A proposal for
XAS Software Specifications

Prepared by: L. C. Chiappori - IFCTR, M. M. M. - IFCA

Final draft 0.5 - January 5, 1990
Document for which no computer readable source exists any longer

Partial scan of original hardcopy (available on request) supplied
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Context</td>
<td>1.1</td>
</tr>
<tr>
<td>2.</td>
<td>Introduction</td>
<td>2.1</td>
</tr>
<tr>
<td>3.</td>
<td>VOS Specifications</td>
<td>3.1</td>
</tr>
<tr>
<td>4.</td>
<td>VD Specifications</td>
<td>4.1</td>
</tr>
<tr>
<td>5.</td>
<td>User Interface Specifications</td>
<td>5.1</td>
</tr>
<tr>
<td>6.</td>
<td>Disk Space Management Rules</td>
<td>6.1</td>
</tr>
<tr>
<td>7.</td>
<td>Data Structure (Layout) Specifications</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Table of Contents

8. XAS Monitor Specifications 8-1
 8.1 Introduction to the XAS Monitor 8-1
 8.2 Accessing the XAS Monitor 8-3
 8.3 Processing commands 8-4
 8.4 XAS Monitor internal commands and functionalities 8-6
9. XAS Command Specifications 9-1
 9.1 Commands replacing system commands 9-1
 9.2 Context definition commands 9-9
 9.3 RRD Archive Management commands 9-11
 9.4 Filing and related commands 9-12
 9.5 Data accumulation commands 9-14
 9.6 Reduced data display and reduction commands 9-20
 9.6.1 Display of file content in alphanumeric form 9-20
 9.6.2 Display of files in graphical form 9-21
 9.7 Data analysis commands 9-33
 9.7.1 Energy spectra analysis commands 9-33
 9.7.2 Timing analysis commands 9-40
 9.7.3 Image analysis commands 9-44
 9.7.4 Auxiliary commands 9-46
 9.8 Experiment simulation commands 9-47
 9.9 Reduced data archiving and format conversion commands 9-48
 9.10 Automatic analysis and result data base 9-50
10. Mail and Networking area 10-1
11. XAS Distribution Policy 11-1
12. Program Development in XAS 12-1
 12.1 Tools for program development 12-2
 12.2 Rules for program development 12-4
13. Rules for XAS Documentation 13-1
 13.1 Users’ Documentation 13-1
 13.1.1 On-line documentation 13-1
 13.1.2 Users’ Manual 13-2
 13.2 Programmers Documentation 13-2
 13.3 Documentation format and configuration control 13-3
1. Context

The functions and activities of the SAX "Centro Dati Scientifici" (SDC) have originally been outlined in the document "A Proposal for the Organization of the Activities concerning the SAX Data Analysis, Calibration, Distribution and Archive (the "Centro Dati Scientifici")," prepared by the SAX Data Analysis Working Group (DAWG) and dated December 15th, 1987 (RD 1), which was approved by the SAX Coordination Group (SCG) at its meeting of January 28th, 1988. At the same meeting a definition team (DT, composed by L. Chiappetti, acting as coordinator, M. Morini, acting as deputy coordinator, D. Dal Fiume, P. Ubertini, plus M. B. Negri as observer for PSN and M. Manca as observer for Telespazio) was set up (formalized at the SCG meeting of June 30th, 1988).

An extensive set of preliminary elements for discussion (mainly about the SDC software) have been put forward in the document "Elements for a discussion concerning the SAX CDS software components" dated March 31st, 1988 (RD 2), compiled by the coordinators and discussed at the DT meeting of April 27th, 1988. As some elements, mainly concerning management or anyhow non-software items, were felt to be missing, a further document was prepared after the plenary DAWG meeting of June 6th, 1988. This is the document "Considerazioni del Data Analysis Working Group sulla realizzazione del CDS (SAX/CDS/02)" dated June 17th, 1988 (RD 3), which was submitted to the SAX Program Manager by the Program Scientist in charge at the time.

The hardware components of the SDC, in terms of requirements, are described in the document "Computer System Requirements for SAX Scientific Data Analysis" dated September 8th, 1987 (RD 4), compiled by a subgroup of the SAX Ground Segment Working Group (GSWG). This description pertains to a SAX Computer System (SCS), which includes the Local Centres (LC) at the Institutes and the SDC proper (note that, for what concerns the software to be developed, the SDC is to be intended as comprehensive of the Local Centres). A revision of such document (RD 4b), limited to the selected starting configuration for the LCS has been prepared in June 1989 as requested by ASI for the contract for the Bridging Phase of the SAX Ground Segment. The activities for the procurement of the hardware at the Local Centres were started within a dedicated Technical Committee nominated by the PSN on December 1st, 1987, which defined a hardware configuration based on a DEC VAX machine running under the VMS operating system, described in the document "Definizione dei sistemi di calcolo locali per il programma SAX" dated February 29th, 1988 (RD 5).

This document is intended to expand RD 2 and to give the full detail about the X-ray Astronomy analysis System. The format of this document is that of specifications; the reader should however consider that the development of a system of this kind is a multi-step process in which programs are stepwise refined and modified.

The ideas expressed herein remain intellectual property of the authors, which reserve to themselves the right of using such ideas, jointly or individually, in the context of other research projects.

At the same time of the first public release (0.3) of the present document, extensive discussion has occurred with ASI about the nature and status of the SDC. As such it has been agreed that the SDC would be developed by ASI within the framework of the Ground Segment contract, or anyhow related to it, and that part of the activities of the SDC could be fulfilled within an industrial contract. Such Mission Support activities are therefore described in a requirement document prepared for ASI ("SAX Scientific Data Centre Requirements; SAX/GS/SDCUR, June 1989, RD 6).
2.1 Organization of the Document and Mexico Definition

2.1.1 Essential of OVA

The OVA model is a standard for encoding and decoding of a vast array of audio data. It is designed to provide a high-quality audio experience for various applications, including video games, audio streaming, and on-demand audio services. The model is based on the principles of perceptual coding, which aims to preserve the perceptual quality of the audio while reducing the amount of data required for transmission.

The OVA model is structured into several layers, each responsible for different aspects of the audio compression and decompression process. These layers include the source model, the transform layer, the quantization layer, and the error concealment layer. Each layer is designed to work together to ensure the highest possible quality of the audio content.

The source model is responsible for representing the audio signal in a form that can be efficiently compressed. The transform layer converts the source model into a form that is more suitable for compression. The quantization layer further reduces the amount of data by quantizing the transformed signal. Finally, the error concealment layer provides a means to recover from transmission errors.

The OVA model is designed to be flexible, allowing for the implementation of different compression algorithms and audio quality levels. This flexibility makes it suitable for a wide range of applications, from low-bandwidth audio streams to high-quality, high-bandwidth audio signals.

In summary, the OVA model is a powerful tool for audio compression and decompression, providing a high-quality audio experience while minimizing the amount of data required for transmission.
3. VOS Specifications

VOS Specifications

In the event of any conflict, the following VOS Specifications will prevail.

The inclusion of this section in the VOS Specifications does not mean that this section is not part of the specification for VOS. The VOS Specifications are intended to provide a framework for the implementation of VOS, and do not replace the requirements detailed in the relevant VOS Guidelines and Standards. The VOS Specifications are subject to change, and users are encouraged to check for updates regularly.

The VOS Specifications are structured to ensure that all aspects of VOS are covered. The sections are organized into major categories, with each category containing specific requirements and guidelines. Users of VOS are encouraged to familiarize themselves with all sections to ensure compliance with the VOS Specifications.

In the event of any conflict, the following VOS Specifications will prevail.

The inclusion of this section in the VOS Specifications does not mean that this section is not part of the specification for VOS. The VOS Specifications are intended to provide a framework for the implementation of VOS, and do not replace the requirements detailed in the relevant VOS Guidelines and Standards. The VOS Specifications are subject to change, and users are encouraged to check for updates regularly.

The VOS Specifications are structured to ensure that all aspects of VOS are covered. The sections are organized into major categories, with each category containing specific requirements and guidelines. Users of VOS are encouraged to familiarize themselves with all sections to ensure compliance with the VOS Specifications.

In the event of any conflict, the following VOS Specifications will prevail.

The inclusion of this section in the VOS Specifications does not mean that this section is not part of the specification for VOS. The VOS Specifications are intended to provide a framework for the implementation of VOS, and do not replace the requirements detailed in the relevant VOS Guidelines and Standards. The VOS Specifications are subject to change, and users are encouraged to check for updates regularly.

The VOS Specifications are structured to ensure that all aspects of VOS are covered. The sections are organized into major categories, with each category containing specific requirements and guidelines. Users of VOS are encouraged to familiarize themselves with all sections to ensure compliance with the VOS Specifications.
4.2 Specifications

4.2.1 General Requirements
5. User Interface Specifications

XSV SOFTWARE SPECIFICATIONS

4.4 Virtual Array Processor

4.4.1 Introduction

The definition of the virtual array processor device and the specifications of the virtual array processor interface are held in the file "04.11990". This file contains the complete specifications and the interface details of the virtual array processor. The specifications include the processor's architecture, memory management, and communication protocols. The file is structured in a way that allows for easy reference and modification, ensuring that the processor can be efficiently integrated into various applications.

5. User Interface Specifications

XSV SOFTWARE SPECIFICATIONS

The user interface specifications for the virtual array processor are detailed in this section. The specifications cover the graphical user interface (GUI) design, input/output (I/O) operations, and the interaction with other components of the system. The specifications include the layout of the user interface, the functionality of each component, and the protocols for data exchange. The user interface is designed to be intuitive and user-friendly, allowing for efficient and effective use of the processor's capabilities.

In conclusion, the virtual array processor is a powerful tool that can be used in various applications, from scientific research to engineering projects. The specifications in "04.11990" provide a comprehensive guide for developers, ensuring that they can integrate the processor seamlessly into their projects. The user interface specifications are designed to enhance the user experience, making the processor accessible to a wide range of users.
The Disk Space Management Rules

This section describes the policies and procedures for managing disk space. The rules outlined here are designed to ensure efficient and effective use of disk space, preventing overuse and ensuring system stability.

1. Disk Space Assessment
 - Regularly monitor disk usage to identify potential issues.
 - Use tools and utilities provided by the operating system.

2. Disk Space Allocation
 - Assign disk space to applications and services based on specific requirements.
 - Ensure that critical systems receive priority.

3. Disk Space Optimization
 - Implement strategies to reduce disk usage, such as compression and data deduplication.
 - Regularly review and adjust disk space allocation as needed.

4. Disk Space Monitoring
 - Set up alerts and notifications for disk space usage.
 - Monitor system logs for disk space-related anomalies.

5. Disk Space Cleanup
 - Periodically clean up unused or unnecessary files.
 - Implement automated processes for routine cleanup.

6. Disk Space Auditing
 - Regularly audit disk usage and space allocation policies.
 - Ensure compliance with organization policies and standards.

By following these rules, organizations can effectively manage disk space, ensuring that resources are used efficiently and system performance is optimized.

Additional Resources:
- [Disk Space Management Best Practices](link)
- [Disk Space Monitoring Tools](link)
- [Disk Space Optimization Techniques](link)
7.1 Data Flow

The transfer in this chapter has been omitted. The transfer of simple command parameters (e.g., status, error codes) is straightforward and can be accomplished by sending the appropriate data over the data communication protocol. The data is then transferred from one X-ray system to another, utilizing the appropriate communication protocol. This process is repeated until all data has been transmitted.

7.2 Rayon Specifications

XAX SOFTWARE SPECIFICATIONS

The system is configured with the specification of the minimum number of data elements required for the transmission of the data.

The data is then transferred from one X-ray system to another, utilizing the appropriate communication protocol. This process is repeated until all data has been transmitted.
1. Introduction to the XAX Monitor

8. XAX Monitor Specifications

XAX Software Specifications

System specifications are needed to ensure the system commands interact correctly.

It is required that the system commands be provided in a manner that is consistent with the XAX specifications. The XAX software specifications outline the necessary system commands and their interactions.

Following categories are included in the XAX Software Specifications:

- System commands
- External application programs
- XAX internal commands
- Addressable units (or sections) and the XAX commands associated with them.
9 XAXS Command Specifications

XXAX Command Specifications

Applies to: xxax

This document contains specifications for the XAXS command. The XAXS command is used for interacting with the XAXS system. The command is typically used to perform operations on the XAXS system, such as sending data to the system or querying the system for information.

The XAXS command is specified in the following syntax:

```
XAXS <command> <arguments>
```

Where `<command>` is the specific command being used, and `<arguments>` are the parameters associated with the command.

Examples of XAXS commands include:

- `XAXS LIST` to list all available commands
- `XAXS QUERY <data>` to query the XAXS system for a specific piece of data
- `XAXS SEND <data>` to send data to the XAXS system

The XAXS command is case-sensitive and requires correct syntax to function correctly. It is recommended to consult the XAXS documentation for a complete list of commands and their specifications.

This document is part of a larger set of specifications for the XAXS system and is intended to provide a comprehensive guide for users of the XAXS system.