DAWG-REP.5.0/93 Mon, 10 May 1993

Again packetcap
DAWG-REP.5.0/93
L.Chiappetti - IFCTR - Mon, 10 May 1993

0. FOREWORD

This report describes technical problems associated with the prototype of accumulation
programs based on the packetcap approach. The report was written while building the
software and performing the tests, therefore it is not quite organic, and contains lot of
technical details. It is articulated as follows :

Section 1 indicates the work done, how much time was spent on it (important for SAX DAWG !)
and also tells you how to retrieve the software source code (the test program names are found in
section 4).

Section 2 was written before the software, and is the project of the program. This project may have
changed in the actual software because of the results of the test.

Section 3 is a brief reminder of the simulated data (the format is representative of real data, not the
content) used to test the code. Just in case you may want to run it.

Section 4 is an extensive report of the speed tests, and of the changes done while writing the
software. I have so far kept all intermediate versions of the test programs (main and subroutines all
in one file, you can judge the difference with a plain (dx)diff), as well as the final version (separated
by library subroutines).

Section 5 summarizes the main technical conclusions.

Now for those of you which just want an executive summary, here it is : I have done a
very thorough job of testing the packetcap approach and the classical approach, in one
representative case. The packetcap program is slower than the classical one, but this
slowness can be (and actually was) decreased by a careful analysis. In any case also the
packetcap program is fast (how do you like 3 sec for 150 thousand event ?). The packetcap
programs are modular, which means legible, and once the basic stuff is done it is
extremely easy to change them into new programs (less than half an hour and off you go).
Those of you interested in some associated problems should read at least section 5. Those
interested in nitty gritty details (I hope MANY of you, which means MANY software
writers !) should read it all, and also retrieve the code, and look at that.

Please all note that the prototype spectrum (SAXHACCUM) and image (SAXIACCUM)
accumulation programs and relevant libraries currently handle only "Laben” FOT direct
mode data (if somebody writes a packetcap entry for them). All other modes are
unsupported (in general there is an dummy routine).

pag. 1

Document for which no computer readable source exists any longer

Partial scan of original hardcopy of 17 pag. (available on request) supplied

DAWG-REP.5.0/93 Mon, 10 May 1993

1k DESCRIPTION OF WORK DONE

First step was to make the template program work.

This version is a single program, with all subroutines in its source file, and most functions performed by
code in the main program. This program WORKS.

The template SAXHACCUM was almost ready before the Frascati DAWG meeting. It took about 2 hrs on
Apr 15 to debug it and make it working (the packetcap routines were already debugged; most of the
debugging concerned XAS stuff and only part of it the READ_NEXT EVENT routine). The reason for the
delay was the installation of the new SAX DECstations at IFCTR.

The next steps were to write two simple ad-hoc programs to generate dummy data (see 3), and to
provide the accumulation in the classical way (this required just 2-3 hrs).

The next series of steps was to test the speed of SAXHACCUM in several variants in order to evaluate its
performance versus the classical approach.This took about 2 days.

Next step was to make the program more legible, isolating most of the code in subroutines.
The purpose of this is to make easier for future program developers to adapt this template to other
functions, with a minimum number of changes. This step required an afternoon on Apr 19. The structure
of the resulting SAXHACCUM is definitely very legible.

The relevant software may be retrieved via ftp from kronos.ifctr.mi.cnr.it or
poseidon.ifctr.mi.cnr.it (user public password access) in the directories indicated here below.
All library routines are provisionally located on poseidon in $XASTOP/libsource/pktcap.
One INCLUDE file accumcommon . inc is located in $XASTOP/include. $XASTOP is
/poseidon/lucio/xas. The source of the main programs are instead located outside the XAS tree on
/poseidon/lucio/temp/pktcap.

The packetcap files themselves are where they should be, i.e. $XASTOP/calib/sax/instrument.

A further step was to assess byteswap overhead on Sun (or big endian machines; remember that
SAX telemetry data will have little endian arrangement, compatible with Vax and DEC). A description of
the tests made (about half a day, including fixing some Sun problems and a bug described here below) is
reported below in 4.3

Doing this I detected an error (an INTEGER instead of INTEGER*2) in the main accumulation/decoding
routine. This has been fixed in the library version for SAXHACCUM, but not in the test versions
SAXHACCUMn, n=1,14, which therefore work only on DECstation.

As a further step to demonstrate maintainability I tried making a SAXIACCUM spatial accumulation
program. This was generated editing the main of SAXIACCUM, replacing the spectrum output code with
some image output code merged in from the preexisting XGACCUM program, replacing the
INCREMENT SPECTRUM routine with an INCREMENT_IMAGE routine, replacing the LOCAL common,
adding statements for image dynamic memory allocation, and changing a few other statements for a total of
less than 20 changes.

It took about 20 minutes to do that, including debugging a few typos and writing this documentation.
The only absolutely minor problem is that the range dialogue presents a default of 0-255 for the XY range,
while for pixels the usual convention is to go from 1 to 256. (This could be adjusted taking advantage of
the NFORMAT argument, where the value "2" indicates the data structure being accumulated is an image.
Or should we instead specify in the packetcap file for positional quantities that "one must
be added" to the coordinate ? Decision on a convention is needed).

This draft report completed at this stage on April 20. Shown in draft form to a restricted set of people
attending GS meeting in Rome.

The next test was the implementation of secondary type =2 (for WFC), and the relevant tests.

Time taken : about 2 days (May 7 and 10) including generating dummy data in three variants, testing
classical accumulations in all three, writing packetcap, testing packetcap accumulations.

BTW about one and half hour was spent in tracing a bug which resulted a typo in the packetcap file (--> we
need a packetcap syntax checker).

To do: try to implement indirect mode

pag. 2

DAWG-REP.5.0/93 Mon, 10 May 1993

2. DESIGN OF THE TEMPLATE PROGRAM STRUCTURE

The following gives the scheme of a generic accumulation program, which accumulates an "output file"
(image, spectrum, time profile, photon list). By "parameters” I mean "what is present in a packet", like X
Y E T, or spectra, or images etc.. By "interesting parameters” I mean those parameters which are relevant
for the accumulation (for a spectrum this is E, for an image X and Y etc.)

MAIN program
get output file name
get which observations to analyze
retrieve initial packetcap information
retrieve preliminary info on packet content
get range of interesting parameter(s)
get binning for interesting paramter(s)
get range for other parameters
open telemetry files
main accumulation loop
create output file

gOpmwwww» > T

It is intended to have the main program as close as possible to the above scheme : each line will be
translated in a subroutine call, or in a few lines of code.

It is also desirable to reuse code as most as possible. The ABCD define a class for the corresponding
subroutine or piece of code as follows :

A indicates "generic" code. This means this is a standard library function which applies to any
accumulation. It is written and mantained in one place only and by one person, all other
programmers use it as a black box and do not have to do anything.

B indicates "semi-generic" code. This ideally means a standard library function which caters for all
possible cases. The programmer has only to supply appropriate parameters to it (for instance to
control the dialogue about the range and binning, one has just to say, for a spectrum : dialogue
concerns 1 parameter named PHA; for an image, 2 parameters named X and Y; for a pseudo-image,
2 parameters named as specified by the user in a preliminary dialogue specific to the program).

If this is not possible, the programmer has to replace the standard library routine with a specific
one based on a template code.

C indicates "hidden" code. At main program level this calls a standard library function, but this
function will call some accumulation specific EXTERNAL routine. This concept is better
explained below.

D indicates "specific" code. This code is written by the programmer and different for each
accumulation program.

e 8 Discussion about semi-generic code

Semi-generic code is represented in the final version by routines SAX_ACC_OTHER_RANGE,
SAX ACC_PRELOAD, SAX_ACC_RANGE. These routines are essentially handling dialogue with the user
about ranges.

In the current prototype version they receive an argument NDIMENS (which tells whether the output
product is 1-dimensional or 2-dimensional), and a code NFORMAT (which should be used in principle to
distinguish a spectrum, an histogram, a time profile, a spatial image, a pseudoimage).The latter code is
presently not used, but it might be (e.g. for support of indirect mode data and different dialogues for spectra
and time profiles, etc.).

pag. 3

DAWG-REP.5.0/93 Mon, 10 May 1993

APPENDIX - PACKETCAP FIELDS

This table reproduced from an Excel file, reports all presently defined fields in alphabetic order. The original
file is instead in recommended occurrence order.
Entries in italics are not yet implemented, entries in boldface are there for WFC only.

Field Type Description

" n/a packet name (terminated by pipe or colon separator)

ot n/a packet description comment (optional, follows packet name, terminated by
colon)

bt number Basic Type: 1=direct (event-by-event); 2=indirect spectral, etc.

d<n> number if bt#1l:st#2 might be present to indicate field content must be
divided by this value

du string Data Unit : all data lengths are in "bits" or "bytes"

eg number Events per Group (bt#l:st#2) number of events in all groups
but last

f<n> string Field <n> (with n a number) name; fields listed in the order in which they
appear in one event

ff string FFields name, whenever all fields have the same name (e.g. bt#2, channels of a
spectrum)

h<n> string Header field <n> name; fields listed in the order in which they appear in the
header

hl number Header Length in bytes

12 string I*2 endianness (LE for little endian, VMS,DEC; BE for big endian, standar 2-
complement machines)

i4 string I*4 endianness (LE for little endian, VMS,DEC; BE for big endian, standar 2-
complement machines)

ip boolean if set Invalid data Pointer is present in header (exclusive with ve)

lg number Last Group (bt#1:st#2) number of events in last group (0 if all

groups are equal)
m<n> number if bt#l:st#2 might be present to indicate field content must be
taken modulo this value

m<n> number Minimum legal value for field <n> (optional, default 0)

M<n> number MAXimum legal value for field <n>; (optional, default max allowed by binary
leld size

mf number fl;linimurr)t legal value for all fields ff; (optional, default 0)

Mf number MAXimum legal value for all fields ff; (optional, default max allowed by
binary field size)

nf number Number of Fields (for bt#1 number of fields present for each event)

nf number Number of Fields (for bt#2 number of channels in each spectrum TBV)

ng number Number of Groups (bt#1l:st#2) excluding last group if shorter

nh number Number of Header fields (if hl .ne. 0)

ni number Number of Items (for bt#1 number of events/packet; for bt#2 number of
spectra/packet etc.)

o<n> number Offset of field <n> in group (used if bt#l:st#2:u<n>) in units
TBV (E.G +du from start, -du from end of group; however how
to handle last group ?

pl number Packet Length in bytes

s<n> number Size of field <n> in du units

s<n> number if bt#1:st#2 may be set to zero if field is packed jointly with
previous field (previous requires d<n>, this requires m<n>)

sf number Size of all Fields ff in du units
st number Secondary Type (for bt#1): 1="Laben" format (sequence of events) 2="SRON"
format (sequence of groups of events, last may be shorter)

st number Secondary Type (for bt#2): TBD

pag. 16

DAWG-REP.5.0/93 Mon, 10 May 1993

tc string reference to another packetcap entry (if present must be the last field in current
entr

tl number Tim)g Location, location of a special time field in header (in bytes or du units
TBD

tm TBD Timcz Mask: mask to correlate item time and header time and ultimately with
UT; 0 means no mask needed

tr number Time Resolution (expressed as base 2 logarithm, e.g. -14 is 2**-14 s)

ts number Time size, size of a special time field in header (in bytes or du units TBD)

tz number Time Zero : start time for time counter, 0 means arbitrary, TBV

u<n> boolean if bt#l:st#2 and field is Unique (appears once in group) set this

ve boolean if set Valid Event counter is present in header (exclusive with ip)

vl number Valid event counter Location in header (in bytes or du units TBD)

Vs number Valid event counter Size (in bytes or du units TBD)

z<n> number siZe of header field <n> in du units

pag. 17

