Directory tree arrangement

Proposal

Version 0.2 24 Feb 1992

for directory tree arrangement

for SAX software

Edited by L.Chiappetti (IFCTR)

with substantial input by D.Dal Fiume (ITESRE)

Version 0.0 07 Jan 92 L.Chiappetti - mail to D.Dal Fiume

Version 0.0b 17 Feb 92 L.Chiappetti -other mail to D.Dal Fiume

Version 0.1 20 Feb 92 revised after extensive comments by D.Dal Fiume

Version 0.2 24 Feb 92 final editing after more comments by D.Dal Fiume
Table of content

0) Introduction

1) Main software directory tree

1.1) local

1.2) bin

1.3) lib

1.4) VOS

1.5) doc

1.6) include

1.7) libsource

1.8) source

1.9) calib

1.10) external

1.11) temp

1.12) dependencies and makefiles

1.13) Soft links

2) Development software directory tree

3) Observational data directory tree

3.1) Concept

3.2) The environment

3.3) Data directories

3.3.1) End directories

3.3.2) User controlled specifiers

3.3.3) Cases

4) DAWG stuff directory tree

Appendix A) VOS name mapping

Al) Unix

A2) VMS

Appendix B) Multi-architecture support and sw distribution

B.1 Possible organizations for multi-architecture support

B.2 Distribution of multi-architecture software

B.3 Installation related issues

Page 1

Directory tree arrangement Version 0.2 24 Feb 1992

0) Introduction

It is proposed to have separate directory trees for different components as follows:

1 one tree for the frozen version of the public software

2 possibly separate trees for development versions (TBD)
3 separate (private) trees for observational data

4 a separate tree for DAWG stuff (e.g. SPRs)

Tree 1 is what shall exist at any site (within or outside the SAX Consortium) wanting to install the
SAX public software
Tree 3 is typically a private arrangement of each local user wanting to use such software (many of

such trees shall exist in a generic site)

Trees 2and4 concern only SAX Local Centres, and allow to separate what is public and what is DAWG
business only.
If a beta-test version of the public software will exist, this could be rooted somewhere in a sub-
tree of tree 4 (as beta-testing will be an activity for DAWG).

All the above trees shall be rooted in a relocatable way. The root name shall be kept in a logical name (VMS) or
in an environment variable (Unix). Such variables shall be defined in dedicated .COM file (VMS) or csh script
(Unix) invoked either at system login (SYLOGA N: VMS, . cshrc or .l ogi n: Unix) or private login
(LOE N. COM VMS, . mycshr c: Unix/IFCTR) or manually.

Namely it is proposed that root names for cases 1 and 4 be defined at system login level (also for case 2 if a
"public” development version exists), and for cases 2-3 be defined at user private level.

For compatibility it is proposed to use names constructed in the following way (example):

VMS: logical name $SAXTOP (generated with ASSI GV SYSTEM
Unix: environment variable SAXTOP (generated with set env)
and referred as $SAXTOP.

Usage of $ as first character will allow to use IDENTICAL names in VMS and Unix. For the same reason it is
suggested the name be upper case. In general such global variables shall be accessed within the program using a
VOS call (It is TBV whether in VMS there are also any reasons to duplicate the logical name into a global
symbol with same name).

The choice of the VALUES of such global variables will be free and site dependent.

Page 2

Directory tree arrangement Version 0.2 24 Feb 1992

1) Main software directory tree

The logical root shall be called $XASTOP. It, and all subdirectories and files in it shall be owned by a dedicated
SAX account.

Under this relocatable root, one shall have a tree of subdirectories. In principle no subdirectories but the
terminal ones shall contain files other than subdirectories. The only exception to this are makefi | es and
(possibly) other few procedures needed for maintenance (e.g. Real Programmer Tool @ onfi gur e files) or
READIVE files.

root --+-- |loca
+-- bin
+- lib
+-- vos
+-- doc
+-- include
+-- libsource +-- libraryl
| |
| +-- libraryn
+--source

+--calib -sax-+-- expl

I I

| +-- expn
+- - ext er na

+--tenp

In the above tree, the first directory listed (I ocal) shall contain site-dependent stuff, the next ones (bi n, | i b
and v0S) shall contain system-dependent stuff, all the rest should contain system independent stuff. See
Appendix B for a proposal about multi-architecture support and software distribution.

1.1) loca

This shall be the login directory of the SAX account and contains any file necessary for login et sim. It shall also
contain any site dependent files (e.g. peripheral settings). All customization shall be reflected ONLY in editing
files in this subdirectory.

1.2) bin

This shall contain the program executables of SAX software (EXE files on VMS, executables on Unix). It might
also additional contain executable procedures (. COMfiles in VMS, shell scripts in Unix).

This directory shall be in the path in Unix, while in VMS all EXE and COMfiles shall be equated to a symbol
(e.g. using XANADU KNOWcommand or Real Programmer MAKEKNOWN or alike). In addition it can be noted
that a path mechanism can be implemented in VMS using logical names. If one does the following

DEFI NE $PATH DUAO: [DI R1], DUAO: [DI R2]
PROG == " $$PATH: PROG. EXE"

one can issue the command PROG to execute a program residing in either directory. If there is a PROG EXE in
both directories, it will be executed the one residing in the directory coming first in the DEFI NE statement. This
will allow different versions of the same program (e.g. a frozen and a test version, or a public and an user
customized version) to co-exist easily.

Page 3

Directory tree arrangement Version 0.2 24 Feb 1992

1.3) lib

This shall contain relocatable libraries (VMS: . OLB or shared . EXE; Unix: . a). All relocatable libraries,
including external ones shall be present here (directly or, in case of external ones, perhaps as soft links).

1.4) vos

This shall contain the source code for the routines in the VOS library. The reason to put them here instead than
inl i bsour ce/ vos is to keep system dependent stuff clearly separated.

It is yet TBV whether | NCLUDE files used by VOS routines can reside in this same directory, or in the
i ncl ude subdirectory, or in a separate place.

1.5) doc

To contain documentation files (manuals) and help files. There will be two primary subdirectories : nmanual
and hel p.

The manual subdirectory is intended for manuals to be printed (e.g. Postscript compressed, ASCII, TeX or
TBD)

The hel p subdirectory is intended for on-line help files. It could be investigated whether it is easy to have
system independent help files and compile them into a system dependent format, but one can note that the help
utilities are too much different, and almost every astronomical system (MIDAS, IRAF) developed its own help
facility.

The policy for manual and help files will come later, is outside of the scope of the present note and has to be
discussed later.

1.6) include

This shall contain | NCLUDE files. These shall have type . i nc (for Fortran include files) or . h (for C header
files).

All these files (those not used by VOS routines) could be links to equivalent files on another machine. Keeping
VOS | NCLUDE files outside of here, allows to link the entire subdirectory to the equivalent one on another
machine.

1.7) libsource

This shall contain a subdirectory for each library. Each subdirectory will contain the source code, one file per
routine. The file shall have the same name of the routine, and type . f or (VMS) or . f (Unix). See 1.7 below.
For C routines the file has the name of the routine as called and type . C (even if the routine name within the
source has an underscore appended to the name for linker reasons).

An exception will be for those routines which are called exclusively by another routine (and therefore always
relocated with it), which may appear in the same source file as the calling routine. Block data routines shall be
called bl knane, where name is the name of the (main) common block they initialize.

All these files (being not VOS routines) could be links to equivalent files on another machine. Keeping VOS
routine sources outside of here, allows to link the entire subdirectory to the equivalent one on another machine.

For each | i bsour ce/libn subdirectory (and for the vos subdirectory) there will be a | i bn. OLB or
i blibn.a fileunderlib.

Current test version at IFCTR has here libraries gener al , vos (of these under VMS there are a few test
variants) and fitsi 0. One could foresee at least one dedicated library per experiment (I el i b, neli b,

hpl i b, pdsli b, wfcl i b).

Page 4

Directory tree arrangement Version 0.2 24 Feb 1992

1.8) source

This shall contain the source code of all main programs. Each main program file may include also the code for
subroutines called exclusively by it (not in library).No other subroutine shall be allowed to be either than in a
main source or library source file.

The files shall have the name of the program, and type f or (VMS) or . f (Unix) or . ¢ (C, both). In line of
principle the entire directory could be a soft links to equivalent directory on another machine.

NOTE: so far we assume it is best to have . f files on Unix, not . f or . We are afraid . f or files are compiled
differently (this occurs on Sun, TBV on DEC). This is the only thing which precludes linking the entire
subdirectory from Unix to VMS (link from VMS to Unix will be possible only with UCX 2.0, but in this case
one should arrange a way for VMS to compile a . f file). Handling of . f and . f or files in Unix in the same
way requires some further investigation.

1.9) calib
This shall have subdirectories for LECS, MECS, HPGSPC, PDS, WFC1, WFC2 (to allow mission independence,
i.e. incorporation of calibration data for other missions, these should be subdirectories of cal i b/ sax) Each
one of them shall contain all instrument dependent files, e.g. the ones needed as input for the response matrix

generation.

If some common tables are needed they could be kept in cal i b/ general (or as appropriate
cal i b/ sax/ general).

1.10) external
This is just a root for SMALL external packages for which there is no best place (one subdirectory per package).
E.g. a thing like PGPLOT could go in here (this is a suggestion not a recommendation) and preserve its own
directory structure (while the compiled libraries goes into lib).
However it could be desirable to place external OUTSIDE of this directory tree (i.e. at the same level as

$XASTOP).

Anyhow this shall not be the place for BIG packages (that is, things like IRAF, MIDAS, XANADU shall have
their own independent tree, and even be owned by an independent maintenance account each).

1.11) temp

This is a scratch area (publicly writable ?), where temporary stuff is kept (e.g. relocatable objects before being
linked or put into libraries). Could be cleaned daily. Could also be a pointer to somewhere else in the system.

1.12) dependencies and makefiles

The issue of finding proper dependencies is crucial for the construction of good makefil es or for good
manual maintenance (that is, to know what to recompile when something is changed).

Please note that it is not envisaged to keep object (.OBJ, . 0) files anywhere in the system but fo delete them as
soon as a program is linked or a member is inserted into a library.

A main program depends on :
all include files referred in the main source (these could be found with a "grep .inc sourcefile")

all called library routines (these could be found looking at some form of compiler output or load map),
hence on the library where they are contained (but it is silly to recompile a main program calling Suba

Page 5

Directory tree arrangement Version 0.2 24 Feb 1992

and subb, because they are in the same library as subc, and only subc has been modified : however
this is what most makef i | es do)

included the block data routines which are not obvious to spot
it also depends on the dependencies of all such routines

A library depends on the sources of its routines :

A routine depends on

all include files referred in its source
all called library routines including block data

Now while the compiler and linker can resolve references without special documentation files, building correct
makefi | es might need some special tools (unless one is prepared to make redundant recompilations and
relinks).

What it is meant by resolution using self documentation is that a compiler automatically finds all include files,
and a linker finds all subroutines provided it is given a list of libraries in the right order (called a loader file).
Note, just a list of libraries, not a list of individual routines.

Therefore general usage at IFCTR foresees just a few (3-4) standard loader files (e.g. for Exosat on IBM there
were a DEFAULT one, an EXCSAT one, an ME and an LE one, on HP there were a gener al one, and an | A
one), with the possible exception of a VERY FEW special programs which require an individual one. This
greatly minimizes the number of files floating around.

It is wasteful to have a loader file for each main program (or a special line or statement in a makefile for each
main program). Of course this scheme requires one knows where his towel is (that is, what to recompile when
something is changed). We believe that building a makef i | € which knows where his towel is, requires some
more investigations and experimenting.

We would mention here also additional useful tools, like IBM VS Fortran compiler ICA (Inter-Compilation
Analysis), VMS SCA (Source Code Analyzer), lintfor (HP-UX) etc.. They should allow to check consistency of
calling sequences between routines (e.g. to flag an error if a routine is called with a real argument when an
integer is expected, etc.), and to produce statistics and maps. It is noted that one such tool could be used at a
single site (with no difficulty if the programs are standard Fortran 77, or even with some widely diffused
extensions) even if the programs are not to run on the same machine where the tool resides.

1.13) Soft links

Soft links are a great way of including external stuff in one's package, as well as useful for many other things.
We are faced here with two little problems :

One is that at the moment we can easily create an Unix link to a VMS file (meaningful for text files only if the
VMS file is STREAM LF), but not the other way round. Unfortunately we have (and will go on having) more
disk space under Unix. This possibly will be true in both directions with UCX 2.0.

The second is that links are not provided as an user facility in VMS. However they exist (in the form of files
with different directory entries; these are widely used in SYSTEM directories) even if with some differences
(see the UCX documentation for explanation). It could be useful to find a PUBLIC way to create such links in

VMS. Usage of QIO calls will possibly allow to emulate hard links (within same physical disk).

It is also TBV the impact of using soft links with makef i | es (in particular for date checking)

Page 6

Directory tree arrangement Version 0.2 24 Feb 1992

2) Development software directory tree

We suggest a solution in which each private sw developer has a private copy of the necessary branches (and
leaves, i.e. files) of the main tree. He shall copy only the main program sources, library routine sources and
relocatable libraries which he is actually working on.

In LC's opinion he would not see, at least at IFCTR site, and possibly at any site but SDC, a public development
tree. This is also due to the fact that one envisages loosely coupled modules (no major releases of the entire sw
but independently updated modules, the coupling been essentially at linker level)

To be investigated : need of access to "unchanged" components remaining in the main tree, use of links (Unix; is
there a way to emulate them under VMS ?), use of paths (in VMS a logical name could be defined to be a list of
directories in a given search order)

Concerning a beta-test release of the software, to be distributed and tested (for instance at the SAX Local

Centres), this will be in a tree similar to the main software tree (see 1 above), but of course it should be rooted
elsewhere. This root could be arranged somewhere under the DAWG stuff root (see 4 below)

Page 7

Directory tree arrangement Version 0.2 24 Feb 1992

3) Observational data directory tree

Since each user shall be handling his/her own data, it is necessary a mechanism to notify the analysis software
where it could find the user's data. This mechanism shall use global variables to identify the location of common
classes of data (e.g. FOT files, reduced data files, background subtracted cleaned files, sorted by experiment
and/or object and/or date of observation).

In the XAS sw spec chapter 6 (/xas/scratch) and 9.2 there was a possible example. This should now be modified
so that the system should be flexible enough to allow the user to construct alternate hierarchies (from a flat one,
"all under current directory"”, to any arrangement of choice)

A precise definition of this could be left for later, and ad interim (e.g. for simulation sw) being contented by the
sw reading "standard" input files from cal i b and reading/writing "user" files from/to the current directory.

3.1) Concept

The idea is that generally the user provides to the program just a fileNAME (e.g. pi nco). The program will
provide to add a default type according to context (e.g. an image display program will expect pi nco. i mage,
a fitting program pi nco. spect r um a Fourier transform pi nco. r at e etc.). The program will also add a
default VOS path according to current settings in the XAS environment (see below). E.g. an analysis program
could look for a spectrum as / somewher e/l uci o/ amher/ 19j an/ mecs/ pi nco. spectrum or an
accumulation program could look for a telemetry file as / el sewher e/ dani el e/ pds/ 7f eb/ gammacas/
0bs0003. hk.

Of course it will be possible to override the default type specifying one (e.g. a spectrum could be
pi nco. panco) or the default path specifying a full or relative path (anything containing a slash, eg. /
ti zi o/ cai o/ senproni o/ pi nco or sonewher eel se/ panco/ pi nco), although this will not be
encouraged.

3.2) The environment
We could foresee the use of a XASSET program to set such global variables (LC has not yet tested this for Unix,
while for VMS he made tests both using logical names and global symbols, each with pros and cons; more info

available on request), since they will be used only internally. Of course a frequently used configuration could be
stored in some sort of profile.

3.3) Data directories

The idea is therefore that programs will find data files well classified in specific places (according to user's taste)
and not just in the current directory (actually, independently of the current working directory).

There are some physical end directories where different kind of data are to be put, and some logical specifiers
which may make easy to classify the data (an example was given in chapter 6 of XAS spec, but it has to be
changed now)

3.3.1) End directories

It would be appropriate to provide separate physical locations for:

- FOTDIR: "telemetry" files as filed from a FOT (or RRD)

- DATADIR: reduced data files produced by accumulation/reduction

- PRINTDIR: "other" files if any, e.g. log and output files to be printed (or preserved)

-7 custom calibration files (IF and WHEN allowed, these could be used in preference to

$XASTOP/ cal i b)

Page 8

Directory tree arrangement Version 0.2 24 Feb 1992

-7

custom versions of programs (but a pseudo-"path" mechanism or redefinition of
global symbols could be used for this in absence of a XAS monitor)

3.3.2) User controlled specifiers

The user may want to specify the following things :

- ROOT: the root directory (this could either be a public area, or the user home directory - this

would be a choice in VMS - or an user directory in a public data filesystem - this
would be a choice in Unix - or anything else, including areas sharable between more
than one user)

- CELES: one may want to separate data by the celestial object observed

- DATE: one may want to separate data of the same object by date of observation, for repeated
observations

- INSTR: one may want to separate MECS data from PDS data from WFC data etc. even on

same object

or one may not want to make some or all of the above separations

3.3.3) Cases

One may therefore be able to chose one of the following arrangements, setting appropriate XAS environment

global

Page 9

variables, to be tested by programs
all under current working directory (all variables NULL)
all under a same fixed directory (ROOT non null, all other NULL)

separate "end directories” as given above as subdirectories of a fixed directory (ROOT, FOTDIR,
DATADIR etc. not null). Example :

ROOT=/ sonewher e/ el se/ agai n

FOTDIR=t | m

DATADIR=dat a

results in / somewher e/ el se/ agai n/ t| mand / somewher e/ el se/ agai n/ dat a

separate "end directories" as terminal directories of a tree allowing a hierarchy of levels by specifiers
(some of CELES, DATE, INSTR not null, plus also ROOR, FOTDIR, DATDIR etc.). One shall be
allowed to specify the order of the levels e.g.

ROOT=/ dua0

FOTDIR=f ot

DATADIR=r ed

CELES=pks2155 DATE=7dec95 INSTR=l ecs

ORDER=cdi results in

/ dua0/ pks2155/ 7dec95/ | ecs/ red or/ duaO/ pks2155/ 7dec95/ | ecs/ f ot

but

ORDER =i cd resultsin / duaO/| ecs/ pks2155/ 7dec95/ r ed

and

ORDER =i ¢ resultsin / duaO/ | ecs/ pks2155/red etc.

Directory tree arrangement Version 0.2 24 Feb 1992

Nominally one can have the following ordering :

instr/cel es/date

i nstr/date/cel es (does not make much sense)
celes/instr/date

cel es/date/instr

date/instr/cel es (do not make much sense as on one date one has
date/cel es/instr only one object at one time)
celes/instr (see note *)

cel es/ date

date/instr

dat e/ cel es (does not make much sense as above)
instr/cel es

i nstr/date

i nstr

date

cel es

(note * there might be problems if there are observations taken at different dates when filing FOT data;
we assume data are filed with names like 0001. hk where the name is the obs number and the type is the
data type; one may also have problems filing more instruments in same place; may be names shall be
eeennnn. typ, eg. pds0001. hk, or even ppeeennn. t yp with pp a generic user specified prefix,
eg. nypds0001. hk)

- finally could one allow to put end directories at different levels in the tree ? e.g. to have a tree like

/ mydatal/ printdir level 1 under root
/ mydat a/ ngc4151/ r educed 2
/ nydat a/ ngc4151/ mecs/ f ot 3
/ mydat a/ ngc4151/ pds/ f ot 3

etc.
or even structures like

/ mydat a/ ngc4151/ r educed/ 17j an95
/ mydat a/ ngc4151/ r educed/ 20f eb95

where "end" specifier is not at the end ?

Is all the above meaningful, sensible, easy to implement ?

4) DAWG stuff directory tree

The logical root shall be called $DAWGTOP [?]. It, and all subdirectories and files in it shall be owned by the
DAWG account. This is separate from the account owning the software. [The name DAWG is proposed instead
of SAXDAWG, since this at IFCTR is already a logical name pointing to the SAXDAWG Listserv list, and since
the latter resides on a non-SCS machines where one could have other DAWGs, it was best to use a self-
documenting name.

Structure: TBD (e.g. this should host the SSREP stuff) The idea is to keep here any stuff related to the DAWG

but not part of the "standard sw distribution" to be given to ANY site (including external sites). That is, this
directory tree shall exist only at the Local Centres.

Page 10

Directory tree arrangement Version 0.2 24 Feb 1992

Appendix A) VOS name mapping

In contrast with the current provisional VOS pathname mapping. (used by LC for i/o tests) which roots absolute
paths under a fixed root, ie. VOS=/al/b/c is translated into SYS=DUAO: [l uci o.a.b.c] or
SYS=/ posei don/ | uci o/ a/ b/ c, one shall have.a definitive VOS mapping.

A.1) Unix

In Unix this could just be a no-op. VOS names equal to system names. In particular if the first character is a
dollar, the first component of the path is unchanged also in case (to allow use of shell variables). It is TBV
whether it is perhaps desirable to force the rest in lower case, or one should preserve case as typed by the user.
We could perhaps add to the Unix notations ~ . and .. some vms-like notations as- -- --- (to go up one,
two, three steps etc.).

A.2) VMS
VMS is more tricky because of different physical disks (unlike Unix where all filesystems are under /).

Anyhow we should add the following translations (and NOT translate anything containing a [to allow usage of
VMS notation, though discouraged):

~/dirl/dir2 into SYS$LOG N: [di r 1. di r 2]
dirl/dir into [. dir1.dir2]
. dirl/dir2 into[-. dirl.dir2]

and perhaps allow VMS-like VOS notations like :

-/dirl/dir2for [-.dirl.dir2] sameas../dirl/dir2
--/dirl/dir2 for [--.dir1.dir2]etc.

For the rest there is no problem in translating pathless filenames (just check name syntax and goes under current

directory) or relative paths (ie. dir1/dir2/dir3is [.dir1/dir2/dir3]), but for absolute paths one
can:

A) /disk:/dir/dir maps todi sk: [dir.dir]
/disk/dir/dir mapsto[di sk.dir.dir] orDUAO: [disk.dir.dir]
B) /disk/dir/dir maps todi sk: [dir.dir]

C) [first/dir/dir maps either as first:[dir.dir] or [first.dir.dir] ie DUAO:
[first.dir.dir] according to a site dependent arrangement

Case A is the "compulsory colon" rule. Anything which is a disk, physical or logical, shall have a colon.

Case B is the "compulsory disk" rule. First argument is always a disk, logical or physical, irrespective whether it
has a colon or not.

Case C could be arranged to map either way according to a site dependent set-up. L.e. sites with a single disk
force all under DUAO: while other sites allow specification of disk under rules A or B.

Please comment on above possibilities.

It could also be verified whether a programmatic SAFE way exists to verify whether a given name is a disk
(physical or logical) or a directory and in such case handle the first component / first/dir/dir either as

Page 11

Directory tree arrangement Version 0.2 24 Feb 1992

first:[dir.dir] or[first.dir.dir] according to such internal test.

Also, should we consider also mapping Decnet names with a node specifier ? e.g. | FCTR : DUAO:
[PI NCO.] ? Or should we leave them to local definitions of logicals ?

At the moment Decnet is the only way to see Ultrix disks from VMS, but if UCX 2.0 allows NFS client this may
change.

Page 12

Directory tree arrangement Version 0.2 24 Feb 1992

Appendix B) Multi-architecture support and sw distribution

WARNING: this appendix is just a first sketch on how s/w distribution can be made. It tries to list some
technical possibilities and some implications for the organization of software directories, but it does not exhaust
the matter. In particular it does not imply things have to be done this way. Additionally, policy related issues
(e.g. will s/w distribution be completely free - e.g. anonymous ftp - or restricted to registered user, or somehow
controlled) are willingly excluded here, but shall be discussed in the future.

The scheme of software directory trees presented in section 1 above is the one which should be implemented on
each target standalone machine running the software.

However the portable design of the software (whose goal is to have ALL main programs and library routines
IDENTICAL on all machines with the exception of the VOS routines) could allow some saving in disk space and
maintenance at a site supporting more machines of different architectures (e.g. a VMS one and an Unix one, or
two different flavours of Unix).

This impacts on the organizations one has at a local site, on the installation procedure, and on the distribution of
the software.

B.1 Possible organizations for multi-architecture support

First of all, to clear the way of misunderstandings, in the case one has more homogeneous systems (i.e. more
VMS systems, or more Unix systems with the same operative system and platform) one uses normal system
facilities (VMS VAXCluster or NFS disks in Unix) to install a single copy of the software and we are not
concerned with this any longer.

If instead one has heterogeneous systems, one may note that there are parts of the software directory tree which
are duplicated and identical under all architectures (the source, |ibsource and incl ude files,
docunent at i on and hopefully hel p files, and possibly most of the cal i b files), while other are specific of
a given system (the VOS sources and the bi n and | i b binaries).

The simplest possibility is of course to have separate, fully duplicated directory trees on each machine. This
could be assumed as default : it works, but is just wasteful in disk space.

Another possibility is to create identical, empty directory trees, then fill them partially with stuff retrieved from
the archives, and use links for the identical parts. That is, designate one machine hosting the single physical copy
of the system-independent files, and set up links to them on the other machines. This is greatly simplified if one
can link entire directories (the source, | i bsource and possibly doc and cal i b directories could be
handled this way).

Soft links are possible (and tested) between Unix machines and from Unix linking files residing on a VMS
machine running an NFS server. The converse (from VMS accessing files residing on Unix) has not been tested
and situation is unknown.

B.2 Distribution of multi-architecture software

This is a possible scheme for distribution of software under a multi-architecture scheme.

a) entire separate trees for VMS and DEC Ultrix are kept at SDC/SAC for the use of Guest Observers. They
also constitute the master frozen version. For these architectures distribution can occur in source or
binary (executable) form.

b) for other architectures for which a version may exist (e.g. Sun, HP-UX) the distribution will occur only in

source form. Executables could or could not be stored at SDC according to convenience. These

Page 13

Directory tree arrangement Version 0.2 24 Feb 1992

)

d)

e)

g)

architectures will not be officially supported.

It is TBD whether building the archive for distribution will occur by SDC/MSC accessing the SDC/SAC
master version directly, or storing a master copy on SDC/MSC.

Two kind of distributions should be considered : entire releases (or new installations) and updates.
For entire releases the following kits should be created at SDC/MSC.

1) a Unix compressed t ar file of the bi n, doc and cal i b directories (for DEC Ultrix)

2) eventually a Unix compressed t ar file of the same for other TBD Unix architectures (not mandatory)
3) a VMS compressed BACKUP saveset of the bi n, doc and cal i b directories

4) a Unix compressed t ar file of the | i b directory (DEC/Ultrix)

5) idem for other TBD Unix architectures (not mandatory)

6) a VMS compressed BACKUP saveset of the | i b directory

7) a Unix compressed t ar file of the sour ce and | i bsour ce directories (this will do for all Unixes)
8) some Unix compressed t ar files of the vos directory (one for each officially or unofficially
supported architecture)

9) a VMS compressed BACKUP saveset of the sour ce, | i bsour ce and vos directories (for analogy
with the above one could prefer to have VOS in a separate saveset)

An user not wanting or needing to recompile could retrieve only the essential kit (1,2 or 3). With this he
should be able to run the software.

An user wanting to be able to interface programs of his own should also retrieve the relocatable library
kit (4,5, or 6).

An user wanting to recompile everything, or wanting to make modifications, or just curious to look at the
source code, or needing to recompile everything on an unofficially supported architecture should retrieve
also the other kits (7 AND the correct version of 8 for Unix, or just 9 for VMS)

The mention of t ar files or BACKUP savesets above does not imply they are stored in a single file. It is
possible that for convenience of the network transfer, they are split in chunks to be reconstituted at the
receiving end. It is also possible that some kits are kept in compressed and uncompressed form for
convenience of some sites.

for updates (this applies to updates of the programs as well as to updates of the calibrations) it is
desirable that one could retrieve only the files changed, without doing a complete reinstallation. Of
course this assumes one has done previously a FULL installation, and keeps the standard directory tree
structure UNCHANGED.

For this it may look desirable that a master copy of the entire sw trees not in tar or BACKUP form is also
residing at SDC/MSC.

The user will then retrieve the necessary files as instructed by notifications circulated to the community :

1) some new or changed calibration files

2) some new program executables (if he did a binary-only installation)

3) some new libraries (if he did an executable+library installation)

4) some new subroutine and main sources, plus the instruction to recompile and relink in any other case

It is noted that in case one wants to recompile and relink (either during full installation or updates) he
needs to retrieve only ONE copy of the source kits or files for ONE of his target systems, and then he can
duplicate or link this locally. It is to be evaluated whether this should be allowed at all, or only to
experienced users (at their own risk) or whether utilities to do this will be supplied.

B.3 Installation related issues

Page 14

Directory tree arrangement Version 0.2 24 Feb 1992

A new installation with a single architecture involves the following steps if one is just installing the essential
system :

retrieve from SDC/MSC the essential (binary+calibration) kit
If one instead wants to do a full recompilation the steps are :

retrieve from SDC/MSC the essential kit (for calibration etc.)

retrieve the source kit

retrieve the vos kit for the target system

issue amake al | or run a provided installation procedure (this could look like to :

sourcedir source
libdir lib

i ncdir include

| i bsourcedir root
conplib vos al

i bsourcedir |ibsource
conplib libraryl al

conplib library2 al
conl i nk progranl optionl

conl i nk programm optiong
A new installation for multiple architecture, if installing the essential system involves :

retrieve the essential kit for each system
delete the stuff duplicated (cal i b, doc etc.) from all systems but one
create links for the duplicated stuff to the one system left with it

One might argue from this that is better to supply binaries separately from doc and cal i b files. This could be
considered.

A new installation for multiple architecture with recompilation and relink involves :

retrieve the essential kit for one system
retrieve the source and vos kits for the same system
doamake al | orrun the installation script
repeat what follows for each other system
create empty directory tree
create links for duplicated stuff to first system
retrieve the system specific vos kit
do anmake al I or run the installation script

Installations of updates (for single or multi-architecture sites) only with executables or calibration files consist
just in retrieving the necessary files to the right place.

Installations of updates with compilation for a single system involves:
retrieving all changed library routines as instructed
retrieving all changed main sources as instructed

doing a make or running a script provided, which may look like

complib libl sub3

Page 15

Directory tree arrangement Version 0.2 24 Feb 1992

complib libl sub7
complib Iib5 sub2
com ink nmainl option3
com i nk rmai n4 option2

Installation of updates with recompilation in case of multiple architecture involves :

retrieving all changed routines and mains as above for one system
running make or the script provided
for each other system
create necessary links if not already existing
running make or the script provided

The latter case does not consider updates to the VOS routines (they should be fairly stable soon), however if
they are updated, a separate copy should be retrieved for each system before running the script.

Page 16

