) STRING

INTEGER IFONT

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 110 with operand a font number IFONT, followed by opcode 7 with operands 
the length of a string STRING, and the character string itself. This causes the server to write at the current
position the text string in the wished font.
Font indexes are server dependent and are controlled by entries in a server specific font listing file

y_viewport

Library graphserv Fortran code

Calling sequence CALL Y_VIEWPORT(LUS,X1,X2,Y1,Y2)

Arguments
INTEGER LUS(2)

REAL X1,X2,Y1,Y2

This routine sends to the graphics server at the other end of the communication channels attached to



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

51 of 92 11/02/10 15:35

logical units LUS the opcode 101 with operands the coordinates of two points in the current coordinate
system X1,Y1 and X2,Y2, which are intepreted as the corners of the new viewport.

y_width

Library graphserv Fortran code

Calling sequence CALL Y_WIDTH(LUS,WIDTH)

Arguments
INTEGER LUS(2)

REAL WIDTH

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 106 with operand the line width WIDTH, which tells the server to draw all
further lines in the (server dependent) width.

y_window

Library graphserv Fortran code

Calling sequence CALL Y_WINDOW(LUS,X1,X2,Y1,Y2)

Arguments
INTEGER LUS(2)

REAL X1,X2,Y1,Y2

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 102 with operands the coordinates of two points in the current coordinate
system X1,Y1 and X2,Y2, which are intepreted as the corners of the new plotting window, then sends an
opcode 103 with operand 2, to force the coordinate system into world coordinates.

y_write_image

Library graphserv Fortran code

Calling sequence CALL Y_WRITE_IMAGE(LUS,DATA,ILEN)

Arguments

INTEGER LUS(2)

CHARACTER*(ILEN) DATA

INTEGER ILEN

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 9 with operands the number of bytes ILEN (max 4096) and a byte string and
DATA, which cause the server to display one image line. The image DATA shall be prescaled in values 
ranging 0-255 (or less) pointing to colours in the current colour lookup table.

y_writelut

Library graphserv Fortran code

Calling sequence CALL Y_WRITELUT(LUS,START,NSTEP,R,G,B)

Arguments

INTEGER LUS(2)

INTEGER START

INTEGER NSTEP

REAL R(NSTEP), G(NSTEP),G(NSTEP)

This routine sends to the graphics server at the other end of the communication channels attached to
logical units LUS the opcode 10 (which causes the server to write values into the current colour lookup
table) and loads the red, green and blue components (0.0-1.0) R,G,B into NSTEP locations of the lookup 
table (LUT), starting at location START. The start and step parameters are interpreted by the server as
follows :

START=0 NSTEP.NE.0
allocates (or reallocates) a new contiguous LUT segment wherever the X server likes to, or
redefines entire LUT for the Postscript servers.
START.NE.0 NSTEP.NE.0
redefines the content of part of the current LUT, i.e. loads NSTEP values after relative START.
START.NE.0 NSTEP=0
assigns explicitly location START in the X server colour table as start for the XAS LUT (unused for
Postscript servers)
START=0 NSTEP=0 (query call),
writes on terminal the current LUT (relative location 0) start in the X server colour table (unused
for Postscript servers)

[Previous][Next] [Up][Down]



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

52 of 92 11/02/10 15:35

5.5 The xasgraph library

The xasgraph library groups high level graphics calls of miscellaneous nature (they are layered upon the low
level calls in the graphserv library) .

Use the subject list in the previous page, or the quick alphabetic index here below to locate the routine of
interest.

annotate_new annotate_old check_overtrace

df_axes df_pen_colours df_viewport df_window get_datastyle

lb_axis lb_number lb_tics nice_axes nicer_lin_axes nicer_log_axes

plot_xxy_bar plot_xxy_histo plot_xxy_join plot_xy_join

annotate_new

Library xasgraph Fortran code

Calling sequence CALL ANNOTATE_NEW(LUS,ANNOTATE,BUFFER,BUFFER2,NAME)

Arguments

INTEGER LUS(2)

CHARACTER ANNOTATE ('N'|'S'|'L')

CHARACTER*(*) BUFFER,BUFFER2

CHARACTER*(*) NAME

This high level routine uses the logical units LUS pointing to the communication channels of a plotting
server established by y_openplot to set the viewport for standard annotations (which include the XAS
filename NAME and other information derived from its header) and display the annotations.
The annotation style (none, short or long) is controlled by the ANNOTATE flag (respectively ('N'|'S'|'L').
The two strings BUFFER,BUFFER2 are used internally as work areas.

annotate_old

Library xasgraph Fortran code

Calling sequence CALL ANNOTATE_OLD(LUS,ANNOTATE,BUFFER,NAME)

Arguments see previous routine

A variant of annotate_new

check_overtrace

Library xasgraph Fortran code

Calling sequence CHECK_OVERTRACE(CLEAR)

Arguments LOGICAL CLEAR

This routine, called at the beginning of a graphical client, tests the transient XAS environment variable
overwrite, unsets it, and returns a logical flag CLEAR (.TRUE. if the current plot shall overtrace the
preexisting one, .FALSE. otherwise).

df_axes

Library xasgraph Fortran code

Calling sequence CALL DF_AXES(LUS,XLINLOG,YLINLOG, XUNIT,YUNIT, XFORMAT,YFORMAT, BUFFER)

Arguments

INTEGER LUS(2)

CHARACTER*3 XLINLOG,YLINLOG ('LIN'|'LOG')

CHARACTER*(*) XUNIT,YUNIT

CHARACTER*(*) XFORMAT,YFORMAT

CHARACTER*(*) BUFFER

This routine plots an axis frame (using the logical units LUS pointing to the communication channels of a
plotting server established by y_openplot) annotating them using the lb_* routines described below. The 
type of axis (linear or logarithmic) XLINLOG,YLINLOG and the format of the numeric labels XFORMAT,YFORMAT
are passed to such routines. 
The caption of the X and Y axes are taken instead from an appropriate keyword header in a XAS table file
: i.e. if one is plotting the 4-th vs the 3-rd column of a table, and therefore the X column is column 3 of the
table containing energy in keV, one puts XUNIT='TUNIT3' where the TUNIT3 keyword contains 'keV'. BUFFER
is a work area supplied by the caller and used to construct labels.

df_pen_colours



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

53 of 92 11/02/10 15:35

Library xasgraph Fortran code

Calling sequence CALL DF_PEN_COLOURS(LUS,CLEAR)

Arguments
INTEGER LUS(2)

LOGICAL CLEAR

This routine sets the foreground (and background, not yet implemented) colours for the plotting server
connected by y_openplot) to the logical units LUS) according to a family of XAS environment variables
which are read in common PENCOMMON ( axispen, bkgpen, datapen, CHARACTERANNOTATE ('N'|'S'|'L')
textpen and by default any missing one to pen and by default if missing to 1).
In addition if the CLEAR flag has been set by check_overtrace, it increments the overcount environment 
variables and cycles the text and data pens among the 8 fundamental colours.

df_viewport

Library xasgraph Fortran code

Calling sequence CALL DF_VIEWPORT(LUS,BUFFER,ANNOTATE)

Arguments

INTEGER LUS(2)

CHARACTER*(*) BUFFER

CHARACTER ANNOTATE ('N'|'S'|'L')

This routine sets the default viewport for the plotting server connected by y_openplot) to the logical units 
LUS, according to the ANNOTATE flag set by annotate_new (this takes account of space around the data
frame used for annotations). It uses a default viewport, unless specifically set by the user in XAS
environment variable viewport, and stores the information back in the environment. The viewport is
changed only if the annotation style has been changed since last plot (this is also kept track of in the
environment)
BUFFER is a work area supplied by the caller and used internally.

df_window

Library xasgraph Fortran code

Calling 
sequence

CALL DF_WINDOW(LUS,CLEAR,REPLOT, BUFFER, XLINLOG,YLINLOG, XWL,XWU

,YWL,YWU, XWL1,YWL1)

Arguments

INTEGER LUS(2)

LOGICAL CLEAR

LOGICAL REPLOT

CHARACTER*(*) BUFFER

CHARACTER*3 XLINLOG,YLINLOG ('LIN'|'LOG')

REAL XWL,XWU ,YWL,YWU

REAL XWL1,YWL1

This routine associates a plotting window to the the default viewport set by df_viewport for the plotting
server connected by y_openplot to the logical units LUS.
It returns the linear or logarithmic setting XLINLOG,YLINLOG for the axis scales retrieving it from the XAS 
environment.
The setting of the axes is done only for new frames (otherwise they are retrieved from the XAS 
environment), i.e. if the CLEAR flag set by check_overtrace or the REPLOT flag are .TRUE..
The coordinates of the lower left and upper right corners XWL,YWL XWU,YWU of the plotting windows are 
treated as suggestions and rounded to nices values by the nice_* calls as instructed by XAS environment. 
The actual values are stored as side effect in PENCOMMON.
Note that for log scales the lower bounds of the axes cannot be smaller than the positive safety values in
XWL1,YWL1.
BUFFER is a work area supplied by the caller and used internally.

get_datastyle

Library xasgraph Fortran code

Calling sequence CALL GET_DATASTYLE(ISTYLE) 

Arguments INTEGER ISTYLE

This routine tests the datastyle XAS environment variable and returns a numeric flag indicating the 
plotting style :

for the Histogram style1.
for the Error bar style2.
for the Solid style3.
for the Marker style (unimplemented and replace by Histogram style)4.

lb_axis

A family of three axis plotting and annotation routines.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

54 of 92 11/02/10 15:35

Library xasgraph Fortran code

Calling sequence CALL LB_AXIS(XY,ARG2,ARG3, LINLOG, ARG5,ARG6,ARG7 ,ARGX,NTIC)

Arguments not documented online

This routine draws an axis with its annotations. It is derived from a pre-existing plotting package called
"The Labeller" which is documented on paper separately.

lb_number

Library xasgraph Fortran code

Calling sequence CALL LB_NUMBER(LUS,ARG1,ARG2,ARG3)

Arguments

INTEGER LUS(2)

CHARACTER*(*) ARG1

CHARACTER*(*) ARG2 ('CENTRED')

CHARACTER*(*) ARG3 ('NORMAL'|'ROTATED')

This routine (derived from the same pre-existing plotting package mentioned for lb_axis) plots the tics
values for axes.
ARG2 controls the alignment of the number label with respect to the tic coordinate (only 'CENTRED' out of 
the original list of possible values 'PROTECTED'| 'CENTRED'| 'LEFT'| 'RIGHT'| 'GRADUAL' is supported).
ARG3 controls the orientation of the number label, which is either 'NORMAL' or 'ROTATED' by 90 degrees.
ARG1 is the format of the numeric label. Integer and floating point Fortran style formats ('In', 'Fw.d') are 
supported together with an 'Hn' format used to obtain hh:mm:ss hour notation, an 'EXP' and a 'LOG'
formats (the former intended for 10 n notations, while the second reports only the exponent n and is
typically used for log scales with many decades).

lb_tics

Library xasgraph Fortran code

Calling sequence CALL LB_TICS(LUS,ARG1)

Arguments
INTEGER LUS(2)

REAL ARG1

This routine (derived from the same pre-existing plotting package mentioned for lb_axis) plots the tics at
appropriate places, where ARG1 is the tick height (or length) in NDC (Normalized Device Coordinates,
0.0-1.0, i.e. as a fraction of viewport size).

nice_axes

A family of three routines to set up axis tic labelling.

Library xasgraph Fortran code

Calling sequence CALL NICE_AXES(XYMIN,XYMAX,XYLOW,XYUPP)

Arguments
REAL XYMIN,XYMAX

REAL XYLOW,XYUPP

This routine, passed the suggested extrema of an axis XYMIN,XYMAX returns nice rounded extrema 
XYLOW,XYUPP. Rounding is done down or up to the nearest power of ten (e.g. 2.7 is rounded down to 2 or
up to 3, while -440 is rounded down to -500 or up to -400).

nicer_lin_axes

Library xasgraph Fortran code

Calling sequence CALL NICER_LIN_AXES(XYMIN,XYMAX,XYLOW,XYUPP,NTIC)

Arguments

REAL XYMIN,XYMAX

REAL XYLOW,XYUPP

INTEGER NTIC

An improved version of nice_axes which does the rounding so that the values of all tic labels looks nice,
when the axis is divided into NTIC parts.

nicer_log_axes

Library xasgraph Fortran code

Calling sequence CALL NICER_LOG_AXES(XYMIN,XYMAX,XYLOW,XYUPP)

Arguments
REAL XYMIN,XYMAX

REAL XYLOW,XYUPP

An improved version of nice_axes which does the rounding so that the values of tic labels looks nice,
when the axis is logarithmic.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

55 of 92 11/02/10 15:35

plot_xxy_bar

A family of routines to plot Y vs X data in a number of standard ways. All routines as usual plot on the
plotting server connected by y_openplot to the logical units LUS.

Library xasgraph Fortran code

Calling sequence CALL PLOT_XXY_BAR(LUS,LOWER,UPPER, DATA,ERROR, NCHAN, X,Y) 

Arguments

INTEGER LUS(2)

REAL LOWER(NCHAN), UPPER(NCHAN)

REAL DATA(NCHAN), ERROR(NCHAN)

INTEGER NCHAN

REAL X(2),Y(2)

This routine plots an array of NCHAN error bars (or upper limits if the ulimit environment variable is set). 
The DATA and ERROR arrays are the Y data and their errors. The LOWER and UPPER arrays are the extrema of 
the X error bars.
The X and Y arrays (of size 2) are work areas used internally to construct the points to be plotted at the
ends of the bars.

plot_xxy_histo

Library xasgraph Fortran code

Calling sequence CALL PLOT_XXY_HISTO(LUS,LOWER,UPPER, DATA, NCHAN, X,Y)

Arguments

INTEGER LUS(2)

REAL LOWER(NCHAN), UPPER(NCHAN)

REAL DATA(NCHAN),

INTEGER NCHAN

REAL X(2*NCHAN),Y(2*NCHAN)

This routine plots an array of NCHAN DATA Y values in histogram style (i.e. connecting horizontal bars at the
given Y height, where the LOWER and UPPER arrays are the extrema of the bars in X.
The X and Y arrays (of double size) are work areas used internally to construct all the points to be plotted. 
The y_lines polyline primitive is used, plotting such data in chunks of 512 points (because of a limitation
in the server communication channel buffer) transparently to the user.
The routine interrupts the plot if a gap (of more than 1% of the previous bin size) is found between the
LOWER end of a bin and the UPPER end of the previous bin, and resumes at the next bin (results can be
surprising when plotting very sparse data !)

plot_xxy_join

Library xasgraph Fortran code

Calling sequence CALL PLOT_XXY_JOIN(LUS,LOWER,UPPER, DATA, NCHAN, X,Y) 

Arguments

INTEGER LUS(2)

REAL LOWER(NCHAN), UPPER(NCHAN)

REAL DATA(NCHAN),

INTEGER NCHAN

REAL X(NCHAN),Y(NCHAN)

This routine plots (connecting each point) an array of NCHAN DATA Y values vs X where the X coordinates 
are the mean between the LOWER and UPPER arrays.
The X and Y arrays (of same size as the data) are work areas used internally to construct all the points to 
be plotted. The y_lines polyline primitive is used, plotting such data in chunks of 512 points (because of a
limitation in the server communication channel buffer) transparently to the user.
The routine interrupts the solid line if a gap (of more than 1% of the previous bin size) is found between
the LOWER end of a bin and the UPPER end of the previous bin.

plot_xy_join

Library xasgraph Fortran code

Calling sequence CALL PLOT_XY_JOIN(LUS,XAX,DATA ,NCHAN, X,Y)

Arguments

INTEGER LUS(2)

REAL XAX(NCHAN)

REAL DATA(NCHAN),

INTEGER NCHAN

REAL X(NCHAN),Y(NCHAN)

This routine plots (connecting each point) an array of NCHAN DATA Y values vs the XAX X values.
The X and Y arrays (of same size as the data) are work areas used internally to construct all the points to 
be plotted. The y_lines polyline primitive is used, plotting such data in chunks of 512 points (because of a
limitation in the server communication channel buffer) transparently to the user.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

56 of 92 11/02/10 15:35

[Previous][Next] [Up][Down]

5.6 The fotlib library

The fotlib library groups mission-dependent (but instrument independent) routines specific for access to SAX
FOT telemetry data files.

Use the subject list in the previous page, or the quick alphabetic index here below to locate the routine of
interest.

A=B add_end add_file add_init add_rew_tape add_skip_tape

C-E check_packet correct edit_cmd exposure_b1s1 exposure_b1s3

G-M get_start_end init_correct instr_keywords lintomm mmtopix

N-R rearrange_instrec

S

sax_acc_b1s1_i sax_acc_b1s1_y sax_acc_b1s2_i sax_acc_b1s2_y sax_acc_b1s3_y

sax_acc_b2s1_y sax_acc_b3s1 sax_acc_b3s2 sax_acc_b3s3 sax_acc_b3s4

sax_acc_b3s5 sax_acc_b3s6 sax_acc_bt_1 sax_acc_bt_2 sax_acc_bt_3

sax_acc_hkrange sax_acc_loop sax_acc_open_sc_tlm sax_acc_open_tlm sax_acc_other_range

sax_acc_preload sax_acc_range sax_acc_select sax_df_keywords sax_open_dir

sax_pcf_load sax_pcf_lookup sax_pktcap_load sax_which_data

T-Z tapechar timebin_b1s1 unlintomm

add_end

Library fotlib Fortran code

Calling sequence CALL ADD_END(ipass)

Arguments INTEGER IPASS

Category: specific of fotfile program
This routine adds to an external shell script file the commands necessary to run the next (IPASS-th, 1,2 or 
3) pass of fotfile.

add_file

Library fotlib Fortran code

Calling sequence CALL ADD_FILE(file,blksize,recl,type)

Arguments

CHARACTER*(*) FILE

INTEGER BLKSIZE, RECL

CHARACTER*3 TYPE ('ASC'|'BIN')

Category: specific of fotfile program
This routine adds to an external shell script file the commands necessary to read from tape a file called
FILE unblocking it from tape block size BLKSIZE to disk record length RECL according to the rules for ASCII
or binary decoding as specified by TYPE.
The system (and site) dependent template commands are read from a programming support file located 
in the local directory and edited replacing the tokens with the subroutine arguments, using edit_cmd

add_init

Library fotlib Fortran code

Calling sequence CALL ADD_INIT

Category: specific of fotfile program
This routine adds to an external shell script file the commands necessary to begin the operations.

add_rew_tape

Library fotlib Fortran code

Calling sequence CALL ADD_REW_TAPE

Category: specific of fotfile program
This routine adds to an external shell script file the command necessary to rewind the tape. The system
(and site) dependent template command is read from a programming support file located in the local
directory and edited replacing the tokens with the tape drive name (present in a COMMON block) using
edit_cmd



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

57 of 92 11/02/10 15:35

add_skip_tape

Library fotlib Fortran code

Calling sequence CALL ADD_SKIP_TAPE(N)

Arguments INTEGER N

Category: specific of fotfile program
This routine adds to an external shell script file the command necessary to skip forward N tape files. The
system (and site) dependent template command is read from a programming support file located in the
local directory and edited replacing the tokens with the routine argument using edit_cmd

check_packet

Library fotlib Fortran code

Calling sequence CALL CHECK_PACKET(PACKET,DATATYPE,N) 

Arguments

CHARACTER*(*) PACKET

CHARACTER DATATYPE ('I'|'S'|'P'|'T'|'HK')

INTEGER N

Returns the number N of packet families listed in the instrument directory and eligible for the requested
accumulation DATATYPE (where the codes are for Images, Spectra, Photon files, Time profiles or HK time
profiles). The PACKET argument is unused, included for compatibility with sax_which_data

correct

Library fotlib Fortran code

Calling sequence CALL CORRECT

A case statement calling the appropriate event correction routine for MECS, LECS, PDS or HPGSPC.

edit_cmd

Library fotlib Fortran code

Calling sequence CALL EDIT_CMD(STRING,OLD,NEW)

Arguments
CHARACTER*(*) STRING

CHARACTER*(*) OLD,NEW

A general STRING editing routine which replaces the first occurrence of a string token OLD with the string 
value NEW.
Used in particular by tape command generation routines for the fotfile program.

exposure_b1s1

Library fotlib Fortran code

Calling 
sequence

CALL EXPOSURE_B1S1(ICOUNTER, ISTIME,ITIMSIZ, RECORD,CONVERT, 

PREVIOUS_TIMEHI, ENDWINDOW,ENDACCUM, NEWOBS,TCYCLE)

Arguments undocumented

A service routine called by sax_acc_b1s1_y to update the contribution to the live exposure time of the
current packet (the value is stored in TIMECOMMON). See code for further details.

exposure_b1s3

Library fotlib Fortran code

Calling 
sequence

CALL EXPOSURE_B1S3(ICOUNTER, ISTIME,ITIMSIZ, RECORD,CONVERT, 

PREVIOUS_TIMEHI,ENDWINDOW,ENDACCUM, NEWOBS,TCYCLE, recycled)

Arguments undocumented

A service routine called by sax_acc_b1s3_y to update the contribution to the live exposure time of the
current packet (the value is stored in TIMECOMMON) with the same logics of the previous routine. See
code for further details.

get_start_end

Library fotlib Fortran code

Calling sequence CALL GET_START_END(TMIN,TMAX)

Arguments DOUBLE PRECISION TMIN,TMAX

Category: accumulation support



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

58 of 92 11/02/10 15:35

This routine returns the default start and end times for the accumulation, i.e. the start time of the first
observation and the end time of the last observation in the current chain (as defined in the XAS 
environment), read from the instrument directory.
TMIN,TMAX are in seconds (or with the resolution specified by the time constant setup)
Side effects: information about start and end times are also stored in the OPCOMMON and
TIMECOMMON blocks.

init_correct

Library fotlib Fortran code

Calling sequence CALL INIT_CORRECT(STUFF)

Arguments CHARACTER*(*) STUFF(*)

Essentially a case statement calling the appropriate event correction initialization routine for MECS,
LECS, PDS or HPGSPC, in the case the environment requires event correction.
The array STUFF lists the names of all event quantities which are involved in the correction.

instr_keywords

Library fotlib Fortran code

Calling sequence CALL INSTR_KEYWORDS(PRODUCT)

Arguments CHARACTER PRODUCT ('I'|'S'|'P'|'T'|'H'|'M')

A case statement calling the appropriate routine which adds instrument specific header keywords for
MECS, LECS, PDS or HPGSPC. The PRODUCT code is used only by the PDS call, which has different sets of
keywords for Images, Spectra, Photon files, Time profiles, HK time profiles or Matrices.

lintomm

Library fotlib Fortran code

Calling sequence CALL LINTOMM(X,Y)

Arguments DOUBLE PRECISION X,Y

Category: attitude
Converts in place the coordinates X,Y from linearized pixels to mm on the focal plane. Although the
routine is potentially general, it is implemented only for MECS since it needs to load the current pixel
size.

mmtopix

Library fotlib Fortran code

Calling sequence CALL MMTOPIX(X,Y)

Arguments DOUBLE PRECISION X,Y

Category: attitude
Converts in place the coordinates X,Y from mm on the focal plane to linearized pixels. Although the
routine is potentially general, it is implemented only for MECS since it needs to load the current pixel
size.

rearrange_instrec

Library fotlib Fortran code

Calling sequence CALL REARRANGE_INSTREC(INSTREC) 

Arguments CHARACTER*133 INSTREC

A service routine (at present used only by get_start_end and pds_keywords) to reformat an instrument
directory record enclosing hex-coded values in quotes, so that it can be read with list-directed i/o.

sax_acc_b1sn_x

The sax_acc_b1sn_x family of routines are the packet handlers for direct mode telemetry packets (basic
type 1, secondary type n). The x code equal to y indicates packets with fields reformatted to span always
an integer number of bytes (as are all FOT telemetry packets), while an x code equal to i indicates fields
which can use any number of bits (not necessarily multiple of 8), which was the case of raw telemetry
used during ground calibrations. The latter routines are not publicly distributed (but replaced with
"return end" routines) and not documented.

All these routines have a single argument, the name of an INCREMENT_ROUTINE which must be called to
process a single event (or packet, or logical portion thereof) in a way specified by each accumulation
program (i.e. such routine is in the main program source file and not a library routine).

These routines take care of all byte swapping (as dictated by the telemetry description files and the
characteristics of the current operating system), of calling event corrections if required, of advancing



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

59 of 92 11/02/10 15:35

from the telemetry file of one observation to the next in the chain, and handle time windows.

sax_acc_b1s1_i

Library fotlib Fortran code

Calling sequence SAX_ACC_B1S1_I(INCREMENT_ROUTINE)

Bit (ground calibration raw data ) version of the next routine.

sax_acc_b1s1_y

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_B1S1_Y(INCREMENT_ROUTINE)

Arguments EXTERNAL INCREMENT_ROUTINE

This routine deals with basic type 1, secondary type 1 i.e. the MECS, PDS and HPGSPC direct mode
packets. It computes the packet exposure time via exposure_b1s1 and decodes the events calling the
INCREMENT_ROUTINE once per event.

sax_acc_b1s2_i

Library fotlib Fortran code

Calling sequence SAX_ACC_B1S2_I(INCREMENT_ROUTINE)

Bit (dummy) version of the next routine.

sax_acc_b1s2_y

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_B1S2_Y(INCREMENT_ROUTINE)

Intended to deal with basic type 1, secondary type 2 i.e. the WFC direct mode packets, is unfinished and
untested.

sax_acc_b1s3_y

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_B1S3_Y(INCREMENT_ROUTINE)

This routine deals with basic type 1, secondary type 3 i.e. the LECS direct mode packets. It includes code
for correcting some of the known errors in such packet times (either present ab origine or introduced at
FOT production level). It computes the packet exposure time via exposure_b1s3 and decodes the events 
calling the INCREMENT_ROUTINE once per event.

sax_acc_b2s1_y

The sax_acc_b2sn_x family of routines are the packet handlers for indirect mode telemetry packets (basic
type 2, secondary type n). These routines are structured similarly to the sax_acc_b1sn_x ones.

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_B2S1_Y(INCREMENT_ROUTINE)

This routine deals with basic type 2, secondary type 1 i.e. the MECS, PDS and HPGSPC indirect mode
packets. Such packet include one or more spectra : the INCREMENT_ROUTINE is called once per spectrum.
These routines have been poorly tested since indirect packets are hardly used.

sax_acc_b3s1

The sax_acc_b3sn_x family of routines are the packet handlers for HouseKeeping mode telemetry packets
(basic type 3, secondary type n). These routines are structured similarly to the sax_acc_b1sn_x ones.

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_B3S1(INCREMENT_ROUTINE)

Unused for flight data. Deals with ground data (Laben Block Transfer Bus instrument HK).

sax_acc_b3s2

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_B3S2(INCREMENT_ROUTINE)

Unused for flight data. Deals with ground data (Laben/Alenia Interrrogation/Response Bus instrument
and spacecraft HK).



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

60 of 92 11/02/10 15:35

sax_acc_b3s3

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_B3S3(INCREMENT_ROUTINE)

This routine deals with basic type 2, secondary type 3 i.e. the MECS, PDS and HPGSPC ENGineering
mode packets (containing ratemeters). It calls the INCREMENT_ROUTINE once per ratemeter sample.

sax_acc_b3s4

Library fotlib Fortran code

Calling sequence SAX_ACC_B3S4(INCREMENT_ROUTINE)

This routine deals with basic type 2, secondary type 4 i.e. the MECS, PDS and HPGSPC HKD mode
packets (containing instrument HK parameters from Virtual Channel 1). It calls the INCREMENT_ROUTINE
once per parameter sample.

sax_acc_b3s5

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_B3S5(INCREMENT_ROUTINE)

This routine deals with basic type 2, secondary type 5 i.e. spacecraft HKD mode packets (containing
spacecraft HK parameters). It calls the INCREMENT_ROUTINE once per parameter sample.

sax_acc_b3s6

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_B3S6(INCREMENT_ROUTINE)

This routine deals with basic type 2, secondary type 6 i.e. pseudo-spacecraft ASCII data, namely the
attitude and ephemeris files. It calls the INCREMENT_ROUTINE once per attitude or ephemeris record.
An internal hidden routine reformats "new" attitude records (which are not compliant with the original
ICD) so that they can be read with list-directed i/o as old were.

sax_acc_bt_1

The family of sax_acc_bt_j are trivial dispatchers handling a request for packets of basic type j and 
calling the appropriate "secondary type" routine sax_acc_bjsn_x. They all share a similar calling sequence

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_BT_1(IST,UNITS,INCREMENT_ROUTINE)

is the dispatcher for direct mode data (basic type 1).

sax_acc_bt_2

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_BT_2(IST,UNITS,INCREMENT_ROUTINE)

is the dispatcher for indirect mode data (basic type 2).

sax_acc_bt_3

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_BT_3(IST,UNITS,INCREMENT_ROUTINE)

Arguments

INTEGER IST

CHARACTER*(*) UNITS ('BYTES'|'BITS')

EXTERNAL INCREMENT_ROUTINE

is the dispatcher for HK mode data (basic type 3).

The secondary type IST and the unit for data UNITS are used to branch to the appropriate sax_acc_bjsn_x
routine, to which the name of the INCREMENT_ROUTINE is passed straight on.

sax_acc_hkrange

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_HKRANGE(NDIMENS, NFORMAT, XSTUFF, STUFF, PACKET)

Arguments mostly unused, included for analogy with sax_acc_range

Category: accumulation support



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

61 of 92 11/02/10 15:35

Handles the range dialogue for HK accumulations : in practice just asks and sets the start and end times
and the binning time (multiple of HK sampling time) proposing appropriate defaults.

sax_acc_loop

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_LOOP(INCREMENT_ROUTINE) 

Arguments EXTERNAL INCREMENT_ROUTINE

This routine includes the entire accumulation loop on all data packets in all observations of the
observation chain. In fact this routine does nothing more than retrieving from the packetcap the basic
information about the current selected type of telemetry packet, and dispatching the appropriate basic
type sax_acc_bt_i dispatcher routine, which in turn calls the appropriate sax_acc_bjsn_x routine (to which
the name of the INCREMENT_ROUTINE is passed straight on). It is in the sax_acc_bjsn_x routine that all loops 
are unrolled !

sax_acc_open_sc_tlm

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_OPEN_SC_TLM(LU,PACKET)

Arguments
INTEGER LU

CHARACTER*(*) PACKET

Similar to the next routine, but opens spacecraft telemetry files (whose naming convention is slightly
different, and may include ASCII files).

sax_acc_open_tlm

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_OPEN_TLM(LU,PACKET)

Arguments
INTEGER LU

CHARACTER*(*) PACKET

Opens on logical unit LU the first telemetry file of the observation chain which is of type PACKET (resolving 
internally the file name).

sax_acc_other_range

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_OTHER_RANGE(NDIMENS ,NFORMAT, XSTUFF, STUFF)

Arguments

INTEGER NDIMENS

INTEGER NFORMAT

CHARACTER*(*) XSTUFF(*),STUFF(*)

Category: accumulation support
Handles the range dialogue for uninteresting quantities in accumulations. The arguments are as for the
corresponding call to sax_acc_range, which deals instead with interesting quantities. Essentially this 
routine constructs adequate defaults for the start and end value of each quantity (values out of range
cause data rejection), and asks the user to confirm or change them (directly for all parameters except
times, which are processed through asktime).

sax_acc_preload

Library fotlib Fortran code

Calling sequence CALL SAX_ACC_PRELOAD(NDIMENS, NFORMAT, XSTUFF, STUFF)

Arguments

INTEGER NDIMENS

INTEGER NFORMAT

CHARACTER*(*) XSTUFF(*)

CHARACTER*(*) STUFF(*)

Category: accumulation support
This routine retrieves from the packetcap of the current telemetry packet the basic information about
each of the data quantities present in the file, inclusive of their names STUFF. The arguments are those
listed for sax_acc_range, except that this call is the one which loads the values in STUFF

sax_acc_range

Library fotlib Fortran code



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

62 of 92 11/02/10 15:35

Calling sequence CALL SAX_ACC_RANGE(NDIMENS, NFORMAT, XSTUFF, STUFF)

Arguments

INTEGER NDIMENS

INTEGER NFORMAT

CHARACTER*(*) XSTUFF(*)

CHARACTER*(*) STUFF(*)

Category: accumulation support
Handles the range dialogue for interesting quantities in accumulations. Interesting quantities are those
which go on the axes of the output data file (e.g. X and Y for an image, energy for a spectrum, time for a
time profile or potentially any quantity for a photon file).

NDIMENS must be set to 1 for 1-d output data files (histograms or time profiles), 2 for 2-d images and 0 for
photon files.
NFORMAT is a reserved value, which must be set to 0 for photon files or 3 for time profiles (with the
exception of the latter, use the same value of NDIMENS for convenience).
XSTUFF is an array of the names of the NDIMENS quantities considered as interesting (i.e. whatever goes on
the X axis of an histogram or on the XY axes of an image)
STUFF is an array of the names of all quantities and is used mainly for photon files. On return XSTUFF will 
be modified to contain the quantities accepted as interesting.
In all cases see also sax_acc_preload and sax_acc_select for the (X)STUFF arrays.

Essentially this routine constructs adequate defaults for the start and end value and the binning of each
quantity, and asks the user to confirm or change them (directly for all parameters except times, which
are processed through asktime and askbin). In the case the accumulation is that of a photon file, instead
of the binning the user is asked whether the quantity has to be included in the output or not.
The ranges may be used both for data acceptance (values out of range cause data rejection) and to
dimension the size of the output data file.

sax_acc_select

Library fotlib Fortran code

Calling sequence

Arguments

INTEGER NDIMENS

INTEGER NFORMAT

CHARACTER*(*) XSTUFF(*)

CHARACTER*(*) STUFF(*)

INTEGER IERR

Category: accumulation support
This routine selects (among the quantities listed in STUFF and preset by sax_acc_preload) the NDIMENS
interesting ones, asking the user (except for time profiles, where the 'TIME' quantity is used and for
photon files where this routine is not called). Their names is returned in XSTUFF.
The arguments are those listed for sax_acc_range, plus IERR which returns a non-zero value in case of 
errors.

sax_df_keywords

Library fotlib Fortran code

Calling sequence CALL SAX_DF_KEYWORDS

This routine writes into the header of the XAS file the standard keywords used for SAX specific
accumulations, i.e. the satellite and instrument identification, and the observer and target identification
(taken from tape directory). The observer name can be overridden (e.g. by the current user full name or
another name) if so requested in the XAS environment.

sax_open_dir

Library fotlib Fortran code

Calling sequence CALL AX_OPEN_DIR(LU,NOBS,NAME)

Arguments

INTEGER LU

INTEGER NOBS

CHARACTER*(*) NAME

This routine opens the observation directory file for observation NOBS on the logical unit LU (automatically 
selected), returning also its file NAME

sax_pcf_load

Library fotlib Fortran code

Calling sequence CALL SAX_PCF_LOAD(HKNAME)



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

63 of 92 11/02/10 15:35

Arguments CHARACTER*(*) HKNAME

This routine loads in memory the PCF entry for HK parameter HKNAME. The PCF (Parameter
Characteristics File) is an instrument support file listing the characteristics of all HK parameters. The
routine selects the current instrument PCF, or, when appropriate, the spacecraft PCF.

sax_pcf_lookup

Library fotlib Fortran code

Calling sequence CALL SAX_PCF_LOOKUP(FIELD,TYPE,IVAL,STRVAL,FOUND)

Arguments

CHARACTER*(*) FIELD

INTEGER TYPE

INTEGER IVAL

CHARACTER*(*) STRVAL

LOGICAL FOUND

Similar to pktcap_lookup, but looks up the characteristics named FIELD of the HK parameter whose PCF 
entry was loaded in memory by sax_pcf_load

sax_pktcap_load

Library fotlib Fortran code

Calling sequence CALL SAX_PKTCAP_LOAD(PACKET)

Arguments CHARACTER*(*) PACKET

This routine loads in memory the packetcap entry for the named telemetry PACKET. The routine builds the 
appropriate packetcap file name and locates it, then uses pktcap_load to do the actual job.

sax_which_data

Library fotlib Fortran code

Calling sequence CALL SAX_WHICH_DATA(PACKET,DATATYPE,N)

Arguments

CHARACTER*(*) PACKET

CHARACTER DATATYPE ('I'|'S'|'P'|'T'|'HK')

INTEGER N

As in check_packet, it returns the number N of packet families listed in the instrument directory and
eligible for the requested accumulation DATATYPE (where the codes are for Images, Spectra, Photon files,
Time profiles or HK time profiles). In addition it also returns the PACKET name selected for accumulation
(this is automatic if N=1, otherwise the user is prompted for selection among a list), or a blank string if no
packets available (N=0)

tapechar

Library fotlib Fortran code

Calling sequence CALL TAPECHAR

Category: specific of fotfile program
Loads the system (and site) dependent template tape commands (to be later used by tape command 
generation routines) from a programming support file located in the local directory.

timebin_b1s1

Library fotlib Fortran code

Calling sequence CALL TIMEBIN_B1S1(COVERAGE, START, END, SIZE)

Arguments

DOUBLE PRECISION COVERAGE

DOUBLE PRECISION START, END

DOUBLE PRECISION SIZE

Computes the live COVERAGE (exposure time) of a time bin of given STARTD and ENDtimes and SIZE. Intended 
to be called by time profile INCREMENT_ROUTINEs called by sax_acc_b1s1_y (which fills the relevant 
COMMON block with appropriate information).

unlintomm

Library fotlib Fortran code

Calling sequence CALL UNLINTOMM(X,Y)



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

64 of 92 11/02/10 15:35

Arguments DOUBLE PRECISION X,Y

Category: attitude
Converts in place the coordinates X,Y from unlinearized pixels to mm on the focal plane. Although the
routine is potentially general, it is implemented only for MECS (and contains MECS specific imbedded
code) since it needs to load the linearization coefficients and perform the linearization.

[Previous][Next] [Up][Down]

5.7 The MECS library

The MECS (mecslib) library groups routines specific of the SAX MECS instrument (calibration data access or
event corrections).

Use the subject list in the previous page, or the quick alphabetic index here below to locate the routine of
interest.

A-B abs_co_be alum area_mr bewin_trasp blsel

C-E coda cross_sec ein eout escape

F-K fopen_rmf gas_cell init_correct_me init_correct_me_fast kapton2

L-M
lexan me_gain_time me_init_map mecs_arf mecs_keywords

mecs_matkeywords mecs_rmf mecscorrect

P-S poly poly_carbo psf_mir psf_rad spread

T-Z tetafi_xy write_arf write_rmf write_rmf_ebo write_rmf_mat

abs_co_be

Library mecslib Fortran code

Calling sequence

Arguments

alum

Library mecslib Fortran code

Calling sequence

Arguments

area_mr

Library mecslib Fortran code

Calling sequence

Arguments

bewin_trasp

Library mecslib Fortran code

Calling sequence

Arguments

blsel

Library mecslib Fortran code

Calling sequence

Arguments

coda



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

65 of 92 11/02/10 15:35

Library mecslib Fortran code

Calling sequence

Arguments

cross_sec

Library mecslib Fortran code

Calling sequence

Arguments

ein

Library mecslib Fortran code

Calling sequence

Arguments

eout

Library mecslib Fortran code

Calling sequence

Arguments

escape

Library mecslib Fortran code

Calling sequence

Arguments

fopen_rmf

Library mecslib Fortran code

Calling sequence

Arguments

gas_cell

Library mecslib Fortran code

Calling sequence

Arguments

init_correct_me

Library mecslib Fortran code

Calling sequence

Arguments

init_correct_me_fast

Library mecslib Fortran code

Calling sequence

Arguments

kapton2



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

66 of 92 11/02/10 15:35

Library mecslib Fortran code

Calling sequence

Arguments

lexan

Library mecslib Fortran code

Calling sequence

Arguments

me_gain_time

Library mecslib Fortran code

Calling sequence

Arguments

me_init_map

Library mecslib Fortran code

Calling sequence

Arguments

mecs_arf

Library mecslib Fortran code

Calling sequence

Arguments

mecs_keywords

Library mecslib Fortran code

Calling sequence

Arguments

mecs_matkeywords

Library mecslib Fortran code

Calling sequence

Arguments

mecs_rmf

Library mecslib Fortran code

Calling sequence

Arguments

mecscorrect

Library mecslib Fortran code

Calling sequence

Arguments

poly



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

67 of 92 11/02/10 15:35

Library mecslib Fortran code

Calling sequence

Arguments

poly_carbo

Library mecslib Fortran code

Calling sequence

Arguments

psf_mir

Library mecslib Fortran code

Calling sequence

Arguments

psf_rad

Library mecslib Fortran code

Calling sequence

Arguments

spread

Library mecslib Fortran code

Calling sequence

Arguments

tetafi_xy

Library mecslib Fortran code

Calling sequence

Arguments

write_arf

Library mecslib Fortran code

Calling sequence

Arguments

write_rmf

Library mecslib Fortran code

Calling sequence

Arguments

write_rmf_ebo

Library mecslib Fortran code

Calling sequence

Arguments

write_rmf_mat



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

68 of 92 11/02/10 15:35

Library mecslib Fortran code

Calling sequence

Arguments

[Previous][Next] [Up][Down]

5.8 The LECS library

The LECS (lecslib) library groups routines specific of the SAX LECS instrument (calibration data access or
event corrections). These routines are not officially supported.

Use the subject list in the previous page, or the quick alphabetic index here below to locate the routine of
interest.

blrng e2fwhm init_correct_le le_gain_time lecs_keywords lecscorrect

blrng

Library lecslib Fortran code

Calling sequence

Arguments

e2fwhm

Library lecslib Fortran code

Calling sequence

Arguments

init_correct_le

Library lecslib Fortran code

Calling sequence

Arguments

le_gain_time

Library lecslib Fortran code

Calling sequence

Arguments

lecs_keywords

Library lecslib Fortran code

Calling sequence

Arguments

lecscorrect

Library lecslib Fortran code

Calling sequence

Arguments



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

69 of 92 11/02/10 15:35

[Previous][Next] [Up][Down]

5.9 The PDS library

The PDS (pdslib) library groups routines specific of the SAX PDS instrument (calibration data access, event
corrections, instrument specific keywords). These routines have been written at ITESRE and are not supported
by the author of this document (refer to comments in the code).

Use the subject list in the previous page, or the quick alphabetic index here below to locate the routine of
interest.

(A-)I
init_correct_pds inst_key_copy inst_key_find inst_key_flush inst_key_load

inst_key_mult inst_key_read inst_key_set instrument_keys

N-O no_keyword

P

pds_arf pds_ein pds_en_resol pds_fotunits pds_freq

pds_keywords pds_matinfo pds_matkeywords pds_matout pds_ogip

pds_opnrmf pds_response pds_wrtrmf pds_wrtrmfebo pds_wrtrmfmat

pdscorrect pdsmat_coef pdsmat_init

R-T rminmax sax_froot_name time_70s2mjd time_a2mjd time_cldj

X-Z x_echo x_echo_error xdofit

init_correct_pds

Library pdslib Fortran code

Calling sequence

Arguments

inst_key_copy

Library pdslib Fortran code

Calling sequence

Arguments

inst_key_find

Library pdslib Fortran code

Calling sequence

Arguments

inst_key_flush

Library pdslib Fortran code

Calling sequence

Arguments

inst_key_load

Library pdslib Fortran code

Calling sequence

Arguments

inst_key_mult

Library pdslib Fortran code

Calling sequence



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

70 of 92 11/02/10 15:35

Arguments

inst_key_read

Library pdslib Fortran code

Calling sequence

Arguments

inst_key_set

Library pdslib Fortran code

Calling sequence

Arguments

instrument_keys

Library pdslib Fortran code

Calling sequence

Arguments

no_keyword

Library pdslib Fortran code

Calling sequence

Arguments

pds_arf

Library pdslib Fortran code

Calling sequence

Arguments

pds_ein

Library pdslib Fortran code

Calling sequence

Arguments

pds_en_resol

Library pdslib Fortran code

Calling sequence

Arguments

pds_fotunits

Library pdslib Fortran code

Calling sequence

Arguments

pds_freq

Library pdslib Fortran code

Calling sequence



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

71 of 92 11/02/10 15:35

Arguments

pds_keywords

Library pdslib Fortran code

Calling sequence

Arguments

pds_matinfo

Library pdslib Fortran code

Calling sequence

Arguments

pds_matkeywords

Library pdslib Fortran code

Calling sequence

Arguments

pds_matout

Library pdslib Fortran code

Calling sequence

Arguments

pds_ogip

Library pdslib Fortran code

Calling sequence

Arguments

pds_opnrmf

Library pdslib Fortran code

Calling sequence

Arguments

pds_response

Library pdslib Fortran code

Calling sequence

Arguments

pds_wrtrmf

Library pdslib Fortran code

Calling sequence

Arguments

pds_wrtrmfebo

Library pdslib Fortran code

Calling sequence



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

72 of 92 11/02/10 15:35

Arguments

pds_wrtrmfmat

Library pdslib Fortran code

Calling sequence

Arguments

pdscorrect

Library pdslib Fortran code

Calling sequence

Arguments

pdsmat_coef

Library pdslib Fortran code

Calling sequence

Arguments

pdsmat_init

Library pdslib Fortran code

Calling sequence

Arguments

rminmax

Library pdslib Fortran code

Calling sequence

Arguments

sax_froot_name

Library pdslib Fortran code

Calling sequence

Arguments

time_70s2mjd

Library pdslib Fortran code

Calling sequence

Arguments

time_a2mjd

Library pdslib Fortran code

Calling sequence

Arguments

time_cldj

Library pdslib Fortran code

Calling sequence



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

73 of 92 11/02/10 15:35

Arguments

x_echo

Library pdslib Fortran code

Calling sequence

Arguments

x_echo_error

Library pdslib Fortran code

Calling sequence

Arguments

xdofit

Library pdslib Fortran code

Calling sequence

Arguments

[Previous][Next] [Up][Down]

5.10 The HPGSPC library

The HPGSPC (hpgslib) library groups routines specific of the SAX HPGSPC instrument (calibration data access
or event corrections). Part of these routines have been written at IFCAI and are not supported by the author of
this document (refer to comments in the code). The remainded of the routines are not officially supported.

Use the subject list in the previous page, or the quick alphabetic index here below to locate the routine of
interest.

A-E broad2 buf_read cofas config_read effmed

F filecorr_read fileinp_read fopen_rmf fuga fuga_1

H-J hp_gain_time hp_keywords hpcorrect init_correct_hp julia

P-S parameter reader reader_1 shell_fact shell_prob

T-V tmed tofits toqdp

W-Z winbe write_arf write_rmf_ebo write_rmf_mat

broad2

Library hpgslib Fortran code

Calling sequence

Arguments

buf_read

Library hpgslib Fortran code

Calling sequence

Arguments

cofas

Library hpgslib Fortran code

Calling sequence



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

74 of 92 11/02/10 15:35

Arguments

config_read

Library hpgslib Fortran code

Calling sequence

Arguments

effmed

Library hpgslib Fortran code

Calling sequence

Arguments

filecorr_read

Library hpgslib Fortran code

Calling sequence

Arguments

fileinp_read

Library hpgslib Fortran code

Calling sequence

Arguments

fopen_rmf

Library hpgslib Fortran code

Calling sequence

Arguments

fuga

Library hpgslib Fortran code

Calling sequence

Arguments

fuga_1

Library hpgslib Fortran code

Calling sequence

Arguments

hp_gain_time

Library hpgslib Fortran code

Calling sequence

Arguments

hp_keywords

Library hpgslib Fortran code

Calling sequence



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

75 of 92 11/02/10 15:35

Arguments

hpcorrect

Library hpgslib Fortran code

Calling sequence

Arguments

init_correct_hp

Library hpgslib Fortran code

Calling sequence

Arguments

julia

Library hpgslib Fortran code

Calling sequence

Arguments

parameter

Library hpgslib Fortran code

Calling sequence

Arguments

reader

Library hpgslib Fortran code

Calling sequence

Arguments

reader_1

Library hpgslib Fortran code

Calling sequence

Arguments

shell_fact

Library hpgslib Fortran code

Calling sequence

Arguments

shell_prob

Library hpgslib Fortran code

Calling sequence

Arguments

tmed

Library hpgslib Fortran code

Calling sequence



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

76 of 92 11/02/10 15:35

Arguments

tofits

Library hpgslib Fortran code

Calling sequence

Arguments

toqdp

Library hpgslib Fortran code

Calling sequence

Arguments

winbe

Library hpgslib Fortran code

Calling sequence

Arguments

write_arf

Library hpgslib Fortran code

Calling sequence

Arguments

write_rmf_ebo

Library hpgslib Fortran code

Calling sequence

Arguments

write_rmf_mat

Library hpgslib Fortran code

Calling sequence

Arguments

[Previous][Next] [Up][Down]

6. the include files

This section gives access (by alphabetic order and by subject) to the description of the Fortran INCLUDE files 
used by XAS. They are usually definitions of COMMON blocks or standard PARAMETER constants. 
The XAS convention is that these files have a .inc extension.

File alphabetic list

A-C accumcommon accumindir auxrecord b1s1local bigbuf bincommon clientside context

D-I debcommon errors graphlimit hcommon hkcommon hsizes instkeys

L-O labc1 labco lecommon mecommon megaincommon opcommon

P-R pdscoef pdsmat pdsnaipsa pencommon pixcommon psserver radiant runstring

S-Z saxfot servers syscommon timecommon vcommon voscommon wcommon xwserver



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

77 of 92 11/02/10 15:35

File subject list

You can locate a file by subject using the following lookup table

VOS, user interface and general XAS file accumulation attitude graphics instruments

VOS, user interface and general

VOS error codes errors voscommon

trigonometric constants radiant

user interface runstring

data conversion syscommon

XAS file support

image handling buffers bigbuf

binary tables bincommon

general context context

XAS file headers hcommon hsizes

accumulation support

telemetry file access accumcommon accumindir auxrecord b1s1local

HK parameters hkcommon

times and time windows opcommon timecommon vcommon wcommon

attitude

debcommon pixcommon

graphics

client side clientside labc1 labco pencommon servers

server side graphlimit psserver servers xwserver

SAX instrument support

LECS & MECS lecommon mecommon megaincommon

PDS instkeys pdscoef pdsmat pdsnaipsa

FOT tapes saxfot

accumcommon

include 
file

Fortran code

Usage define ACCUMCOMMON block used by accumulation program and relevant
PARAMETER constants

Content

COMMON ACCUMCOMMON

COMMON ACCUMCOMMONC

INTEGER PARAMETER ACCUMCOMMON_MAXDIM

According to usual practice there are two separate common blocks, one for numeric and one for
character variables. Both sets of variables have names prefixed with ACCUMCOMMON_. The meaning and full 
list of variables is documented in the code header. These variables are filled dynamically by the various
programs, and contain information about the current accumulation packet (typically a direct mode one),
the quantities chosen, the time limits, the decoded values of quantities for the current event. 
Some of these quantities are arrays dimensioned to ACCUMCOMMON_MAXDIM, the maximum number of fields
present for an event (currently fixed to 16, which is the maximum for HPGSPC packets).

accumindir

include 
file

Fortran code

Usage define ACCUMINDIR block used by accumulation program and relevant
PARAMETER constants



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

78 of 92 11/02/10 15:35

Content
COMMON ACCUMINDIR

INTEGER PARAMETER ACCUMINDIR_MAXDIM

This is an additional common block used to hold the data structures necessary for accumulation involving
indirect mode data which do not fit into ACCUMCOMMON. Of these the most important is a buffer array
ACCUMINDIR_HISTOGRAM, used to hold a raw spectrum read from a packet, and dimensioned to the maximum
size ACCUMINDIR_MAXDIM (currently fixed to 4096 channels as required by HPGSPC).

auxrecord

include file Fortran code

Usage buffer space for "ASCII HK" accumulations

Content COMMON AUXRECORD

Contains two arrays of integer and real values decoded from an ASCII HK telemetry record (actually
pseudo-telemetry, i/.e. ground-generated orbit or attitude data).

b1s1local

include 
file

Fortran code

Usage cyclic buffer shared between time binning and exposure processing routines and
relevant PARAMETER constants

Content
COMMON B1S1LOCAL

INTEGER PARAMETER ICIRC

This common block is used to communicate between the exposure_b1s1 and exposure_b1s3 routines on 
one side and timebin_b1s1 on the other side. It mantains a circular buffer of start and end times of the
last ICIRC packets, with also an array of flags indicating whether the packets follow without jumps or not,
and a pointer to the current packet. 
The size ICIRC has been empirically tuned to 3000 packets.

bigbuf

include file Fortran code

Usage shared buffer for image file i/o

Content COMMON BIGBUF

This common is used by create_image and read_image to share space for a silly data buffer.

bincommon

include 
file

Fortran code

Usage define BINCOMMON common block used by all programs dealing with binary
table XAS files and relevant PARAMETER constants

Content
COMMON BINCOMMON

INTEGER PARAMETER BINCOMMON_MAXTABLES, BINCOMMON_MAXFIELDS

The BINCOMMON common block holds the binary table descriptors managed by many routines like
copy_table_desc get_table_desc set_table_desc etc.

There are as many elements in the descriptor arrays as the maximum number of tables
BINCOMMON_MAXTABLES (which is currently equated to the maximum number of XAS files defined in HCOMMON, 
i.e. up to all XAS files can be tabular), and as the maximum number of columns in a table
BINCOMMON_MAXFIELDS (currently fixed to 16 for consistency with the maximum number of event fields for a
photon defined in ACCUMCOMMON.
For this reason 'hcommon.inc' must be explicitly included before referencing this include file.

The descriptor arrays are the type or bit width (BITPIX in FITS parliance) of a column, its dimensionality
or depth, and a number associating a logical column with its physical position or order.

clientside

include file Fortran code

Usage define data buffer for communication between graphics clients and server

Content COMMON CLIENTSIDE

All the low level graphics routines in graphserv library share this buffer to save space. The buffer holds
space for the data sent by a client on the communication channels, which according to the specification
of XAS graphics are represented by an opcode followed by a number of operands. These operands may be 
integer, real or character and all share the same space in the buffer after the opcode.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

79 of 92 11/02/10 15:35

The dimension of the buffer is set by PARAMETER constants defined in 'graphlimit.inc' which is 
automatically referenced by clientside.inc.

context

include file Fortran code

Usage define the "context" CTXCOMMON common block

Content COMMON CTXCOMMON

A trivial COMMON used by many routines in xaslib to hold the current instrument name and the current
context (the context is the type of data requested for output, e.g. spectra, images, matrices etc.) once
they have been retrieved from XAS environment variables.

debcommon

include file Fortran code

Usage dedicated to planned deblurring correction

Content
COMMON DEBCOMMON

COMMON DEBCCOMMON

Reserved for future accumulation programs capable of deblurring image positions according to attitude.

errors

include file Fortran code

Usage definition of VOS error codes

Content INTEGER PARAMETER VE_NAME

All symbolic constants defining VOS error codes are associated a numeric value in this file. For better
legibility programs shall use the named mnemonics (i.e. VE_NOFILE for a "file not found" error is better 
than "code 102")
See the error listings for details.

graphlimit

include 
file

Fortran code

Usage define PARAMETER constant to size data buffer for communication between
graphics clients and server

Content INTEGER PARAMETER FULLBUFSIZE and derived

The buffer used to exchange data over communication channels between graphics servers (which must 
include this file together with 'psserver,inc' or 'xserver.inc') and clients (which include
'clientside.inc') is sized here to 1026 bytes of full length (additional constants are derived internally to
define the same length or parth thereof for other datatypes).
Note that the f2x C routine defines the same common blocks used by xserver, as a C struct which is sized 
by separate #defines which must be edited manually consistently with eventual changes in FULLBUFSIZE.

hcommon

include 
file

Fortran code

Usage define HCOMMON common block used by all programs dealing with XAS file
headers, and relevant PARAMETER constants.

Content

COMMON HCOMMON

COMMON HCCOMMON

COMMON MINIH

INTEGER PARAMETER HCOMMON_TOP

INTEGER PARAMETER HCOMMON_MAXFILES

This file defines separately two logical areas, the HCOMMON buffer array (with space for the headers of
all open XAS files) and the MINIH buffer holding the mini-header of the "current" file.

According to usual practice, in HCOMMON there are two separate common blocks, one for numeric and
one for character variables. Both sets of variables have names prefixed with HCOMMON_. The meaning and
full list of variables is documented in the code header.
The variables which must be arrays with one element per open XAS file (and not just refer to the current
file or to global properties) are size to HCOMMON_MAXFILES (the current maximum is 8 XAS files).
The character part includes an array of header buffers (each one originally sized to HCOMMON_TOP bytes 
(currently 2048) and an array of mini-header buffers (the "current" of which is copied to MINIH
described below). Header buffers contain a full binary image of a file hader read from disk, and if a space



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

80 of 92 11/02/10 15:35

larger than HCOMMON_TOP is necessary, routines like h_load_header take care of dynamic re-allocation.

The MINIH mini-header is a trivial 28-byte object whose pieces are defined here by EQUIVALENCE.

hkcommon

include file Fortran code

Usage define common block for HouseKeeping data handling

Content COMMON HKCOMMON

The HKCOMMON block contains variables (whose meaning and full list of variables is documented in the code
header) used to handle HK (HouseKeeping) parameters, and to decode them according to the
specification of the PCFs.

hsizes

include file Fortran code

Usage define PARAMETER constant for maximum header keyword size

Content INTEGER PARAMETER MAXKEYBUF and derived values

Routines dealing with header keywords (and programs doing special dealings with keywords) require to
know the maximum size of the keyword data area. Since a complete keyword requires the binary space
for 8 bytes for the name, 1 byte for the type and 1 byte for the length, and cannot exceed 256 bytes
(because the length itself is coded in a byte), the maximum data area could potentially be 256-10 byte
long. However the choice is to define MAXKEYBUF to 78 bytes, which gives a a data area of 68 bytes which is
consistent with the longest FITS character keyword value. The restrictions on the number of elements in
numeric array keywords descend from such choice.

instkeys

include file Fortran code

Usage support to PDS instrument-specific header keywords

unsupported by the author of the present document

labc1

include file Fortran code

Usage used by lb_ routines

Content COMMON AXES (no detail given)

labco

include file Fortran code

Usage used by lb_ routines

Content COMMON GENERAL (no detail given)

A couple of vestigial common blocks as used by the original "Labeller" program from which these
routines were derived.

lecommon

include 
file

Fortran code

Usage define common block for LECS event corrections and relevant PARAMETER
constants

Content COMMON LECOMMON

This common block contains all coefficients necessary for the various LECS event corrections. LECS
event correction is not officially supported and is freely mimicked on the MECS event correction.
The meaning and full list of variables is documented in the code header.

mecommon

include file Fortran code



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

81 of 92 11/02/10 15:35

COMMON MECCOMMON

This common block contains all coefficients necessary for the various MECS event corrections. The
meaning and full list of variables is documented in the code header. According to usual practice there are
two separate common blocks, one for numeric and one for character variables.

megaincommon

include file Fortran code

Usage common block for the MECS gain relation

Content COMMON GAINCOMMON

Contains coefficients for the gain (energy-PHA channel) relation used during MECS matrix computation
by routines like coda, spread and eout. The meaning and full list of variables is documented in the code
header.

opcommon

include file Fortran code

Usage common block for observing period times

Content COMMON OPCOMMON

A simple common block used by accumulation program to keep the start and end time of the current
observation chain in a variety of formats. The meaning and full list of variables is documented in the code
header.

pdscoef

The following include files, used for PDS matrix computation, are unsupported by the author of the 
present document

include file Fortran code

Usage

Content

pdsmat

include file Fortran code

Usage

Content

pdsnaipsa

include file Fortran code

Usage

Content

pencommon

include file Fortran code

Usage define PENCOMMON common block for graphics clients

Content COMMON PENCOMMON

Keeps basic information like pen colours and plotting window corners. The meaning and full list of
variables is documented in the code header.

pixcommon

include file Fortran code

Usage common block for pixel to celestial coordinate transformation

Content
COMMON PIXCOMMON

COMMON PIXCCOMMON

This area contains coefficients used by unofficial programs used to handle celestial coordinates
According to usual practice, there are two separate common blocks, one for numeric and one for
character variables. The meaning and full list of variables is documented in the code header.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

82 of 92 11/02/10 15:35

psserver

include 
file

Fortran code

Usage define F2C common block and PARAMETER constants relevant to Postscript
graphics server

Content

COMMON F2C

COMMON F2CC

REAL PARAMETER PTS_PER_INCH, CM_PER_INCH and derived 

The logical F2C common block is used by a graphics server to keep its internal status. The PostScript
server uses for convenience the same names for the F2C common defined for 'xwserver.inc' although the 
data types of some elements may be different. According to usual practice, in F2C there are two separate
common blocks, one for numeric and one for character variables. The meaning and full list of variables is
documented in the code header.
The 'graphlimit.inc' file must be referenced before this one, since some PARAMETERs defined there 
are used for dimensioning.

In addition some trivial parameters useful in writing PostScript code are defined here.

radiant

include file Fortran code

Usage defines PI and degree-to-radians constants

Content PARAMETER DOUBLE PRECISION PI,DTOR 

Defines two trivial constants. Use the idiom RADIANT = DEGREE*DTOR to convert degrees to radians.

runstring

include 
file

Fortran code

Usage define XRCOMMON common block used by user interface routines and relevant
PARAMETER constants

Content

COMMON XRCOMMON

COMMON XRCCOMMON

INTEGER PARAMETER MAXRUN

This common block is used by the x_read routine and related to hold variables related to the user
interface (initialized in system dependent way by blkxrcommon).
According to usual practice, in XRCOMMON there are two separate common blocks, one for numeric and
one for character variables. Both sets of variables have names prefixed with XRCOMMON_. The meaning and
full list of variables is documented in the code header.

In addition parameter MAXRUN defines the maximum size of a run string. This is used also by some other
routines and programs.

saxfot

include file Fortran code

Usage common block for fotfile program

Content COMMON SAXFOT

This common block is used by tape command generation routines to store internal information. The
meaning and full list of variables is documented in the code header.

servers

include 
file

Fortran code

Usage define PIPECOMMON common block with graphics server communication 
channel status

Content

COMMON PIPECOMMON

COMMON PIPECCOMMON

INTEGER PARAMETER MAXSERVER

This common block is used by the programs which control graphics servers and by the communication 
channel handling routines to keep track of the status of registered graphics servers.
According to usual practice, in PIPECOMMON there are two separate common blocks, one for numeric
and one for character variables. Both sets of variables have names prefixed with PIPECOMMON_. The



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

83 of 92 11/02/10 15:35

meaning and full list of variables is documented in the code header.
Some of the variables are arrays sized to MAXSERVER (currently 9), the maximum number of servers active
at any time.

syscommon

include file Fortran code

Usage define SYSCOMMON common block used for data conversion

Content

COMMON SYSCOMMON

COMMON SYSCCOMMON

INTEGER PARAMETER SYSCOMMON_NSYS

This common block is used by type conversion routines and programs to know whether a (and which type
of) conversion is required between an origin operating system and the current target system.
According to usual practice, in SYSCOMMON there are two separate common blocks, one for numeric
and one for character variables. Both sets of variables have names prefixed with SYSCOMMON_. The meaning
and full list of variables is documented in the code header.
The parameter SYSCOMMON_NSYS is the number of currently supported operating systems and must be 
edited in cases of porting to a OS. In addition one shall change the blksyscommon routine used to
initialize the different OS characteristics.

timecommon

include file Fortran code

Usage define TIMECOMMON common block used for time unit conversion

Content
COMMON TIMECOMMON

COMMON TIMECCOMMON

This common block is used to store constants used for conversion of times between spacecraft times and
user defined units (seconds or submultiples) and is initialized by time_constants_setup
According to usual practice, in TIMECOMMON there are two separate common blocks, one for numeric
and one for character variables. Both sets of variables have names prefixed with TIMECOMMON_. The
meaning and full list of variables is documented in the code header.

vcommon

include file Fortran code

Usage define VCOMMON common block used to support to saxvartaccum program

Content COMMON VCOMMON

saxvartaccum is an unofficial XAS extension which allows to accumulate time profiles with bins of variable
width defined in an external file. The VCOMMON blocks keeps track of such bin characteristics similar to
(but separately from) what is done for time windows in wcommon. The meaning and full list of variables
is documented in the code header.

voscommon

include file Fortran code

Usage common containing current VOS errors

Content COMMON VOSCOMMON

This simple common block contains two variables VOSCOMMON_ERROR and VOSCOMMON_SYSTEMERROR which are 
set by VOS and other routines. The first variable is set to the standard VOS codes defined in the
'errors.inc' file, while the second contains the original system dependent code. Users do not normally
access this common explicitly, but via a call to voserror

wcommon

include file Fortran code

Usage define WCOMMON common block used to store time windows

Content COMMON WCOMMON

The WCOMMON block stores information about the time windows used to select intervals from data
accumulation as read from a file via appropriate routines.
Variables names are prefixed with WCOMMON_. The meaning and full list of variables is documented in the
code header.

xwserver

include file Fortran code



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

84 of 92 11/02/10 15:35

Usage define F2C common block as used by X window graphics server

Content
COMMON F2C

COMMON F2CC

The logical F2C common block is used by a graphics server to keep its internal status. The X window
server uses for convenience the same names for the F2C common defined for 'psserver.inc' although the 
data types of some elements may be different. More important, it has to be noted that the f2x C routine 
defines F2C and F2CC as C structs sized by separate #defines which must be edited manually
consistently with eventual changes in FULLBUFSIZE in 'graphlimit.inc'
For such reason the 'graphlimit.inc' file must be referenced before this one,.

According to usual practice, in F2C there are two separate common blocks, one for numeric and one for
character variables. The meaning and full list of variables is documented in the code header.

[Previous][Next] [Up][Down]

7. the programming support files

This section describes miscellaneous support files (located in the include or local directories).

error code listings
font listings
graphics marker listings
postscript prologues
tape command definition

[Previous][Next] [Up][Down]

7.1 error code listings

There are two auxiliary files in the include directory which are not used by any program, but list the VOS error
codes defined in errors.inc in human readable form :

errors.list lists the numeric error code (as printed by voserror calls) with an explanatory message.
errors.list_long in addition to the same information lists also the symbolic code used in errors.inc and the
routine where the error may occur

[Previous][Next] [Up][Down]

7.2 font listings

The font listings xwfont.list and psfont.list are used respectively by the X window and postscript graphics 
servers.
These files are intended as prototypes for customisation and can be freely copied, since they are looked for in
the following order :

in the current working directory where the user is running XAS (any user can copy it here as a special
dedicated setup)
in the user home directory (any user can copy it here as a personal private all-purpose setup)
in the local directory (the XAS installer can copy it here as a systemwide site-dependent customised
setup)
in the include directory (this is the fallback version delivered with XAS)

Both files associate a font number (the only thing known to the graphics server) with a real font. They do it
slightly differently :

for the X window server a real font is specified by the X (xlsfonts ?) descriptive string (inclusive of font
face and size)
for the Postscript server one specifies separately a size in points and a font face name

[Previous][Next] [Up][Down]



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

85 of 92 11/02/10 15:35

7.3 graphics marker listings

The single psmarker.list is intended as a way to define (and customize the definition) for markers for the
graphics polymarker primitive. The code (which should apply only to Postscript graphics servers is 
unimplemented/

The file shall define Postcript macros named Mnnn defining a 1x1 point (scalable) marker, according to the
prescription given in the example.

[Previous][Next] [Up][Down]

7.4 postscript prologues

The prologue files located in the include directory are used by the Postscript graphics servers to define the 
standard macros used to realize the graphics primitives.
There are three different prologue files :

bwserver.prologue
The standard black-and-white prologue used by bwserver
Define a standard 7-pen lookup table with selected shades of gray, and a 256-level gray lookup table
cpserver.prologue
The simple colour prologue used by cpserver
Define a standard 7-pen lookup table with selected fundamental colours, and a 256-level colour RGB
lookup table initialized to shades of red
c2server.prologue
The Level-2 colour prologue used by c2server
is similar to the previous but uses a Level-2 operator for images (with /ASCIIHexDecode filter) which
allows image data to point directly into the colour lookup table (this means the data is 3 times less bulky)

At present they all define inside a simplified version of the marker definition file

[Previous][Next] [Up][Down]

7.5 tape command definition

This file is a natural candidate for site-dependent customisation and is therefore located in the local directory.
This file is used to support tape reading in fotfile, which operates reading template commands from this file,
and using tape command generation routines to write the relevant edited commands to a shell script. Example
files are shown here for

Unix using a local tape drive and dd
Unix using a remote tape drive via rsh (this is a non functional example, and is also not recommended
w.r.t. remote login to the machine with a local tape)
VMS which requires a dedicated tapecopy (dd emulator) program which is not part of XAS.

All examples are self-documented. In a nutshell one shall equate some standard symbolic functions to a
system-dependent command, using tokens in place of variable parts like tape names, file names or numeric
parameters. The symbolic functions are :

REWIND for tape rewind
SKIP for forward skip file
BINCOPY for copying and unblocking of a binary file
ASCCOPY for copying and unblocking of an ASCII file
MESSAGE to write a message to standard output

[Previous][Next] [Up][Down]

8. the calibration files

This section describes the calibration files proper (located in the calib subdirectories). The term refers to files
describing physical characteristics of specific SAX instruments.
Files describing the format of the data associated to the SAX instruments are described elsewhere, although 
they may be stored in the same directory.

The underlying idea about calibration files is that all files which comprise only one or a few numeric values are



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

86 of 92 11/02/10 15:35

kept in ASCII files (usually with a name like something.coeff) while bulkier data (like relative gain images) are
kept with XAS naming conventions in XAS format data files (these will be by definition system dependent, since
XAS files use native binary format).

Some information follows about SAX calibration files.

spacecraft
no officially supported file besides the instrument support files; the ITESRE barycentrization program
keeps an earth.dat file here

MECS used by mecslib routines
calibration files are described in detail in the MECS Guided Tour and can be accessed here

LECS used by lecslib routine
calibration files are not officially supported

HP-GSPC used by hpgslib routine
calibration files supplied by IFCAI are not supported by the author of this document

PDS used by pdslib routines
calibration files supplied by ITESRE are not supported by the author of this document

[Previous][Next] [Up][Down]

9. the instrument support files

This section describes files located in the calib subdirectories which describe the format of the data associated 
to the SAX instruments. Files describing physical characteristics of specific SAX instruments are described in 
the previous section.

telemetry packet description (packetcap)
spacecraft
MECS
HPGSPC
PDS

HK parameter characteristics files (PCF)
spacecraft
MECS data under spacecraft telemetry
MECS
HPGSPC
PDS

Experiment Configuration parameter files

[Previous][Next] [Up][Down]

9.1 packetcap

The packetcap files are telemetry packet description files mimicked on the Unix termcap files.
Full definition of packetcap files is kept in a separate paper document. In brief however one shall note the
following guidelines :

comment lines begin with #
a packetcap entry relative to single packet type may span more lines
the first line shall begin with the (packet) identifier followed by a pipe (|) and a comment, followed by
field entries
all lines but the last must be terminated by a continuation mark, i.e. a backslash (\) not followed by any 
blank ! Continuation lines are preferably aligned not in column one.
field entries are delimited by semicolons (:)
field names are two or three characters (this is an extension to the Unix termcap)
There are three types of fields

boolean fields with no values, e.g. :ve:
integer fields with numeric values, e.g. :pl#1912:
string fields with values, e.g. :f1=TIME:

a particular field is :tc=identifier:, which chains the current definition to another packetcap entry (this
is useful when more packets share a common set of definitions)
current routines use a basic type :bt#n: and secondary type :st#m: field to classify similar packet layouts
together
other fields like packet length :pl#n: and number of items :ni#m: are relevent to an entire packet
a packet item can be an event, or a spectrum, or an HK sample, and then contain :nf#n: fields, each of 
them (i=1,n) has characteristics like a field name :fi=name:, a field size :si#k:, etc.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

87 of 92 11/02/10 15:35

Packetcap files are stored in an instrument specific subdirectory of the calib directory, therefore can be 
mantained separately for different missions and instruments.

The current packetcap files for SAX instruments can be inspected here :

spacecraft HK
MECS direct mode, indirect mode and HK
HPGSPC direct mode, HK
PDS direct mode, indirect mode and HK

[Previous][Next] [Up][Down]

9.2 PCF

The PCF (Parameter Characteristics Files, an old ESA name) are HouseKeeping parameter description files 
mimicked on packetcaps, in turn the Unix termcap files.
Full definition of PCF files is kept WHERE???. In brief however one shall note the following guidelines :

the general syntax (comment lines, continuation lines, fields etc.) is the same of packetcap files
the first line of a PCF entry begins with the HK parameter mnemonic followed by a pipe (|) and a
comment, followed by field entries
a compulsory field is :pk=packet: which points to a packetcap entry for the telemetry packet which
contains the particular HK parameter.
other fields consider the parameter commutation, its position in the record, its physical units and the
calibration curve necessary to convert it to physical units. For explanation look in comments in actual
PCFs

The current PCF files for SAX instruments can be inspected here :

spacecraft HK
MECS HK data under spacecraft telemetry (this is actually a link to the next file but must exist in the
spacecraft subdirectory)
MECS HK
HPGSPC HK
PDS HK

[Previous][Next] [Up][Down]

9.3 Experiment Configuration Parameter file

These files are used exclusively by the check_expconf programs. They have a name like instrument.expconf and
are located in the $XASTOP/calib/sax/instrument directory.

Format

A single ASCII file per instrument with the following structure

Two header lines (copy them from an existing file)

as many records as parameters in the FOT Experiment Configuration files.

Each record has the following layout, where fields are separated by one or more blanks. Alignment into
columns is encouraged for legibility.

1-character code to be selected among C, I or R to indicate the parameter is character, integer,
real.
8-character UPPERCASE name of the parameter, as it appears in the FOT Experiment
Configuration files. Parameters shall appear in this parameter file in the same order as in the FOT
files.
parameter classification, which indicates the action by check_expconf, to be chosen among one of 
the following values (verbatim !) :

relevant

an important parameter used in routine operations which shall appear in the summary file, and
whose value shall be verified to be nominal or not. E.g. HV related parameters, mode and POP
status.

checked

intended for parameters which are normally left alone in their nominal state, but for which a check
of being nominal is useful. Currently handled as "relevant" ones. E.g. the LED status (not used by
GOs, but might be commanded).



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

88 of 92 11/02/10 15:35

dontcare

intended for parameters which are operated seldom. Should not appear in summary, unless thery
are not nominal. Currently handled as "ignored" ones. E.g. analog and digital thresholds, unused
NFI HV relays.

ignored

parameters which are likely to be never operated, they do not appear in output summaries and
their values are skipped by the processing. E.g. all parameter of indirect modes for MECS.

nominal value(s) of the parameter. The values shall be in the same form appearing in the FOT files. A list
of values may be declared nominal, in which case values are separated by a pipe character. E.g.
DIR3|DIR2. For ignored parameters, use the string any.
conditioning parameter. Either the lowercase word no or an 8-character UPPERCASE name of another
parameter, which is conditioning the validity of the current one.
conditioning parameter values. Blank if parameter is not conditioned. Otherwise a pipe-separated list of
values of the conditioning parameters, for which the current parameter value is considered
"meaningless" (therefore its value will not be displayed, but considered "invalid")

As examples, consider that HV values are conditioned by the respective HV switch (they are invalid when HVs
are OFF), or that POPID or ITOPMODE are meaningless if POPSTAT is DISABLE. Use the mecs.expconf file as 
reference.

[Previous][Next] [Up][Down]

10. details about specific programs 

This section is intended to give an overview of some specific XAS programs, while overview of general idioms 
and graphics programs are covered elsewhere.

the fotfile FOT tape reading program (SAX specific)
the check_expconf experiment configuration summary generator (SAX specific)
xasset and xasplot ?
typical accumulate dispatcher
typical plot dispatcher
typical SAX telemetry accumulator
typical SAX matrix accumulator
saxauxcalc
time windows
keyword header access hlist, tlist, header_edit
localize

[Previous][Next] [Up][Down]

11. XAS graphics 

XAS graphics is based on a client-server approach.

The typical commands which the user accesses are clients
These clients are linked with high level graphics routines (the xasgraph library)
These routines in turn use low level graphics routines (the graphserv library) to send an opcode and
eventual operands to a graphics server over a pair of communication channels : one for sending 
command, and one for receiving server replies.
Up to this level everything is device independent
The various server instances contain into themselves all device specific stuff.

In practice only one X-Window based server (for interactive work) and a family of Postscript based servers (for
hardcopies) are implemented.
The communication routines used by (clients and) servers are also in the graphserv library, together with the
Xlib C interface used by the X-Window based server.
The Postscript based servers instead use self-contained code, with the help of some programming support files

Most of the details (inclusive of the server implementation) are kept in two separate paper documents. We
recall here only some basic facts and give some idioms about the construction of graphics clients.

Overwiew of graphics primitives

This list summarized the graphics primitives, with the opcode and operand sent by clients (typically by
graphserv y_* routines) to servers. Operations fully implemented are listed in green (with the link to the
relevant routine). Operations not implemented at all are listed in red. Operations implemented at server level
but without corresponding routine are listed in yellow or orange (the latter are implemented only in the



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

89 of 92 11/02/10 15:35

PostScript server). An asterisk [*] marks those function unimplemented (no-operations) as meaningless for the
PostScript server.

opcode function operands

none Reconnect implemented at server level

-2 server specific directives subcode suboperands

-1 Terminate implemented in deleteserver

0 Disconnect see y_closeplot

1 ClearPage see y_page

2 Move see y_move x y

3 Draw see y_draw x y

4 PolyLine see y_lines n x(n) y(n)

5 PolyMarker (psserver side only) n x(n) y(n)

6 PolyFill see y_fill n x(n) y(n)

7 Text see y_text nchar string(nchar)

8 ClearView see y_clear_viewport

9 WriteImage see y_write_image nbyte data(nbyte)

10 WriteLut see y_writelut start ncolor red(ncolor) green(ncolor) blue(ncolor)

11 ReadCursor see y_get_cursor [*] none ; returns x y key

12 ReadImage [*] none ; returns nbyte data(nbyte)

13 ReadLut see y_readlut none ; returns
start ncolor red(ncolor) green(ncolor) blue(ncolor)

101 Viewport see y_viewport xlow xup ylow yup

102 Window see y_window xlow xup ylow yup

103 Coord see y_coordinates and y_window ncoord

104 Scale see y_scale xscale yscale

105 Pen see y_colour colour

106 LineWidth see y_width width

107 LineStyle style + TBD

108 Bkg colour

109 Marker (psserver side only) n

110 TextFont see y_text n

111 TextSize (psserver side only) size

112 TextOrient (psserver side only) angle

113 TextMode (psserver side only) n

201 QueryViewport returns xlow xup ylow yup

202 QueryWindow returns xlow xup ylow yup

203 QueryCoord returns ncoord

204 QueryScale returns xscale yscale

205 QueryPen returns colour

206 QueryLineWidth> returns width

207 QueryLineStyle returns style + TBD

208 QueryBkg returns colour

209 QueryMarker returns n

210 QueryTextFont returns n

211 QueryTextSize returns size

212 QueryTextOrient returns angle

213 QueryTextMode returns n

Typical graphics clients

Typical very high level graphics clients in XAS are the display and overtrace commands. These programs
do not do any plotting themselves, but are just dispatchers to other clients. Dispatchers are explained in
section 4.

Typical high level graphics clients (used to plot a XAS data file in a standard way) use xasgraph utility 
routines and have a basic structure like this :

CALL CHECK_OVERTRACE(CLEAR)
verify if plotting over preexisting 
plot

get program specific options



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

90 of 92 11/02/10 15:35

open and read data file

CALL GET_DATASTYLE(ISTYLE)
retrieve plotting style from 
environment

LUS(1)=1

LUS(2)=2

CALL Y_OPENPLOT(LUS,' ',0)

open plotting connection

CALL DF_PEN_COLOURS(LUS,CLEAR)
take pen colours from 
environment

CALL DF_VIEWPORT(LUS,BUFFER,ANNOTATE) arrange default viewport

CALL DF_WINDOW(LUS,CLEAR ,REPLOTAXES, ...) arrange default window

IF(CLEAR.OR.REPLOTAXES)THEN

CALL DF_AXES(LUS, XLINLOG, YLINLOG, ...)

ENDIF

plot axis frame

....

CALL Y_COORDINATES(LUS,2)
use world coordinates

CALL PLOT_XXY_xxx(LUS, ...) use high level call to plot data

....

CALL Y_COORDINATES(LUS,1)
use NDC coordinates

CALL Y_VIEWPORT(LUS,0.0,1.0,0.0,0.5) viewport for annotations

CALL Y_COLOUR(LUS,PENCOMMON_TXT) pen colour for annotations

CALL ANNOTATE_NEW(LUS, ...) custom annotations

IF (CLEAR)

CALL Z_SET_GLOBAL ('LASTPLOT', 'spectrum'//PLOTTYPE//' 

'//NAME1)

save plot type to environment

CALL Y_CLOSEPLOT(LUS) close plotting connection

Plain lower level graphics clients use graphserv routines directly and may have a basic structure like this
:

LUS(1)=1

LUS(2)=2

CALL Y_OPENPLOT(LUS,' ',0)

open plotting connection

CALL Y_VIEWPORT(LUS,0.0,1.0,0.0,0.5) set viewport

CALL Y_WINDOW(LUS,XVL,XVU,YVL,YVU) set plotting window

CALL Y_COORDINATES(LUS,2) use world coordinates

CALL Y_SCALE(LUS,'LIN','LOG') set axis scales

....

CALL Y_COLOUR(LUS,ICOL)
set pen colour

CALL Y_LINES(LUs,2,AX,AY) use low level call to plot data

....

CALL Y_CLOSEPLOT(LUS)
close plotting connection

Programs needing graphics input may have a basic structure like this. The trick with DF_VIEWPORT,
DF_WINDOW (with dummy arguments) and the xyaxis environment variable is to be regarded as a
workaround to make sure this program uses the last axis setting available in the server and in the 
environment (in a future the "query calls" will allow to get the data directly from the server) and
therefore returns consistent coordinates.

LUS(1)=1

LUS(2)=2

CALL Y_OPENPLOT(LUG,' ',0)

open plotting connection

CALL DF_VIEWPORT(LUG,BUFFER,BUFFER2) recover current viewport

CALL DF_WINDOW(LUG,.FALSE.,.FALSE. ,BUFFER, BUFFER ,BUFFER2, 

E,E,E,E,E,E)
recover plotting window

CALL Z_GET_GLOBAL('XYAXIS',BUFFER)

READ(BUFFER,*,IOSTAT=IERR)X1,X2,Y1,Y2

retrieve actual window 
extrema

....

CALL Y_GET_CURSOR(LUG,A1,E1,BUFFER(1:1))

CALL Y_GET_CURSOR(LUG,A2,E2,BUFFER(1:1))

read two cursor points

....

CALL Y_CLOSEPLOT(LUG)
close plotting connection

....

IF(E2.LT.E1)THEN ...

better check points are in 
order

[Previous][Next] [Up][Down]

12. XAS file format reference



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

91 of 92 11/02/10 15:35

XAS uses a consistent, mission-independent private file format for its reduced data files. The complete
reference for the XAS file format is reported in two separate paper documents. We give here only an overview
of the main characteristics.

XAS uses only two types of files (and of associated Fortran i/o) : plain ASCII files with sequential access
for small quantities of ancillary information, and fixed-format binary files with direct access for real and
bulky data.
A (Unix-like) STREAM_LF format is preferred for ASCII files on non Unix systems (and imposed at z_open
level).
Some additiona support is provided for ASCII tables
The remainder of this specification covers exclusively the binary XAS data files.

XAS binary files use the native binary representation of the operating system (OS) on which they are
written.
There is no requirements of portability of the files (one cannot read a file written on a different,
uncompatible OS), but there is an interoperability requirement. The OS is identified, and an in place 
conversion to the local OS format (localization) is supported by a dedicated program and routines. This 
conversion is unidirectionally supported : a file can be imported to the local OS, but not exported to a
generic OS.

A XAS file is composed in this order by these three parts :

a mini-header covering one or more record with 28 bytes of useful information (more than one
record only when the record length is less than 28 bytes, the rest being null-padded).

a 16-byte magic number in the form XAS
1
PPP

2
TTT

3
SSS

4
, where the 1..4 values at subscript

position indicate binary values 1..4 (CHAR(1) to CHAR(4)), while the ASCII sequences PPP
and TTT corresponds to types and subtypes described below, and SSS is the three-letter code 
of the operating system which wrote the file (as returned by z_op_sys, one of those stored in 
the SYSCOMMON common block). The mixture of ASCII and binary code is used to make
unlikely that the magic number pattern be generated by chance.
an INTEGER RECLEN, the file record length in bytes
an INTEGER DATASIZE, the number of data records
an INTEGER HDRSIZE, the number of header records containing the header keywords (this
does not include the mini-header)

DATASIZE data records
HDRSIZE header records

There are two basic layouts for data records (images and [binary] tables) which share a common layout
for header records.

image files (magic number XAS
1
IMG

2
FLO

3
SSS

4
) store an image(nx,ny) in ny records of record length nx*4

(in the default format of REAL*4 images). INTEGER*2 images and 3-d images are supported at
specification level, but their usage is not incouraged nor supported by s/w.

response matrices files (magic number of the main file XAS
1
IMG

2
MAT

3
SSS

4
) are stored as a couple of

images, a main matrix M(ne,nchan) in units of cm2keV (product of RMF * ARF * width of energy grid
bins) and an associated histogram H(ne,1) with the input energy grid

all other data files are stored as XAS binary tables

a spectrum (magic number of XAS
1
BIN

2
SPE

3
SSS

4
) has 4 REAL columns, namely

LOWER BOUNDARY1.
UPPER BOUNDARY2.
DATA3.
ERROR4.
additional columns may follow for particular, unofficially supported cases (storing fitted models or
photon spectra)

5.

a time profile (magic number of XAS
1
BIN

2
TIM

3
SSS

4
) has n records (as many as n time bins), with a record

length such to contain a selection of some of the following columns (when they appear, they do in this
order, but what matter is the logical name ; those which do not appear are constructed from header
keywords)

TIME : the bin start time in seconds since a reference Unix time TIMEREF stored in the header, usually 
the 0 UT of the day containing the first data point in the observation, stored as a DOUBLE
PRECISION value. May be absent for fully equispaced time profiles.

1.

BINSIZE : a REAL number indicating the bin duration. May be absent for time profiles with all equal
bins (refer to keyword BINSIZE

2.

DEADTIME : a REAL 0.0-1.0 number giving the coverage fraction of the bin (optional)3.
DATA : one value or an array of REAL data values (may be absent for the rare case file of times or
time intervals)

4.

ERROR : the associate errors (optional)5.
additional data and error columns may follow to allow parallel storage of more light curves with
same time binning (but this has no support in s/w).

6.

for unofficially supported folded light curves TIME may be replaced by PHASE

a photon list (magic number of XAS
1
BIN

2
PHO

3
SSS

4
) has has n records (as many as n photons or events),

with a record length such to contain a selection of data columns corresponding to the data fields selected
for each event.



XAS Programmer Guide Table of Content http://sax.iasf-milano.inaf.it/~look/scratch/temp/XA/aa...

92 of 92 11/02/10 15:35

any other unspecified tabular file has a magic number of XAS
1
BIN

2
GEN

3
SSS

4
)

the file header is located at the end of the file in order to be extendable (one can add new keywords)
without changing the data part of the file.
the file header is a sequence of binary-encoded keywords, stored spanning records of the same natural
size used for the data. Records are null-padded which allow implicitly to generate an end-of-file keyword
(this is not necessary if real keywords fill completely the header space).
keyword handling routines read the entire header in memory and operate on such memory copy.

keywords have a n 8-character NAME, a datatype and a length which is encoded together with the
keyword value(s) in a binary data structure like this 

data type 1 byte type 1 byte length 8 bytes length bytes

INTEGER*2 1 2*n NAME n=l/2 INTEGER*2 values

INTEGER*4 2 4*n NAME n=l/4 INTEGER values

REAL*4 3 4*n NAME n=l/4 REAL values

DOUBLE PRECISION 4 8*n NAME n=l/8 DOUBLE PRECISION values

CHARACTER 0 2<=n<=68 NAME one CHAR*n string

end of file 0 0 absent absent

More data types with particular semantics (angle, time, date) are foreseen by the specifications but not
implemented. The usage of the INTEGER*2 type, although defined, is deprecated.
The keyword data structure can in principle reach n=255 bytes, but for reasons of FITS compatibility is
limited to 68 byte character keywords (and the same limit imposed to other data types).

There is a small number of mandatory keywords which must be present in a file in order for it to be
usable. These are usually flushed to disk by the file creation routine, so that a file is usable even if no
further ("documentation") keywords are added.
The number of mandatory routines is much less than in a FITS file since some information is not useful or
generated implicitly.
For an image only BITPIX,NAXIS1 and NAXIS2 are mandatory (NAXIS if image is not 2-d)
For a table BITPIX=8 is included for documentation, while NAXIS1, NAXIS2 and TFIELDS are
mandatory, together with the TFORMn of all present columns, and the TTYPEn names of all used
columns. The distinction between present and used columns is due to the need of table padding of record
length to a multiple of 4.

[Previous][Next] [Up][Down]


