Document

IFCTR EPIC SZfee

Page

EPIC-IFC-TN-006
2.1

Mon, 28 Aug 1995
1

ETO

EPOS : EPic Observation Simulations

L.Chiappetti - IFCTR

Document history

Issue 2.1 28 Aug 1995 Minor updates in section 2 and appendix A,B
Issue 2 19 May 1994 First configured issue

Issue 1.1 13 Dec 1993 Interim update, not configured

Issue 1.0 23 Nov 1992 Original issue, not configured

A bar on the margin marks paragraphs changed between the current and the previous major issue

(1.1t02)
A single bar marks minor updates (2 to 2.1)

Table of content

IFCTR EPIC

Document
Issue
Date
Page

EPIC-IFC-TN-006
2.1

Mon, 28 Aug 1995
2

Table of content

Document history
Table of content
References

1 Introduction

2 Steps in EPOS
A. Input data simulation

A.1 Target source simulation
Al1l (point-like) source spectrum

A.l2 (point-like) source time behaviour

A.l1.3 extended source shape

A.2 Sky simulation
A21 resolved component
A2.2 LogNLogS
A23 Field stars
A2.4 diffuse background

A.3 Cosmic ray background
B. XMM Optics simulation

B.1 Full simulation (ray-tracing)

B.2 Approximate simulation
B.2.1 PSF simulation
B.2.2 Optics transmission

B.3 Converting files from OAP
B.4 Converting to focal plane positions

C. EPIC filter and dead layer simulation

C.1 tabulate filter transmission
C.2 apply filter transmission

D. Chip-level interactions

D.1 Converting to chip positions
D.2 CCD interaction simulation for X-rays
D.3 CCD interaction simulation for particles

E. Splitting, pile-up assessment, statistics et al.

E.1 Splitting statistics

E.2 Charge vs E relation

E.3 Pattern recognition

E.4 Pile-up analysis

E.5 Scaler utility

E.6 Shifting (relocating) utility
E.7 Merger utility

F. Readout simulation

F.1 Smart readout
F.2 Dumb readout
F.3 Visual readout simulation

G. Controller simulation

Table of content

Document EPIC-IFC-TN-006

| 2.1
IFCTR EPIC Date. Mon, 28 Aug 1995
Page 3

G.1. Generic controller

G.2. MOS EDU simulation
G.2.1. Compilation of pattern libraries
G.2.2. Imaging mode
G.2.3. Timing mode(s)

G.3 pn Event Analyser simulation
G.3.1 Imaging (full frame) mode
G.3.2 Imaging (window) mode
G.33 Generic mode
G.3.4 Split event reconstruction (imaging)
G.35 Split event reconstruction (1-d)

H. EDH packing assessment
3 Types of files

3.1 File formats

3.1.1 Sky files

3.1.2 Focal plane files
3.1.3 Chipfiles

3.1.4 Post-detection files
3.1.5 Charge vs E files
3.1.6 Post-readout files

3.1.7 Post-controller files
3.1.7.1 Simplified format
3.1.7.2 Post-rejection pn format
3.1.7.3 Full MOS format
3.1.7.4 Post-reconstruction pn format

3.2 Reference files

3.2.1 Target source file
3.2.2 Sky file
3.2.3 Particle background file
3.2.4 Derived files
4 Tables of standard configurations
4.1 Mirror characteristics
4.1.1 Focal length
4.1.2 Geometric area

4.1.3 Mirror transmission
4.1.4 Point Spread Function

4.2 Filter configurations
4.3 Chip configurations
4.3.1 Real configurations

4311 EEV
4.3.1.2 Thomson
4313 MAXI
4.3.2 Auxiliary configurations
4.4 Chip physical characteristics configurations
44.1 EEV
4.4.2 Thomson
4.4.3 MAXI

4.4.4 Cosmic ray command files
4.5 Operating mode readout configurations

4.5.1 Full frame mode
4511 EEV

Table of content

Document

IFCTR EPIC S;“:

Page

EPIC-IFC-TN-006
2.1

Mon, 28 Aug 1995
4

4.5.2
453
454

455
4.5.6

45.7

4.6
4.7

45.1.2 Thomson
451.3 MAXI

Frame store mode
Refreshed frame store mode
Window mode

4541 EEV

45.4.2 Thomson

45.4.3 MAXI

Fast window mode
Timing mode
456.1 EEV
45.6.2 Thomson
45.6.3 MAXI

Burst mode

Pattern libraries
Auxiliary command files

5 Usage examples

5.1
5.2
53
5.4

Appendix

AA.l
AA2
AA3
AAA4
AAS
AA.6

Generating a 1/100th Crab photon file
Generating a cosmic-ray file

Looking for the limiting rate

Merge source and cosmic-ray files

A : how to use EPOS

On Vax

On Unix

Using command files

Setting the environment

General XAS utilities

Using with SAOimage, IDL or MIDAS

Appendix B : how to develop EPOS programs

Table of content

Document EPIC-IFC-TN-006

| 2.1
IFCTR EPIC Date. Mon, 28 Aug 1995
Page 5

References

[1] P.Sarra, "EPICS. Note sui programmi di simulazione", P.Sarra 04/09/91 con aggiunte di N.La
Palombara 15/04/92

[2] G.Peres, "X-ray sky simulations and their folding through XMM mirrors" May 31 1991, plus
README files on node ASTRPA::

[3] L.Chiappetti, "The Randomizer - a software tool for general purpose simulations", issue 1.1, Nov

93

[4] A.Bouere, C.Cara, M.Lortholary, C.Pigot, Description of the EDU architecture and operation, Issue
0.1 - Nov 1993

[5] L.Chiappetti, "The Real Programmer Tool. A set of procedures for Fortran programmers", Version
1.6 Jun 93

Table of content

1 Introduction

What is EPOS ?

EPOS is the new package of simulations for EPIC which is being developed at IFCTR, and is going to
replace EPICS, the suite of programs originally developed by P.Sarra (reference [1]).

Why EPOS ?
EPOS is being written in a system-independent way :

all dependencies on operating system (VMS) and on external libraries (NAG) present in EPICS are
being removed. EPOS program sources at present exist as a single physical copy on the IFCTR Vax
disk, and are accessed via NFS to be compiled, linked with the appropriate libraries and run on Vax,
Sun and DECstation under VMS, SunOs Unix and Ultrix.

EPOS uses a new format for data files (the XAS format):

this format supports both images and tabular files (mainly photon lists for EPOS, but also spectra and
light curves), with a common handling of a kewyord-oriented header. Data are kept in a system native,
compact binary format (utilities to convert data representation across systems are planned). The XAS
format is not FITS, but can be converted in a straightforward way to FITS, since it has been designed
with that in mind.

XAS data files can be read immediately within IDL and SAOImage, or converted to FITS and used
with MIDAS and IRAF.

EPOS uses a common, consistent and flexible user interface :

All EPOS programs can be run interactively, or passing arguments on the run string, or using standard
command files (which replace the EPICS parameter files), or a whatsoever combination, Some EPOS
operation may also be driven by environment global variables.

The development of EPOS programs, the file format and the user interface benefit of the
previous work done by the author for XAS. XAS, the X-ray Astronomy analysis System, is a prototype
system proposed originally for the SAX mission and being developed privately by the author.

This document is structured in a section (2) describing the various simulation steps, another
describing the file formats (3.1) and the standard reference files (3.2), and another with the
listing of the standard configuration files (4). Some examples of its usage are reported in section
5. Two appendices give user's and programmer's instructions.

Document EPIC-IFC-TN-006

| 2.1
IFCTR EPIC Date. Mon, 28 Aug 1995
Page 2-7

2 Stepsin EPOS

EPOS proceeds in a sequence of steps. Some steps are necessary only for a complete simulation,
which may be unnecessary for particular purposes, and therefore some steps can be bypassed,
approximated, or collectively merged into a single approximation.

A. Input data simulation

The first potential step is the production of a list of photons at the entrance of the telescope. The
parameters of a photon will be time T, energy E and two angular coordinates 8,@ (off-axis angles from the
telescope optical axis). One might want to consider separately the target, the sky background and the
particle background :

A.1 Target source simulation

For each target source (generally one, but could be more) one has to simulate at least the energy
spectrum OR the time behaviour (according to the purpose of the simulation). Typically one will assign all
photons to a single celestial position.

A.1.1 (point-like) source spectrum

There are three ways of simulating a source spectrum.

The original Nov 92 EPOS contained no modules doing this for celestial sources, but we relied on
files produced by the Observatory of Palermo (OAP, see reference [2]).

However Nov 92 EPOS included an utility program | i nef i el d, which can be used to produce a
list of photons diffused all over the field of view in a single monochromatic line (this is mainly useful for
testing and debugging). The syntax is :

Iinefield seed nphotons energy xlow xup yl ow yup

This creates a file | i ne. phot on with uniform random positions (in micron), constant energy
(keV), and null times. This file may then be renamed as wished.

Nov 93 EPOS is now able to produce a list of photons distributed according to any spectral
form described via an external program, using the random ze package (see reference [3]).
randomi ze has several variants, among which one allows to generate fresh files (with just photon
energy), one allows to write energies to an existing file, and one allows to precompute the number
of events without generating any file.

The spectral functions will include appropriate reference to the mirror nominal geometric area, held
in a reference file geometri c. ar ea.

For practical reasons it is recommended to proceed as follows :
> first compute the number of events for a given spectral form and exposure time
random ze function paraneters exposure el e2 COUNT

)y then use r andxy (see below B2.1) to generate a file with photon positions
> then use r andomni ze again to fill in the energies in the file created by r andxy

Stepsin EPOS

random ze function paraneters exposure el e2 ODXAS file
scal efactor seed

A.1.2 (point-like) source time behaviour

The original Nov 92 EPOS contained no official modules in EPOS doing this. The files
produced by OAP contain photons uniformly distributed in time. The modules present in EPICS to
perturbate/modulate the arrival times of such photons have not yet been converted to EPOS.

Nov 93 EPOS is now able to produce a list of photons distributed according to any time
modulation described via an external program, using the r andoni ze package (see ref. [3]).
Typically one will use r andomni ze to insert times in a pre-existing file (either a celestial point
source created by randxy and randomni ze spectral version, or a monochromatic source
created by | i nefi el d and r andxy) using :

randomi ze function paranmeters t1 t2 OLDXAS file scal efactor
seed

A.1.3 extended source shape

At the moment there are no official modules in EPOS simulating an extended source (either
realistic or purely geometric). Some work on this is being done at OAP.
The program randri ng allows to simulate a ring-like source (optionally including PSF
similarly to what described in B.2.1)

A.2 Sky simulation

A parallel step to the simulation of the target involves the simulation of the sky background.
The two components may be followed separately up to the moment of reading out the CCD (step D.2
below).

A.2.1 resolved component

Part of the sky background is due to a collection of remote and close point sources (for which at
least a spectrum shall be simulated, time behaviour can be assumed uniform).
We rely at the moment on a single background reference field provided by OAP (see ref. [2]).
However one must note that such file was produced for 1+2*(1/2) mirror modules, and not for a
single mirror module.

A.2.2 LogNLog$S
A.2.3 Field stars

On both topics see quoted reference [2] from OAP

A.2.4 diffuse background

The residual diffuse sky background could be generated and inserted in the same background
reference file containing the resolved component. At the moment we use the quoted file supplied by
OAP (reference [2] from OAP)

A.3 Cosmic ray background

In parallel with the generation of the target and sky photons one shall also produce a list of particle
events. At the moment this occurs contextually with the simulation of CCD interaction (step D3).
There is no "FOV" level particle file.

Document EPIC-IFC-TN-006

| 2.1
IFCTR EPIC Date. Mon, 28 Aug 1995
Page 2-9

B. XMM Optics simulation

This process will be applied to target, sky and diffuse bkg files (but not to the particle file) and will
convert 6, into x',y' (linear measure over the focal plane, e.g. mm or pUm) leaving the other information
(E,T) unchanged. Additionally it might take into account the optics transmission (and reject a percentage
of events).

In principle this process can be implemented in an exact or approximate way:

B.1 Full simulation (ray-tracing)

The full simulation will need a ray tracing. The ray tracing program which used to run on the IBM
mainframe has currently not been incorporated into EPOS.

B.2 Approximate simulation

The approximate simulation will require a PSF and an optics transmission (they could be
applied separately and in any sequence).

Nov 92 EPOS had no modules doing this. Application of a (constant) PSF is already done by OAP
when creating the target and sky files (see reference [2]).

However Nov 93 EPOS is now able to perform the two steps of the approximate simulation
via two separate commands, the first of which is:

B.2.1 PSF simulation

randxy file nevents sigma seed identifier
randxy file sigm seed

which either create a new file with the wished number of events, corresponding to a gaussian point
source of given Si gna (use value in arcseconds) located in the centre, or will insert random
positions (distributed according to a gaussian of given Si gna) into an existing file (this is the case
of files produced by linefield ; use values in micron). A radially symmetric gaussian is used. The file
must not exist in order to use the first form above.

B.2.2 Optics transmission

The second step, to be applied collectively to all cases, is to reject some photons according to
the optics transmission. This is handled using the fi | t er command described below in C.2 (and
the reference file m rror.transm ssi on).

B.3 Converting files from OAP

In EPOS Nov 92 processing starts reading an . oap ASCII file coming from OAP and converting
it into a XAS format . phot on file. At the same time angular coordinates are converted from OAP units
into 6, (in milliarcsec with origin at the centre of FOV), and all events lying outside the FOV radius are
rejected. The syntax is :

oapxas filenanme fovradius identifier

Stepsin EPOS

B.4 Converting to focal plane positions

Since oapxas can handle OAP files both before and after the optics, it generates photon
files with angular coordinates. For analogy r andxy usually creates files in angular coordinates
(however there are cases in which microns are used directly). To convert (in_place) the
coordinates in the created photon files from (milli)arcsec to microns in the focal plane (origin at
centre of FOV) assuming a focal length, one uses :

focal pl ane fil enanme focall ength

C. EPIC filter and dead layer simulation

This needs to be applied to the output of all previous processes and will simply reject events
according to a chosen filter transmission. Any dead layer in the CCD itself need to be handled at this
level.

C.1 tabulate filter transmission

The fi | _tra program (originally part of EPICS and acting on . epi ¢ photon files) has been
only slightly modified to provide instead a tabulation of the chosen filter transmission. This program
runs on the Vax only (since NAG dependencies implied by the spline interpolation are not removed)
using the old EPICS arrangements (parameter files, see reference [1]).

The produced ASCII file f i | t er nane. t ransm ssi on is in STREAM LF format, so that it could
be accessed via NFS from Unix. This file is now in "XAS ASCII" format (includes self-documenting

file header for IDL usage). In all cases it shall be installed (or soft-linked) in the directory
$XASTOP/ cal i b/ xnm epi c.

C.2 apply filter transmission

The module which performs rejection of photons due to a chosen filter can instead be run on any
system, and produces a new photon file containing the transmitted events only. Its syntax is :

filter infile outfile filtername seed

If filternane is just a file name without path, the program will look for it in the place
pointed by global variable MYCALDI R (if set) or by default in $XASTOP/ cal i b/ xmm epi c1
(for MOS) or epi c3 (for MAXI); otherwise a "customized" filter transmission file can be
specified by giving the full path to it. The default file type is . t ransm ssi on. The file must
be in XAS ASCII format (use the xasasc csh script to convert files imported from elsewhere).
The mirror and dead layer transmission are handled identically to filters.

Document EPIC-IFC-TN-006

| 2.1
IFCTR EPIC Date. Mon, 28 Aug 1995
Page 2-11

D. Chip-level interactions

Interaction of the photon or particle in the silicon constituting the CCD chips shall be simulated
separately for each chip in the focal plane, rejecting preventively all events falling outside the individual
chip.

D.1 Converting to chip positions

This module converts micron positions x',y' on the focal plane into pixel positions X,y on a chip of
given pixel size and given position (indicated by the location of the chip centre in the focal plane in
micron), additionally rejecting all events below a low energy threshold. A set of standard command files
shall be created to correspond to the main position of the baseline focal plane arrangement (+ a central
position for convenience). The syntax is :

chipsize infile outfile pixsize nx ny xc yc identifier |owenergy

Note that normally one sets a command file (see section 4 for a list of the standard ones) and just does
chipsize infile outfile

In the Nov 93 version pixsize may be an array of two values (to allow for MOS store sections with
rectangular pixels), i.e. the x and y size. If one only is supplied the pixel is assumed square, for
consistency with previous versions.

D.2 CCD interaction simulation for X-rays

The program ccd_det uses the original code by C.Pigot and P.Sarra used by EPICS, but reads
and writes files according to EPOS conventions. The chip pixel size and dimensions are retrieved from the
input file. ccd_det will convert E into charge (keeping the same time sequence) simulating the X-ray
interaction within the CCD, inclusive of splitting (which may generate additional events around the
original x,y). A set of standard command files shall be created with the physical parameters of the EEV,
Thomson and MAXI chips. The syntax is :

ccd det infile outfile seed epair fano side depleted fieldfree
substrate di ffusion reflectivity impurity tenperature
splitsize

Note that normally one sets a command file (see section 4 for a list of the standard ones) and just does
ccd det infile outfile

Dark current is not included in the simulation.
D.3 CCD interaction simulation for particles
The program cos_r ay was adpated by P.Sarra from original code by C.Pigot and writes chip-
level files according to EPOS conventions. It offers the choice of three levels of solar activity, and
simulates the interaction of protons and alpha particles. The full syntax is :
cos_ray outfile seed exptinme sunactiv epair fano depleted fieldfree
substrate di f fusion reflectivity impurity tenperature

pi xsi ze nx ny splitsize

The syntax is very similar to the one of ccd_det, but since there is no preliminary FOV file, one must

Stepsin EPOS

specify the pixel size and the number of pixels in the chip. The geometric location in the focal plane
does not matter (as the current model does not take into account shielding by spacecraft structures).
To ensure compatibility with steps D1 and D2, one should prepare a software-assisted command file
(see section 4 for a list of the standard ones). This is done using the following command prior to
cos_ray:

precosmi c ccdfile chipfile newfile
where ccdf i | e is a command file for ccd_det , and chi pfi | e is a command file for chi psi ze,
while newf i | e is the command file created for cos_r ay. There is a default naming convention, to
look for chi pfi | e corresponding to chip 1 of the same name of ccdf i | e, and to append _cosmi ¢
to ccdfil e for the name of newfil e (e.g. if ccdfil e=eev, default chi pfil e will be
eev_chi pl and resulting newf i | e eev_cosni c).
This way afterwards one just does cos_ray outfile seed exptine sunactiv
Now cos_r ay and pr ecosni ¢ have been arranged to handle also non-square pixels (for the

MOS store section), but the image and store section must be handled separately and merged later
(see description in section 5).

E. Splitting, pile-up assessment, statistics et al.

The output of CCD detection steps for photons and cosmic rays shall be merged at least before
entering the readout modules. This may take place within the readout simulation process, or for
statistical purposes.

E.1 Splitting statistics

The spl i t st at module computes some simple statistics on the result of ccd_det . One may
apply a charge threshold to ignore all (split and unsplit) events below such threshold. The syntax is :

splitstat filename | ow hreshol d

E.2 Charge vs E relation

The char gevse module allows to plot the charge vs energy relation. The analysis can be
limited to a class of events. This module needs both photon files with energies and charges (i.e. the
input and output to ccd_det) and produces a third file in output. This file just contains energy and
charge for each photon in the class, and is not used for anything else but plotting. The syntax is :

chargevse ccddetfile chipfile class | owthreshold outfile
Such file can be plotted in IDL as follows :

IDL> char gevse, 'outfil e. photon', ener gy, charge
IDL> pl ot , ener gy, char ge, psyn¥n

The cl asses are 1 for unsplit events, 2 for central pixel of split events, 3 for reconstruction of split
events, 4 for 142 and 5 for 1+3.

E.3 Pattern recognition

A statistics of pattern types could be introduced easily in splitstat, but it is felt
unnecessary, and is deferred to the controller simulation.

Document EPIC-IFC-TN-006

| 2.1
IFCTR EPIC Date. Mon, 28 Aug 1995
Page 2-13

E.4 Pile-up analysis

The EPICS pile-up analysis programs have not been currently incorporated in EPOS, since it is felt
preferrable to incorporate pile-up analysis in the "dumb" readout simulation.

E.5 Scaler utility

The scal er utility shall be actually used before invoking ccd_det or chi psi ze (preferably
on a focal plane file) to scale the intensity of the flux by a given factor. Scaling is performed by stretching
or squeezing the photon arrival times, and is reversible (i.e. if you scale by a factor f, and then by a factor
1/ f you obtain the original file), since it occurs in place and the necessary information is written to the
file header. The syntax is :

scaler filenane factor

This is typically done on a target reference file. Beware that after the scaling the file will cover a shorter
or longer time interval, and this typically will be not compatible with the background file. Analysis should
be somehow limited to the overlap interval.

Also, since the time is kept as 32-bit number of microseconds, if the stretching will cause overflow,

the file will be truncated.

E.6 Shifting (relocating) utility

The r el ocat e utility shall be used before invoking chi psi ze to shift all photon positions in x
and y by a known amount (This is typically done on a target reference file). The shift is reversible (i.e. if
you shift by Ax,Ay, and then by -Ax,-Ay you obtain the original file), since it occurs in place and the
necessary information is written to the file header. The syntax is :

relocate fil enane deltax deltay

E.7 Merger utility

The mer ger utility is intended to merge three time-sorted photon files into one, copying photons
in time order, and flagging them with a pointer to the original file. This program is intended to merge sky
background, target and particle background files after CCD detection and prior to readout. It is called as :

merger filel file2 file3 outfile FLAG NOFLAG

The FLAG option is currently implemented as follows : the flag information is added to the split-flag : for
the first file no addition occurs, for the second file one adds +100, and for the third file +200. Subsequent
readout programs rely on the fact that the first file is background, the second one is target and the third is
cosmic rays. If any of such files is missing use the keyword NULL (all capital) as a placeholder to preserve
correct flagging.

Stepsin EPOS

F. Readout simulation

There will be a set of processes : at least one for each mode. They will produce a list of x,y,E'
(digitized charge) in one or more frames, simulating the output of the readout process to be passed to
ECEs.

It is currently planned to have at least two readout simulation processes for each mode : a smart one
and a dumb one.

F.1 Smart readout

Smart readout modules will be based on the conversion of corresponding EPICS modules (not
top priority). A smart readout operates on the individual photons and tries to minimize the computing
overheads.

F.2 Dumb readout

Dumb readout modules will simulate the readout in a complete way, i.e. put the photon into a 2-
d array, and shift it during readout. Shifting could actually be done virtually via a set of indirection
pointers. It is easier to analyse pile-up concurrently with readout in dumb mode, as well as to
implement CTE effects (this could be incorporated in a second time).

There will be a separate program for each mode, in general with a similar calling syntax (it is intended
to provide standard command files - see section 4 - with typical parameters).

ff_dumb Full frame, MOS & pn

fs_dunb Frame store, MOS (shielded) (a)
rfs_dunb Refreshed frame store, MOS (shielded)
w_dunb Window, pn and also MOS (generic)
wfs_dunb Window, MOS frame store chips

fw _dunb New Timing (Fast window), MOS
w2_dunb Multi-chip window, pn, low priority (b)
tm dunb Old Timing, MOS (c)

t p_dunb Timing, pn

b_dunb Burst, pn

(a) : this program shall no longer be used. One should use Wf s_dunb instead, using a window
covering the entire 60000600 pixel area. On Unix f s_dunb is a front-end script which asks the
user which program he really wants to use. The executable of fs_dunb is called
fs _dunmb_ REAL.

(b) not implemented yet

(c) should not be used any more

Note that the syntax is not identical since some modes may have additional parameters (e.g. window
position), and in some modes the choice of integration time is not free. However the typical syntax will
be like :

x_dunmb infile outfile nframes ticl [tic2] [nodes] [..]
int_tine

where it should be possible to confine the readout to a limited number of frames. The two tics
generally correspond to the time to shift one pixel with sampling and without sampling, but the exact
application within each program may vary.

Document EPIC-IFC-TN-006

| 2.1
IFCTR EPIC Date. Mon, 28 Aug 1995
Page 2-15

F.3 Visual readout simulation

If time allows, the dumb readout could be complemented by a visual interface, which displays the
image being accumulated (and being shifted !) in an X-windows window. Of course this has a very low
priority, since it is essentially of cosmetic nature.

G. Controller simulation

This will operate on the output of the readout step to produce the data to be passed to EDHU. Its
main purpose is to simulate the pattern recognition and therefore to generate the "format Al1" used by
FF,FS and W modes for MOS, etc. etc.

If the particle background files includes also "horizontal tracks" this process shall reject them. However it
could be simpler to bypass this at all, and use particle bkg files already without such events.

In Nov 92 EPOS this stage was not implemented pending the numerous uncertainties on the operation of
the controller. The module could be replaced by a simple statistics summary, called :

pilestat filenane |owthr hithr

which produces a statistics of unpiled and piled events, sorted by origin (target, background or cosmic)
and by type of pileup (see 3.1 7 below). Optionally it could limit the statistics to a range of charges
between | owt hr and hi t hr . After this one could assume a "black box" operation of the controller, with
a given rejection percentage for cosmic rays, and/or a given efficiency in reconstructing split events.

G.1. Generic controller

A generic simulation of "ideal" event processing is provided for reference. This handles so
far the output of imaging modes and is called as :

exce infile outfile lowhr hithr

and acts as follows : (a) all cosmic rays, unpiled or piled with other cosmic rays, are rejected; (b)
cosmic rays piled with X-rays (and those with flag=99) are kept in further processing; (c) events
below | owt hr are rejected; (d) X-ray unsplit and unpiled events are output unchanged; (e) unpiled
split events are reconstructed using flag information and output at the end of each frame, unless they
are above hi t hr; (f) all remaining "complex" events, including all those flagged as piled are stored
in a frame and processed at the end for a tentative reconstruction, and output, unless they are above
hi t hr.

This program was just an attempt and is likely to be of little or no use.

G.2. MOS EDU simulation

G.2.1. Compilation of pattern libraries

The EDU makes use of pattern libraries. A pattern library may be created very simply with an editor
inafile | i brarynane. patternl i b. This library needs then to be compiled in a more compact
form used by the EDU simulation programs by means of the command

Stepsin EPOS

compattern |ibraryname

which creates a file | i br arynamne. patlib.
The format of both types of files is described below in section 4.6.

G.2.2. Imaging mode

This program simulates the basic mode of the EMCE EDU, and some additional function of the
EMDH for what concerns cosmic ray rejection.

ence_i infile outfile lowhr hithr patlib edhsim

where | owt hr is the charge lower threshold (use 25 ¢7) and pat | i b is the name of a compiled
pattern library. These parameters are used by the EDU simulation, which determines whether a
pixel is highest in the 3x3 matrix, if it is one of the known patterns, if the event is isolated (i.e.
the pattern guard region is empty) and computes the 4 basic charges (central, pattern, residual
3x3, residual 5x5).

As an additional simulation of the EMDH, two sums of the basic charges are always produced
(best reconstructed energy of photon, total residual energy).

If the flag edhsi m is YES, in addition a check that the photon reconstructed energy is below

the high threshold hi t hr (use 2750 e7) is done (this is an optional simulation of an EMDH
task) to improve the cosmic ray rejection.

The following effects are ignored or not relevant to the EDU simulation : Gatti number and
offset correction, "management of the two sides" across "node borders", bias correction, gain
inequality between readout nodes; also coordinates are chip coordinates and not node
coordinates.

G.2.3. Timing mode(s)

This program simulates the combination of the timing mode of the EMCE EDU, and of the
EMDH (mandatorily for split event reconstruction, optionally for what concerns cosmic ray
rejection).

ence t infile outfile lowhr hithr edhsim

where | owt hr is the charge lower threshold (use 25 ¢7), used by the EDU simulation. The
default EMDH simulation determines whether a pixel is highest in the 3x1 matrix, if it is one of
the four hardoced patterns (single event, double-right, double-left, triple), if the event is isolated
(i.e. the pattern guard region is empty) and computes the 4 basic charges (central, pattern,
residual 3x1, residual 5x1) for analogy with imaging EDU.

As an additional simulation of the EMDH, two sums of the basic charges are always produced
(best reconstructed energy of photon, total residual energy).

If the flag edhsi m is YES, in addition a check that the photon reconstructed energy is below

the high threshold hi t hr (use 2750 e°) is done (this is an optional simulation of an EMDH
task) to improve the cosmic ray rejection.

The following effects are ignored or not relevant to the EDU simulation : Gatti number and
offset correction,; also X-coordinates are chip coordinates and not node coordinates (Y-
coordinates are time and not spatial).

Document EPIC-IFC-TN-006

| 2.1
IFCTR EPIC Date. Mon, 28 Aug 1995
Page 2-17

G.3 pn Event Analyser simulation

G.3.1 Imaging (full frame) mode

This program has to be used after the FF mode (and in the future also after the LW mode). It
performs cosmic ray rejection as follows: three entire rows around any event with a charge equal or
greater to maxt hr are totally rejected.

epce_i infile outfile | owthr hithr maxthr
In practice maxt hr is fixed to 6793 electrons (i.e. ADC=4096, i.e. 25 keV, that is full scale

overflow). In additions events outside the "usual" | owt hr - hi t hr range (25-2750 electrons) are
also rejected.

G.3.2 Imaging (window) mode

This program has to be used after theW mode. It performs cosmic ray rejection as follows: any
entire frame containing an event with a charge equal or greater to maxt hr is totally rejected.

epce_ winfile outfile | owthr hithr nmaxthr

The meaning and values of the various thresholds is the same as for epce_i (G.3.1).

G.3.3 Generic mode

This program is used in all other modes (T,B) and corresponds to a generic Event Analyser working
mode in which just a plain thresholding between the "usual" values is applied.

epce x infile outfile lowhr hithr

G.3.4 Split event reconstruction (imaging)

Since the above Event Analyser simulations do not perform any reconstruction of split events, and
since a simulation of such reconstruction is needed for the assessment of the limiting rates
(irrespective whether this is done on board or on the ground), in absence of better information this is
simulated by the following program (which is applicable to all modes producing an imaging output,
i.e. FF, W and B).

ground_pi infile outfile lowhr hithr patlib edhsim
which uses the same algorithm of ente_i (note however that edhsi mshould be fixed to N, since

cosmic ray rjection and effective thresholding have already been done in the EPCE stage.
Provisionally the same pattern libraries used for the EMCE are used, but tuning might be required.

G.3.5 Split event reconstruction (1-d)

Similarly to the above one has to treat the 1-d case (T mode) in which spatial information is limited
to one dimension. This is done by the following program, which uses the same algorithm of emce_t.

ground _pt infile outfile lowthr hithr edhsim

Stepsin EPOS

H. EDH packing assessment

This will operate on the output of the controller step and will measure the bit rates. It shall not
attempt to generate simulated packets at this stage.

In a first instance one could do simple arithmetics on the results of the pi | est at program, or
work elsewhere (e.g. Excel) on counters provided in the file headers.

A few undocumented programs exist and have been used in the assessment for the assignment of
some functions to EMCR, EMDH, EPEA and EPDH. These include :

ndc a simulation of the Non Destructive data Compression (MOS)

r ancut a simulation of random data selection (for MOS)

under sanpl e a simulation of event undersampling (pn)

fixtinme computes the best estimate of event time for the modes which allow it

it is required if one wants to derive light curves to be Fourier-analysed

The former two have been used in the simulations described in my memo of 8 Sep 94 ("EMDH
related questions").

The latter two have been used in the simulations described in my memo of 1 Jun 95 ("pn
undersampling simulations").

Document EPIC-IFC-TN-006

| 2
IFCTR EPIC pate. Fri, 29 Apr 1994
Page 3-19

3 Types of files

3.1 File formats

All photon files used by EPOS are XAS photon files. They are tabular files (closely resemblant FITS
binary table files) with a number of columns. Each column n is identified by a format (TFORVN, in FITS
binary table format), a name (TTYPEN), units (TUNI Tn) and a minimum and maximum (TM Nn and
TMAXn, the latter provided for convenience, e.g. during image accumulation). Information about the
columns can be obtained inspecting the file header. All columns used by EPOS are either 1J
(I NTEGER* 4) or 11 (I NTEGER* 2), but flag columns may be 1B (byte). A nameless column of type 1B,
2B or 3B can be added for padding, but is not used by the software.

The header of each file tries to keep track of all processing done on the file, therefore after the basic
keywords one has a set of COMVENTS, of additional keywords recording parameters of the program (chip
characteristics etc., or counters of rejected or accepted events), concluded by an HI STORY keyword with
the run string used to generate the file. Each further program may add a new set of COMVENTS, other
keywords and HI STORY at the end (as well as modify some of the previous keywords).

3.1.1 Sky files

These are the files produced by the sky simulation or by oapxas, or by r andxy in "new file"
mode. See 3.2 for standard reference files.

Column TTYPE TUNIT

1 TI VE M CROS

2 THETA M LLI ARCSEC
3 PHI M LLI ARCSEC
4 ENERGY EV

3.1.2 Focal plane files

These are the same files above files modified (in place !) by focal pl ane or generated by
l'inefield.

Column TTYPE TUNIT
1 TI VE M CRCS
2 X M CRON
3 Y M CRON
4 ENERGY EV

Types of files

3.1.3 Chip files

These are the files created by chi psi ze. An useful convention is to give to them the same filename
of the focal plane file, followed optionally by a chip designator, followed by an _C (e.g
bkg eevl c. photon).

Column TTYPE TUNIT

1 TI VE M CRCS
2 XPOSI TN Pl XEL
3 YPCSI TN Pl XEL
4 ENERGY EV

3.1.4 Post-detection files

These are the files created by ccd_det and cos_r ay. An useful convention is to give to them the
same filename of the chip file, replacing _c by _d (e.g bkg_eevl d. phot on).

Column TTYPE TUNIT

1 TI ME M CROS

2 XPOSI TN Pl XEL

3 YPOSI TN Pl XEL

4 CHARGE ELECTRONS

5 FLAG 1 EVENT NUMBER (*)
6 FLAG 2 SPLI T_FLAG (*)

(*) FLAG _1 is the index of the original photon in the chip file, or the cosmic particle number.

(*) FLAG_2 is O for unsplit events, 1 for the central pixel of split events, 2 elsewhere
for cosmic ray files only values 0 and 2 are used
the mer ger program will modify this flag, adding +100 or +200 for target and cosmic files
therefore the values of the flag in a merged file are 0,1,2 for background photons, 100,101,102 for
target photons and 200,202 for cosmic rays.

3.1.5 Charge vs E files

These are the files created by char gevse (these files have limited header information and are
used as an intermediate file for plotting or generating spectra).

Column TTYPE TUNIT
1 ENERGY EV
2 CHARGE ELECTRONS

Document EPIC-IFC-TN-006

| 2
IFCTR EPIC pate. Fri, 29 Apr 1994
Page 3-21

3.1.6 Post-readout files

These are the files created by xX_dunb. An useful convention is to give to them the same filename of the
ccd_det file, replacing ~d by _r eventually with an optional mode designation (e.g
bkg eevl rff.photon).

Column TTYPE TUNIT

1 TI ME M CROSEC

2 XPCs| TN PI XEL

3 YPCSI TN Pl XEL

4 CHARGE ELECTRONS

5 FLAG 1 EVENT NUMBER (*)
6 (+) FLAG_ARRAY m xed fl ags

(*) FLAG _1 is the index of the original photon in the chip file. For piled events it refers to the
first photon falling in the given pixel

(+) FLAG_ARRAY is a 3-byte field: FLAG_ARRAY(1) is the split flag taken from ccd_det
or mer ger (for piled events it refers to the first photon falling in the given pixel),
FLAG_ARRAY(2) is the pileup flag, and FLAG_ARRAY(3) is the smear flag.
The readout programs used to set the pileup flag adding a +1 for each pileup on the chip, and +10 for
each pileup which occurs in the output register (for modes which integrate there). This is no longer
true.
The readout programs now reset the pileup flag in an attempt to classify it. This way no counts of
individual pileups is provided in the file, nor there is a distinction between on-chip pileups and register
pileups. They are only counted at program level, and their total numbers are recorded in the file header.
The following table gives the values of the pileup flag according to the origin of piled events (using the
"merged" split flag). The classification is done only if two events pile; if more than two events pile, the
flag is set to 99 or "complicated pileup".

Incoming event flag ("split") flag R S FE L
0 1 2

0 : unsplit background event A A A e e 1

: central background event (split) O O e] R I
2 : residual background event (split) A N e
100 : unsplit target event o onl2 ! ! 2 :
101 : central target event S EE ! ! 2 f
102 :residual target event toogtotoe z z 8 2
200 (or greater) : cosmic ray 4 44 12z 12 b2 2 ;

o
©
©
©
©
©
©
©
©
©
©
©
©
©
©

any other combination (more than 2events)

This way the pileflag < 9 indicates a true pileup between source photons which are too close either in
space or in time; <19 indicates a coincidence of a source photon with a background photon ; <29 a
cosmic ray affecting a source photon ; <39 a pileup between background photons (should be rare
indeed); <49 a cosmic ray affecting a background photon and 51 a coincidence of two cosmic ray
events. 99 indicates "any other case", typically with more than two events.

Types of files

3.1.7 Post-controller files

3.1.7.1 Simplified format

These are the files created by exce. An useful convention is to give to them the same filename
of the post-r eadout file, replacing _r by _e eventually with an optional mode designation.
They have the same format as the post-readout files, but of course contain reconstructed photons,
instead of events, and the FLAG _ARRAY is changed: the pileup flag FLAG ARRAY(2) is
redefined to assume one of the following values :

0 for unsplit unpiled events
1 for split reconstructed events
m=10+n for complex events (usually resulting from pileup), where n is the

number of events being combined into one.

FLAG_ARRAY(1) is the split flag, and FLAG_ARRAY(3) is the smear flag, and are passed
unchanged if the pileup flag is O or 1, while they are undefined (and assume the value 255) in the
case of complex events.

3.1.7.2 Post-rejection pn format

The output of epce_i , epce_wand epce_x have the same format as the input files (since the
programs simply reject presume cosmic ray events), i.e. as described in 3.1.6.

3.1.7.3 Full MOS format

These are the files created by ence_i and ente_t . An useful convention is to give to them
the same filename of the post-r eadout file, replacing _r by _e eventually with an optional
mode designation. They have a format similar to the post-readout files, with the same 6 columns,
but with a different dimension:

CHARGE is now an array of 6 values :

CHARGE[1] (=CHARGE[3] +CHARGE[4]) is the event reconstructed charge
CHARGE[2] (=CHARGE[5] +CHARGE][6]) is the "residual" charge

CHARGE[3] is the charge in the central pixel

CHARGE[4] is the sum of charges above threshold in 3x3 matrix (pattern charge)
CHARGE[5] is the sum of charges below threshold in 3x3 matrix

CHARGE][6] is the residual charge in 5x5 matrix

The last four values correspond to the output of the EMCE, while the former two sums
correspond to the result of elaboration within EMDH.

FLAG_ARRAY is now an array of 4 values, where the new element FLAG_ARRAY[4] is
the pattern number (1-32 as numbered in the pattern library).

3.1.7.4 Post-reconstruction pn format

These are the files created by gr ound_pi , and gr ound_pt . Since these programs use the
same algorithm as the MOS controller simulation, the format of the files is the same as described
in 3.1.7.4 (i.e. 6-element CHARGE and 4-clement FLAG_ARRAY).

Document EPIC-IFC-TN-006

| 2
IFCTR EPIC pate. Fri, 29 Apr 1994
Page 3-23

3.2 Reference files

The original . oap files are kept in Unix compressed format (. oap. Z) in the directory /
posei don/ | uci o/ epi ¢/ pal er mo. The reference . phot on files mentioned below are focal plane
files unless otherwise stated. They can be generated and installed as wished on each machine.

3.2.1 Target source file

There can be more than one of such files. I have received from OAP two standard files, one for a
soft (coronal) source, one for a hard (Crab-like) source and perhaps one for a diffuse source will be added.
Since the above files were generated with the wrong effective area, I have now generated locally a
new reference file for a 1/100th of a Crab as described in section 5.

The intensity of the file could be changed back and forth in a reversible way modifying the arrival times
with the scal er program. It is also necessary to shift the target off-centre with the r el ocat e program.
The following shifts (in micron) shall be applied for the different cases :

CCD type Ax Ay
EEV new focal arrang. 0 0
MAXI usual modes 3600 2000
MAXI burst mode 3600 28000

The new reference file is called crab_after_mirror in /poseidon/l uci o/ epic/
dat a/ cr ab.

In addition files generated by | i nefi el d (with a monochromatic line uniformly illuminating the whole
FOV) are kept in files | i nexx under dat a/ | i nes.

3.2.2 Sky file

There is a single reference sky file from OAP, incorporating QSOs, field stars and diffuse
background files. Such files are also available separately and have been merged with a prototype of the
mer ger program (the operation was done ad hoc since not all input files were sorted in time).

The standard reference file is called background, and is a merger of gso, fiel dstars and
di f f use (the latter files are in angular coordinates, but the merged file is a focal plane file). They are

kept in dat a/ bkg.

These files are to be considered obsolete (they refer to a wrong optics area, hence could be used as
worst case overestimating the background)

3.2.3 Particle background file
There is no FOV level particle file. cos_r ay will produce files at post-detection chip level.
However since the location of the chip on the FOV has no effect on cosmic rays, it will be enough to
create a file for each chip size, e.g. cosm c_eev_d, cosm c_t honmson_d and cosm c_maxi _d
(under dat a/ cosm ¢).

The standard reference files will be created with a solar activity of 2 (intermediate).

Types of files

In the case of MOS imaging mode, the reference file cosmi ¢c_eev_d is a merger of two files
cosmi c_eev_Aand cosni c_eev_B (as described in section 5). For the timing mode (FW) use file
cosm c_eev_Aa (600001200 pixel, image section as cOSImi C_eev_A, store section empty).

3.2.4 Derived files

There will be a set of chip files derived from each of the above target and background files for
each of the standard chip configurations described below in section 4. These files will be named adding
a suffix made of device (eev, th or maxi), nunber (1, 2 or 3) and _C : e.g.
background_eev1_c. This makes a max of 3 files for EEV, 2 for Thomson and 3 for MAXI.

For each chip file there will be a corresponding detection file, using suffix _d instead of _c.

The policy and naming convention for pre-readout file merging is yet TBD.

For each detection file there will be a corresponding readout file for each applicable mode with suffix
_rnode, e.g. _r or _rff for full frame, rfs for frame store, _rrfs for refreshed frame store,
etc. Note that not all modes are applicable to all chip configurations (e.g. frame store is applicable to
EEV chip configuration 1 but not to 2 or 3).

Document EPIC-IFC-TN-006

| 2
IFCTR EPIC pate. Fri, 29 Apr 1994
Page 4-25

4 Tables of standard configurations

This section reports the standard command files used to define standard chip layouts or
characteristics, and other (e.g. optics) characteristics files. The command files reported below shall be self-
explanatory. In general a command file contains the replies to the questions prompted by a program (one
reply with more than one value stays all on one line). It is optional to follow a reply with an exclamation
mark and a comment (ignored by the program). An exclamation mark in column one means the command

file will unconditionally prompt to the terminal.

The standard command files described below reside in directory /posei don/ | ucio
epi ¢/ par anet er.

The "calibration" reference files reside instead in $XASTOP/ cal i b/ xmm epi c1 or epi c3
(whenever they are equal for MOS and MAXI, a link is made to a single version).

4.1 Mirror characteristics

4.1.1 Focal length

A focal length of 7500 mm is currently used as argument to the f ocal pl ane command
(and is assumed via a PARAVETER in r andxy when converting arcsec to micron).

4.1.2 Geometric area

A calibration" reference file containing a nominal mirror geometric area is
geonetri c. ar ea. The value there is arbitrary and currently set to 3000 cm?.

4.1.3 Mirror transmission

A calibration" reference file with the on-axis mirror transmission is
mrror.transm ssi on. This file is generated dividing an effective area file mi rror. ar ea
by the content of geometri c.area. This separation occurs only for convenience of the
random ze program (which hooks to a geometric area), so that one can use spectral

normalizations in photons/cmz/s/keV.

The i rror. ar ea file is a copy of a column in a set of files (containing also the effective area for
other off-axis angles) supplied by B.Aschenbach to C.Erd of SSD, which are available separately.

4.1.4 Point Spread Function

Only the on-axis PSF is currently used, assuming a radially symmetric gaussian with known
sigma. The following reference parameter files contain the sigma in arcsec or microns (as used by
r andxy in "new file" or "old file" mode).

file newpsf . command

! output file (created by RANDXY)
10000

number of events
12.72 PSF sigmas in arcsec
923456781 random integer (large integer)

Simulated_point_source object description

Standard configurations

file ol dpsf . conmand

! ! output file (created by RANDXY)
462.512 ! PSF sigmas in micron
923456781 ! random integer (large integer)

4.2 Filter configurations

Filter configurations are not described by command files, but by ASCII tables with the filter
transmission versus energy (located in $XASTOP/ cal i b/ xnmi epi c1 or epi c3). At the moment
there are no filter transmission tables, pending the definition of the filters.

Similar transmission files shall also be present for the silicon (or silicon dioxide) dead layer, taking
into account also any geometric partial covering factor. At the moment there are no such files awaiting

definition of an equivalent thickness (kg/mz) of material by CCD groups.

Document EPIC-IFC-TN-006
Issue 2

IFCTR E P | C Date Fri, 29 Apr 1994
Page 4-27

4.3 Chip configurations

4.3.1 Real configurations

These configuration files correspond to representative positions in the focal plane arrangement. In
general the number of configurations is kept small taking advantage of symmetries. It is however relevant
to be able to handle separately the outer chips which may fall only partially within the field of view. See

enclosed figures.

4.3.1.1 EEV

The new reference files refer to the latest 7-chip 2-tier focal plane arrangement. A maximal inter-chip gap
of 400 pm has been used (but for chip 2 and 1 since they are on different levels, for which a zero-gap has

been used).

file eev_chi pla describes the image section of the EEV central chip.

file eev_chi plb describes the store section of the EEV central chip (this file explicitly specifies
different x and y pixel sizes). However it does not describe the true store section on the right hand

side, but a dummy one located on top of chip 1.

eev_chipla
! ! input file (full FOV in mm)
! ! output file (chip in pixel)
40 ! pixel size (micron)
600 600 ! chip size (pixels x and y)
00 ! chip centre location in micron (central chip)
MOS_EEV_central_ image_sect A ! identifier
0.1 ! low energy cutoff
eev_chiplb

! input file (full FOV in mm)
output file (chip in pixel)

!

! !
40 12 ! pixel size (micron)

!

600 600 chip size (pixels x and y)

0 15600 ! chip centre location in micron (central chip)
MOS_EEV_central store sect B ! identifier (this is a dummy sect B on TOP of sect A)
0.1 I low energy cutoff

4.3.1.2 Thomson

This section has been removed.

4.3.1.3 MAXI

maxi _chi pl
! ! input file (full FOV in mm)
! ! output file (chip in pixel)
150 ! pixel size (micron)
64 200 ! chip size (pixels x and y)
4800 15000 ! chip centre location in micron (centre-top)
MAXI centre_top ! identifier (Y=-15000 for centre-bottom)
0.1 ! low energy cutoff

Standard configurations

maxi _chi p2

1

!

150

64 200

14400 15000

MAXI middle right top
0.1

input file (full FOV in mm)

output file (chip in pixel)

pixel size (micron)

chip size (pixels x and y)

chip centre location in micron (middleright-top)
identifier (Y=-15000 for middleright-bottom)
low energy cutoff

maxi _chi p3
! ! input file (full FOV in mm)

! ! output file (chip in pixel)

150 ! pixel size (micron)

64 200 ! chip size (pixels x and y)

24000 15000 ! chip centre location in micron (outer right-top)

MAXI outer right top ! identifier (Y=-15000 for outer right-bottom)

0.1 ! low energy cutoff

files maxi _chi p1, maxi _chi p2 and maxi _chi p3 describe the three chips in the first quadrant,
from the one close to the centre, to the intermediate one, to the outer one. The remaining 9 chips can be
obtained by symmetry. Perfect butting (no gaps) is assumed.

4.3.2 Auxiliary configurations

The files called eev_centre, thomson_centre and nmaxi _centre correspond to a chip
centered in the field of view. This has no correspondence in the focal plane arrangement, but could be
useful in tests in which the target is located in the origin.

4.4 Chip physical characteristics configurations

4.4.1 EEV

file eev

is now a link to eev_bul k ; a variant eev_epi t axi al is provided; both

according to conversation with A.Holland Jan 94.

!
!
923456781

input file (from CHIPSIZE)
output file

1
!
! random integer (large integer)
.00368 ! energy (keV) per hole/el. pair
.115 ! silicon Fano factor
front ! CCD illuminated side (back or front)
70 ! depletion depth (microns)
30 ! field free depth (microns)
0 bulk 30 epi ! substrate depth (microns)
10. ! substrate diffusion lenght (microns)
0. bulk 1 epi ! reflectivity of the field free boundary
2.0E12 ! impurity concentration (cm-3)
173. ! CCD temperature (®K)
2 ! 2 half side of the square (pixels)analyzed

for charge splitting

IFCTR

Document

EPIC e

Page

EPIC-IFC-TN-006
2

Fri, 29 Apr 1994
4-29

4.4.2 Thomson

This section has been removed.

4.4.3 MAXI
file maxi
! ! input file (from CHIPSIZE)
! ! output file
923456781 ! random integer (large integer)
.00368 ! energy (keV) per hole/el. pair
.115 ! silicon Fano factor
back ! CCD illuminated side (back or front)
270. ! depletion depth (microns)
0. ! field free depth (microns)
0 ! substrate depth (microns) ignore epitaxial
10. ! substrate diffusion lenght (microns) n/a
0. ! reflectivity of the field free boundary
2.E12 ! impurity concentration (cm-3)
183. ! CCD temperature («K)
2 ! 2 half side of the square (pixels)

analyzed for charge splitting

4.4.4 Cosmic ray command files

The standard

Standard configurations

command files for cos_ray will be called eev_cosnic_a,
eev_cosm c_b and maxi _cosmi c, and will be generated using pr ecosmi ¢ from files eev
and eev_chi plaoreev_chi plb, naxi and maxi _chi pl.

4.5 Operating mode readout configurations

4.5.1 Full frame mode

Note that the number of parameters to be supplied for MAXI is different (there is no choice of the
number of output nodes, and the significance of the major and minor clock tics is different).

4.5.1.1 EEV

This section has been removed, since the mode is no longer in use.

4.5.1.2 Thomson

This section has been removed.

4.5.1.3 MAXI

file maxi _ff
! ! infile
! ! outfile
! no of frames = ALL
20 ! major tic (microsec)
1

integration time (sec) = computed default = 44 ms

4.5.2 Frame store mode

there are two files eev_f s and eev_f s2, both are to be used with the Wf s_dunb program
(on Unix a script f s_dunb acts as a front end and allows optionally to use the "older" fs_dumb
program), since FS mode is now a case of the Window mode where the window covers the entire
chip image area.

Note also that for compatibility with the older version of the program (which had just two kind
of clock tics) the current version of the MOS program require to specify the "major tic" as a
couple of values. The major tics are the row shift (2 Ys) and the pixel sampling (5 s), while
the minor tic is the pixel shift (1 ps).

fileeev_fs

! infile

outfile

no of frames = ALL

major tic (microsec)

minor tic (microsec)

number of nodes

window size

window lower left corner
integration time (sec, KEEP DEFAULT)

00 600

oo FEN
o o

file eev_f s2 is identical but allows readout from 2 nodes

IFCTR

Document EPIC-IFC-TN-006

I 2
E P I C I;;Jee Fri, 29 Apr 1994

Page 4-31

4 5.3 Refreshed frame store mode

fileeev_rfs

~
(6]

! infile

! outfile

! no of frames = ALL

! major tic (microsec)

! minor tic (microsec)

! nodes

! integration time (sec, KEEP DEFAULT) 0.060

4.5.4 Window mode

4.5.4.1 EEV

file eev_wfs
]
]
2,5
1
1

100 100
250 250

infile

outfile

no of frames = ALL

major tic (microsec)

minor tic (microsec)

number of nodes

window size (81=3HEW)

window lower left corner
integration time (sec, KEEP DEFAULT)

4.5.4.2 Thomson

This section has been removed.

4.5.4.3 MAXI

currently defined only for the small window mode in file maxi _w

1
48 30

!
!
i
20 !
!
!
00 !

infile

outfile

no of frames = ALL

major tic (microsec)

minor tic (microsec)

window size (NOTE y=30 not 20, since PSF is bigger)
window lower left corner

4 5.5 Fast window mode

(now called timing mode) for historical reasons in file : eev_fw

1
54,54

1
1
|
2,5 !
!
!
273 !

infile

outfile

no of frames = ALL
major tic (microsec)
minor tic (microsec)
window size

window x-column origin

Standard configurations

4.5.6 Timing mode
4.5.6.1 EEV

This section has been removed (it did refer to the old timing mode; the new timing mode is
described above as Fast Window mode)

! infile
outfile

!
! !
! no of cycles = ALL
]
1
1

10 major tic (microsec)
1 minor tic (microsec)
FS operates on frame store chip

4.5.6.2 Thomson

This section has been removed.

4.5.6.3 MAXI

file maxi_t
! ! infile
! ! outfile
! no of cycles = ALL
20 ! major tic (microsec)
1

minor tic (microsec)

4.5.7 Burst mode

file maxi_b is identical to file maxi_t (read "frames" for "cycles")

4.6 Pattern libraries

Pattern library files reside in the appropriate $XASTOP/ cal i b subdirectory, together with filter
transmission files et sim. There are two types of files, raw and compiled.

Raw files, of type patternlib, are created very easily in an intuitive way with an editor, and
contain 32 "items" of the following form :

9 the pattern number (1 to 32, in sequence), followed by 5 data lines

defining the content of the pixels in the 5x5 matrix (exactly as "copied" from a figure, the top line is
the first one in the file). An X indicates "full" pixels which are part of the pattern. An hyphen -
indicates pixels in the guard ring mask. A dot . indicates all remaining pixels (below threshold).
Unused patterns have all empty pixels.

Compiled files, or type pat | i b, describe the same information in compact form. They are produced
by program compattern, and have 32 ASCII records of the following form :

npat patwei gtht naskweigth maskbits
9 176 15551424 0000001111010010101101110

Document EPIC-IFC-TN-006

| 2
IFCTR EPIC pate. Fri, 29 Apr 1994
Page 4-33

The pattern number is followd by a "weighted" description, by which all "full" pixels in the central 3x3
matrix are assigned one of the following 9-bit binary weights. A similar 25-bit weigth describes the mask
(but is unused) while a 25 "bit array" is the one actually used to describe the mask (1 values correspond to
hyphens, and 0 to everything else, and data follow in the ((x=1, 5), y=1, 5) order).

64 128 256
8 16 32
1 2 4

The standard pattern library files are called pagl15 and f i g11, respectively referring to the quoted pages
or figures of the Saclay EDU architecture document (reference [4]). The one to be used currently is
pagls.

4.7 Auxiliary command files

Auxiliary command files can be used for convenience to generate images or spectra with programs
xgaccumor xhaccum They are not described in detail here, but just mentioned. By "chip file or alike"
it is intended an _c, _d or _r file with the only condition that coordinates are given in CCD pixels.

ar cseci mage to generate an image from a file in angular coordinates
f ov_nmm nmage to generate an image from a focal plane file

eevi mage to generate an image from an EEV chip file or alike
mexi i mage to generate an image from a MAXI chip file or alike
all histo to generate a charge spectrum from any _d photon file

Standard configurations

5

Usage examples

This section presents some real cases of using sequences of EPOS commands.

5.1 Generating a 1/100th Crab photon file

cd ~/ epi c/ par anet er

xasset
xasset
xasset
xasset
xasset
xasset

spacecraft xmm
i nstrument epic
rootdir ~/epic
datadir data
order ct

target crab

randoni ze powerlaw 9.8e-2 2.1 3e21 100
0.1 10 count

xasset

conmand newpsf

randxy crab_before mirror 27171

random ze powerlaw 9.8e-2 2.1 3e2l1 100
0.1 10 ol dxas crab_before_mrror 1000
123456789

randomi ze sinusoid 271.71 0. 0. 100 O 100.
ol dxas crab_before mrror

header edit crab _before mrror tnmaxl
100000000
filter crab_before_nirror

crab_after _mrror mrror 987654321

focal pl ane crab_after_mrror 7500

In the case of MOS then proceed

xasset

conmand eev_chi pla

chipsize crab_after_mrror crab_eevl c

header _edit crab_eevl c chipsize 600 1200

xasset

command eev

ccd det crab_eevl ¢ crab_eevl d

1. E6 123456789

Go where command files are
Set up the environment ...

Data files go in

~/epic/data/crab

Tells you there are 27171 counts
before mirror

Photon file requires 27171
events in a gaussian PSF

Fill energies with Crablike
spectrum in photon file

Fill the times (uniform) in
photon file

transmit thru mirror

convert arcsec to micron

dead layers and filters ignored

convert mm to pixel in central
chip image area for MOS

fudge the chipsize to include
store area

simulate the detection

IFCTR

EPIC

Document

Issue
Date
Page

EPIC-IFC-TN-006
2

Fri, 29 Apr 1994
5-35

In the case of pn instead proceed

relocate crab_after_mrror 3600 2000

xasset conmmand naxi_chipl
chipsize crab_after_mrror crab nmaxil c

xasset conmmand nax
ccd det crab _maxil ¢ crab_maxi 1l d

5.2 Generating a cosmic-ray file

The example shown is for the MOS case, imaging mode

precosm c eev eev_chipla eev_cosmc_a
xasset comand eev_cosm c_a
cos_ray cosmic_eev_A ,, 200

precosmic eev eev_chiplb eev_cosmc_b
xasset conmmand eev_cosnic_b
cos_ray cosmic_eev_B ,, 200

rel ocate cosmc_eev_B 0 600

merger cosnic_eev_A cosnic_eev_B NULL
cosm c_eev_d NOFLAG

header _edit cosm c_eev_d chi psize 600 1200
header _edit cosm c_eev_d chip MOS

xasset conmmand eev_fs
fs dumb cosmic_eev_d cosmc_eev r

ente_i cosmic_eev_r
pagl5 Y

cosmc_eev_e 25 2750

In the case of Timing mode (FW) ignore store section :

precosmi c eev eev_chipla eev_cosmc_a
xasset command eev_cosmc_a
cos_ray cosmic_eev_A,, 200

copy cosmic_eev_A cosmc_eev_Aa
header _edit cosm c_eev_Aa chip M3S
header _edit cosm c_eev_Aa chipsize 600 1200

xasset comand eev_fw
fw dunb cosmic_eev_Aa cosmic_eev rfw

encte_t cosmic_eev_rfw cosnic_eev_efw 25
2750 Y

Examples

offset target from chip centre

convert micron to pixel in one
pn chip

simulate the detection

generate a file for image section

generate a file for store section

shift the y-coordinates to appear
on top of the image section

merge the two files

fake chip size and name in
header

simulate readout in FS mode

simulate EDU action

generate a file for image section

just fudge chip size and name

proceed with readout

and simulate EDU action

5.3 Looking for the limiting rate

Start from a post-detection file for the 1/100th Crab spectrum, and scale its intensity up and down until
there is excessive pile-up. Example shown for MOS.

cd ~/epic/datal/crab go where data are
copy crab_eevl d ref make a working copy
cd ~/ epi ¢/ par anet er go back
scaler ref 0.01 scale to 0.1 mCrab
startloop:

xasset command eev_fs simulate readout

fs dumb ref prova fs 1

ente i prova fs 1 test fs 1 25 2750 simulate EDU

pagl5 Y

go into IDL and evaluate pile-up
i dl
scaler ref 5 scale to 0.5 mCrab

goto startloop:
continue scaling up or down until excessive pile-up

For pn there is one step more in the cycle (simulate on-ground split event reconstruction) :

xasset conmmand maxi _ff

ff_dunb ref prova

epce_i prova prova_epce ff 25 6793 6793

ground_pi prova_epce ff test _epce ff 25 2750 pagl5 n

5.4 Merge source and cosmic-ray files

This would be the first step of a "real world" simulation (which should also include the x-ray
background, here the first NULL takes place of the X-ray background file).

xasset target <CR> look for data files in
xasset order <CR> subdirectories of ~/epic/data
merger NULL crab/test cosnic/cosmic_eev_d merge files with flagging !

nmer ged/ prova FLAG

xasset command eev_fs simulate readout in FS mode on
fs_dunb prova prova_r 92 overlapping time interval (200 s
=92 frames)

ente_i prova_r prova_e 25 2750 pagl5 Y simulate EDU action

Document EPIC-IFC-TN-006

| 2
IFCTR EPIC pate. Fri, 29 Apr 1994
Page 5-37

Appendix A : how to use EPOS

This appendix describes how to use EPOS programs already existing and officially installed. This
section is so far relevant to the installation at IFCTR. If you want to develop your own programs refer to
Appendix B.

Not all software is necessarily installed on all systems listed, although it can be loaded when needed
(the Ultrix version is always available). All arrangements are subject to change without notice.

AA.1 On Vax

You might be used to invoke a program in VMS by doing RUN program This will not be
adequate to EPOS programs, since you cannot pass arguments to the runstring if you use RUN. You shall
instead define a foreign symbol pointing to each program (see VMS documentation, in general you do
something like program == "$di sk:[directory]progrant , and then you can just say
pr ogr amfollowed by any argument).

EPOS executables are in DUAO: [LUCI O. EPI C. Bl N] ; non-EPOS XAS executables (which may be
useful to you) are in DUAO: [LUCI O. XAS. BI N] .

If you want not to be bothered by doing this for each program (and may be you are interested in having in
VMS something like the Unix or MS-DOS path), you can do the following :

Include in your LOG N. COMthe instructions

$@UAO: [LOCAL. PROGTOOL] PATH DUAO: [yoursel f. BI N] or wherever you keep your programs

$@PUAO: [LOCAL. PROGTOCL] REHASH to make programs known to the
system
$@PUAO: [LOCAL. PROGTOOL] PATH PREPEND [] to add the current directory in front

at any time you can also append to the path the EPOS and XAS directories with
PATH APPEND directory li st
(or you could put the directories after your private Bl N directory in the first line in LOG N. COM). If you

define a PATH manually, you may need to do a REHASH to make all programs known (unless you
compile them yourself with com i nk, see below).

AA.2 On Unix

In order to call EPOS programs by name, they shall be in your path. If you do echo $pat h or
printenv PATH you will see what your current path is. The simplest way to add a new directory to
the path is to do :

set path = ($path newdirectory)
Of course the new path is known only in the window in which you did it (and in whatever window you
create from there). If you want to have it done all the times, you should create a file . nypat hs in your

home directory (see the example in/ posei don/ | uci o).

Mind that executables for Sun and DECstation are different, and they are located in different places. In
particular :

Examples

For Sun EPOS executables are in / hone/ | uci o/ epi ¢/ bi n ; non-EPOS XAS executables (which
may be useful to you) are in/ home/ | uci o/ xas/ bi n.

For DEC EPOS executables are in / posei don/ | uci o/ epi ¢/ bi n; non-EPOS XAS executables
(which may be useful to you) are in/ posei don/ | uci o/ xas/ bi n.

AA.3 Using command files

EPOS (and XAS) programs do not normally use command files, nor are parameter file driven.
If you call a program like f ocal pl ane, it will prompt you for what it needs. If you instead do
focal pl ane fil e | ength it will use the parameter you pass. If you do f ocal pl ane fil et
will prompt your for the missing parameters.

However you may write all parameters in a command file (see examples in /
posei don/ | uci o/ epi ¢/ par anet er), and "activate" such command file by doing xasset
conmand fil enane. If you then call a program by name it will read from the command file instead
than from the terminal.

A command file is written one line for each question asked by the program (if the answer to a question
is more than one value they must be put on a single line).

In general you want to have in a command file a "standard setup" and be prompted for things like file
names. You may prepare more command files (say one for EEV CCDs, one for Thomson and one for
MAXI) and activate the one you want. You may specify a parameter (like a file name) with an
exclamation mark (!) to force that parameter to be asked at the terminal.

If you pass (some) parameters in the run string (e.g. ccd_det filel fil e2) they override the
command file. You can also omit some parameters in the run string using commas to skip them : in
such case they will be read from the command file (if active) or the terminal (otherwise).

The mechanism to be used to activate a command file is now working. You just do :
xasset command commandfil e

before issuing any EPOS or XAS command. Note that pr ecosmni ¢ will set up the command file it
creates for you (no need to do XASSET). A command file definition will not survive the invocation of
the program it is used for (unless set to permanent, ask me if interested).

There are two known problem in Unix : first of all the XAS environment is saved to files named
tt ypn_nmachi ne. envi ronnent in your home directory (~), e.g. ttypl_posei don if
you are running from pseudoterminal ttypl on machine poseidon. These files are preserved from
one session to the next, and automatically reset by first command of each session. In case of
occasional trouble you might need to delete them.

Also occasionally (on Ultrix) the xasset command terminates with a core dump. This occurs
when the sum of the number of pre-existing XAS environment variables (lines in the above file)
and Unix environment variables (e.g. printenv | wc -1) is equal to an installation
dependent number (with current installation this is 31). In such case just create one or more
dummy Unix variables (set env DUMWY) and repeat the xasset .

This problem should have disappeared with XAS 1.1 since August 94.

Document EPIC-IFC-TN-006

| 2
IFCTR EPIC pate. Fri, 29 Apr 1994
Page 5-39

AA.4 Setting the environment

Using the above described path mechanisms you are able to run EPOS programs from any
directory. In general you run it from the directory where the data are, but you may want to arrange it
otherwise. For instance I run it from the directory where the command files are, and keep the data
elsewhere.

If you specify a filename including a full path, this is one way to indicate files are elsewhere. Your paths
override always. EPOS and XAS program want file paths in a "Virtual Operating System" format, which is
Unix-like : in fact it is identical to the Unix path in Unix, while in VMS you translate something like
DUAO: [SANDRO. EPI C] as/ duaO/ sandr o/ epi ¢ or / sandr o/ epi ¢ (the disk can be omitted if it
is the default disk), or a relative subdirectory [. EPI C. DATA] as epi ¢/ dat a etc.

In general you do not need to specify the file type (. oap, . photon,.i mage or. cal i b) but if you do
you override the system default.

However there is another handier way to specify where files are. This is done setting some global
variables. 1 assume here you have two subdirectories of a common root, called /
hore/ pi nco/ pal er no and / hore/ pi nco/ dat a, and a third directory el sewher e. If you do the
following definitions :

xasset ROOTDI R / hone/ pi nco

xasset FOTDIR pal erno
xasset DATADI R data

and you work from elsewhere, the program will look for . oap files in / hone/ pi nco/ pal er no and
for all other files in / home/ pi nco/ dat a.

For some programs (typically fi | t er) itis necessary to do some other assignments. You need to do the
following once :

xasset SPACECRAFT xmm
xasset | NSTRUMENT epic

while the following shall be done in your LOG N. COMor . mychsr c file :
VMS: $ DEFINE $XASTOP DUAO: [LUCI O XAS.]

Sun: set env XASTOP /hone/ | uci o/ xas
DEC: set env XASTOP / posei don/ | uci o/ xas

AA.5 General XAS utilities

The following commands are not part of EPOS but are useful :

hl i st to look at the content of a file header
tlist to list the content of a photon list
tofits to convert a XAS file to FITS
xgaccum to accumulate an image

xhaccum to accumulate a spectrum

saodi sp to know how to call SAOImage

header _edit to add or edit an header keyword
etc.

Examples

As an undocumented addition to EPOS, a command xzaccum allows (in a way similar to
xgaccum) to accumulate a charge image (instead of a photon image) or an image having any
other field on the Z-axis.

There are more of such undocumented additions now, which are specialized in a particular
accumulation like char geaccumor f | agaccum(the latter accumulates images with the split,
smear or pileup flags).

AA.6 Using with SAOimage, IDL or MIDAS

XAS files can be looked at and manipulated with several other packages. One can use
SAOImage, IDL, MIDAS or IRAF for images, and IDL or MIDAS and STSDAS for any other file
(which appears as a table).

To display a XAS image with SAOimage, call saodi sp, and then copy (better, cut-and-paste)
the command which saodi sp writes on the screen. You can even do the following : eval

“saodi sp i nmagenane’ (the quotes are back-quotes : if you know Unix you know what it
means ! Note however that using eval interferes with the history recall of csh).

To read any XAS file within IDL, a procedure is available, which can be called as
xasread, file,structure (e.g. xasread,'pinco.inmge', nyim). The
named structure will have several components, which can be viewed with hel p, / stru.
One set of components (St r uct ur e. keynane, e.g. myi ma. naxi s1) correspond to
XAS header keywords. Another component is called structure. data, and is
respectively a 2-d array (nmyi ma. dat a) in case of images, or another structure of
variable layout (do hel p, / stru, struct ure. dat a to see its component, which are
usually table columns of self-explanatory names, e.g. nyphot. data. x,
nmyphot . dat a. char ge).

The data (sub)structures can be displayed and operated with usual IDL. commands.

A set of pseudo man-pages for the IDL XAS interface is available c/o the author.

To move a file to MIDAS or IRAF, use t of i t S to convert it to FITS and handle it as normal
FITS file. In IRAF table files must be read with STSDAS st rfi t s command.

Document EPIC-IFC-TN-006

| 2.1
IFCTR E P I C stee Mon, 28 Aug 1995
Page B-41

Appendix B : how to develop EPOS programs

This section is dedicated to those who want to develop programs for EPOS, either privately, or to
be later inserted in the official suite (mantained by the author).

Please note that I currently use my own set of utilities (the Real Programmer Tool, documented separately,
see reference [5]) to handle, compile and link all programs in an uniform way on all systems. If you want
to use something else (make, . COMfiles or whatever) it is you own business only.

Contact the author to make sure your account is set up to use the Real Programmer Tool.

Also note that a re-organization of the XAS libraries took place in Aug 94, and anyhow the
arrangements of XAS software are subject to change without notice. For the latest semi-official
release of XAS libraries see the installation info at http://botes2.tesre. bo.cnr.it/
Xas/ : this is up-to-date at the so-called XAS 1.1 version of Aug 94. One of the HTML pages there
contains a script which can be used to see which modules have been changed since then both in the
master version and in my private development version (which is the one referred to in the present
note, i.e. the one on / posei don/ | uci o/ xas). Note that I mantain regularly the development
version on Ultrix, and only occasionally update the Vax and Sun ones.

When developing software you need to decide only three things : where do you keep source files,
where do you keep executables, where do you keep temporary (object) files. You will not be developing
library subroutines, so you can use the default XAS places.

I would strongly encourage that you use the same sources for VMS and Unix : by this I mean two things.
One is that you must write code which is not VMS dependent (do not use tabs, do not use inline
comments with !, do not use DO- ENDDOQ, etc. : contact me for a check). The second one is that you locate
the sources on a Vax directory and make them accessible from Unix; to do this you should do two things
again : the source file shall be called pr ogr am f and not pr ogr am f or ; the source file shall be in
STREAM LF format (for this, just after you created it do streaml f fil enane, and your file will be
converted once forever).

I will now assume that your sources are in [YOU. EPI C. SOURCE] , that you want to put VMS
executables in [YOU. EPI C. BI N] and Sun executables in / hore/ you/ epi ¢/ bi n, and that your
temporary area is [YOU. TEMP] and / hone/ you/ t enp respectively.

Now go in some place (for instance [YOU. EPI C] and alike) and create a file called conf i gur e
(on Unix) or CONFI GURE. COM (the name does not matter) containing :

Unix VMS

sourcedir /vax/you/epic/source $sourcedir [you.epic.source]
targetdir /home/you/epic/bin $targetdir [you.epic.bin]
relocdir /home/you/temp $relocdir [you.temp]
libsourcedir /home/lucio/epic $libsourcedir [lucio.epic]
libdir /home/lucio/xas/lib $libdir [lucio.xas.lib]

incdir /home/lucio/xas/include $incdir [lucio.xas.include]

Once in a session go there and do sour ce confi gur e (Unix) or @onfi gur e (VMS).

To compile a link a program, deleting the relocatable and leaving only the executable, you do it all
with a simple command like :

com i nk program default option

Appendix B

Document EPIC-IFC-TN-006

| 2.1
IFCTR E P I C stee Mon, 28 Aug 1995
Page B-42

def aul t make references to a file def aul t . | oader which shall exist in your sourcedir directory, and
shall contain the list of libraries you use. Copy it from myself, or type it : it is a single line with the
following list, verbatim :

t eukol sky xaslib vos general

opti on is instead either | i St or t er mor nothing. If you want to see the error messages, use at least
t er mt er mwill work everywhere. | i St is used to look at the program listing (which is then deleted). It
works on VMS (you are put in EDI T, quit to exit), or on a workstation (not on an Unix terminal), where
the listing appears in a separate window.

If you need other libraries you can set up a different loader file. At the moment there are two other loader
files, cer n (used by cos_r ay with the CERN libraries) and epi ¢ (used by the dumb readout programs
to share the pileup classification routine in epi cl i b). These loader files assume the relocatable libraries
are under xas/ | i b. If you have your private libraries, you might introduce paths in your loader files, but
the price will be that you will need separate loader files for VMS and Unix.

To be able to use your program, you shall make sure that your targetdir is in the path. If you are
developing new programs, you can just append the directory at the end of the path, but if you want to write
a variant of an official program, you must make sure that your directory comes before the official one.

See the existing EPOS sources for examples of how XAS files have to be handled, and how

the XAS user interface is called. Additional documentation is available c/o myself. Introductory
concepts are avaialable at htt p: //www. i fctr.m .cnr.it/ Sax/xasbl urb. htm

Appendix B

