Graphics client-server (Tue, 19 Jan 1993)

Considerations about a
client-server approach for graphics

L.Chiappetti - IFCTR - Tue, 19 Jan 1993
(DAWG-REP.1.0/93)

1. Introduction

This report presents a very rough prototype of a set of client-server programs for
graphics. The main advantage of the client-server approach is modularity : all programming
efforts concerning a particular device are confined in the server handling that kind of device,
and do not affect all other application developers (e.g. only one person needs to know about C
language and X-11 programming to write the server, and all other people can go on writing
their own simple graphics programs in Fortran).

The report first discusses some general concepts (some of which are implemented in
prototype programs of general utility), then gives technical details on the specific
implementation (at the level of prototype VOS library calls). A section follows presenting a
demo server using PGPLOT. Since this is felt valuable as demonstration only, but not
satisfactory as a production tool, a discussion of possible future development follows.

2. Client-server concept

The following schemes illustrates some common approaches in graphics programs and
libraries, together with the relatively little used client-server approach.

Multiple programs linked with a device specific library

: ; Callstoa
Program High Ieyel e ———————» specific device ¢
raphics calls primitives

Single program linked with all device handlers

: Device
Program High quel Low lgvel I’ L handlers
raphics calls raphics calls

Client-server approach

—

Graphic

Client High level 1 primitives

raphics calls Server

specific to
device

DAWG-REP.1.0/93 pag. 1

Document for which no computer readable source exists any longer

Partial scan of original hardcopy of 16 pag. (available on request) supplied

Graphics client-server (Tue, 19 Jan 1993)

The traditional approaches are either to provide a set of libraries which is specific of every
family of plotting devices, or to have a multiple-device library. In the first case one needs to
link a separate copy of the program with each device library. In the second case (which is
nowadays more popular, due to the relatively low impact) there is a module which distributes
the calls to the specific device handler (sometimes incorrectly called driver) of the selected
device, but all handlers (even if not used) are linked in the program.

The client-server approach allows more modularity in the development. Graphics programs
(clients) need only to link with a common library, which sends primitive commands (in the
form of some conventional opcodes and arguments, with the same form for all devices) over a
communication channel to a server program. Each kind of device can have its own server
program. Only the server needs to be linked with the device specific routines, or otherwise be
able to generate device-specific code.

Also the know-how about a specific device is limited to the person developing and mantaining
a specific server, freeing all other people from the need to worry about these items.

It is also possible at any time to add a new server without the need to relink any of the client
programs.

An additional requirement is the possibility to keep more instances of the same server.
This is not always exploited by other software packages which use a client-server approach
(though maybe not fully consistently, for historical reasons). E.g. IRAF uses either imtool or
SAOimage for image display, but keeps a single instance of them (one can run more, but they
all will display the same stuff, since there is only one communication pipe).

2.1, Creating a server

A server must be running "in background" and keep alive any device (typically a window
in X-11) so long it remains running. However the server must be started by an user command.

One can imagine to have different types of servers active at the same time (e.g. an xwserver,
which manages an X-11 window; a psserver, which manages black&white Postscript files; a
cpserver, which manages color Postscript; a pgserver, which runs via PGplot, etc.). In the
prototype each server will be a separate program, named xxserver, where xx is a two-letter
code.

One can also imagine to have different instances of the same type of server (i.e. different
copies of the same program) running at the same time (e.g. each one to keep alive a different
window). The prototype assumes each copy of a given type of server to be identified by a 1-
digit number n between 1 and 9 (so there is a maximum of 9 servers per type, which is far more
than needed).

Finally each server may require extra arguments to be started (e.g. a window server may
require the position and size of the window, a Postscript server may require the page
orientation, etc.). Although foreseen, passing this information to the server is not

implemented.

The user command which activates a given server is called createserver. It will be
called (runstring or interactively, usual XAS user interface) as createserver xx n args
and will perform the following tasks :

it will check if the server is registered
it will check if the communication channel with the server is set up

The following status diagram indicates in boldface what is changed by the program.

DAWG-REP.1.0/93 pag. 2

Graphics client-server (Tue, 19 Jan 1993)

be INTEGER values, while arguments can be INTEGER or REAL. They all will be sent via
Fortran binary unformatted i/o.
The main design task is therefore the selection of the primitives.

5.6. Let the server do the scaling ?

One idea, indicated by the slogan "let the server do the scaling" (and let's hope that
British Telecom won't sue us for our cast on their Yellow Pages slogan of a few years ago!) is
that graphics clients can send coordinates indifferently in world coordinates, normalized
device coordinates (NDC, 0.0-1.0) or true device coordinates (and perhaps also cm or inches).
The client will just need to send a "set coordinate” opcode in advance, and the interpretation of
the coordinates will remain what set until another such opcode is sent.

Since all coordinate conversion is done in the server, this will also allow to set up things like
logarithmic scales (or even other kind of coordinates, like polar, or spherical projections) in a
way which is very easy for the user.

Each server will anyhow set up a default viewport (either the entire physical page or
window, or a predefined fraction of it). The server will usually clip graphics which falls
outside the viewport, but allow text to go anywhere. Specialized opcodes will allow to change
viewport and window.

9.7 . Possible list of primitives

The following represents a possible list of primitives. They are divided in three cathegories :

graphics actions, set mode and query mode.

Opcode Primitive Arguments Note

-2 server directive directive-code + variable send a server-specific
directive

-1 termination none terminate a server

0 disconnect none signal client is going to
disconnect

1 clear none clear screen or advance page

2 move Xy move pen to Xy

3 draw Xy draw to x y (necessary ?)

4 polyline n x(n) y(n) plot a polyline of n points

5. polymarker n x(n) y(n) plot markers or points (*)

6 polyfill n x(n) y(n) fill a polygon (*)

7 text length text(length) plot text (*)

8 clear area none clear viewport

9 write image length data(length) write image data in
viewport

10 write lut start n r,g,b(n) set up colour lookup table

11 read cursor none ? will return cursor position
plus other info on the output
channel

12 read image (g will read image data back
on the output channel

13 read lut ?? will read colour lookup
table back on output channel

101 set viewport x1x2 y1 y2 (NDC or device) set position and size of
viewport

102 set window x1 x2 y1 y2 (world) associate window to
viewport

DAWG-REP.1.0/93

pag. 15

Graphics client-server (Tue, 19 Jan 1993)

103 set coordinate NDC | device | world set units for all following
or also cm |inch coordinates

104 set scales lin log polar etc. TBV set coordinate conversion

105 set pen colour colour single or separate for lines,
text, fill ?

106 set linewidth width TBV set line width (*)

107 set linestyle e.g. solid, dashed etc. ? set line style (*)

108 set background colour colour TBV if needed, perhaps
images only ?

109 set marker marker number set marker for all following
polymarker calls

110 set text font font code (mapped from a select font for text (*)

local file ?)

111 set text size size TBV set size of text (*)

112 set text orientation angle in degrees set text orientation (*)

201 to query calls TBV they correspond to the set

2112 opcodes (101-112) and return
on the output channel the
requested info with the
same format as the set call

(*) All items marked with an asterisk are intended to be implemented (at least initially) "in
hardware", that is only if the hardware, firmware or system software support it. For instance
text will not be drawn using software in our own graphics library, but using system fonts (X-11 or
Postscript, or plain terminal hardware characters, in which case some characteristics are not
supported); polygon filling (of dubious usage) or variable line width will be done only if
already implemented (e.g. by X-11, Postscript or HP-GL), etc. etc.

DAWG-REP.1.0/93 pag. 16

