.pl 60
.mb 3
fare "OR 72

.fo IFC software documentation User-program
communication

The new user—-program communication package

Software and documentation prepared by:
L.Chiappetti - IFC Milano

12 August 1987

1. Introduction

1.1 Motivations

The NEW user-program communication package here described
replaces the already existing interface, commonly known
as RHPAR package. The reason to develop a user-program
communication package has a twofold orientation

One direction is towards the USER. This was the basic
motivation for the development of the original RHPAR package.
At the origin one had a few basic observations : on one hand
users in the astronomical community are accustomed to deal
with command languages, which however have a very strict,
often unfriendly syntax. On the other hand fully interactive
programs (either driven by a terminal dialogue, or by a menu
form) are useful for the beginner, but later it could get

boring to have to type a lot of responses (and also prone to
errors in the case of standard reduction procedures, when the
responses are always the same). Therefore the attempt to

develop a common interface, which could handle

Parameters passed in the run string (pseudo command
language)

Fully interactive terminal dialogue

Standard set-ups using a command file (pseudo batch
execution)

More user-directed motivations were the need for a
machine-independent interface (particularly considering
that even a simple thing like "list-directed" - i.e.
"free-format" - input is implemented in different ways

on different machines). For this reason it has been
decided not to include form-filling (menu-driven) input,
as this is generally very machine-dependent.

The second direction is towards the PROGRAMMER. The original

RHPAR interface (hereafter referred to as Version 1) was quite
awkward to use, had a complex syntax, etc. At the time this
was not felt as a problem, but now, with an expanded usage
of the interfaces, the time is ripe to provide a new, fully
machine-independent, simplified interface, which any
scientific programmer can use.

.he User-program communication
Page #

.Cpb

1.2 History

The original Version 1 package was developed by the author
at the Exosat Observatory, ESOC on an HP RTE4 system
under FTN4X Fortran for use in the Exosat LE calibration
software, and tuned, after discussion with P.Giommi for
use in the LE Interactive Analysis software. Both
software packages used a pseudo command language approach
(i.e. each command was an independent program). The
Version 1 package was built around the HP system-
provided routine RHPAR (a command string parsing routine),
and made no use of the CHARACTER data type (not available
at the time), nor was optimized for programmer-—
friendliness, although it served all the purposes it was
built for.

A later implementation by the author, still on the same
system as above, was the replacement of the system-
provided RHPAR routine with an emulating parsing routine
(so called RXPAR-package), which is able to access
command strings generated inside a program. This,

together with the rest of the Version 1 package, is used in
L.Stella's Timing Interactive package TINTE.

Both variants were succesfully imported on the IFC HP
system, under RTE 6/VM and FTN7X, although no attempt
was made to implement new features (like e.g. CHARACTER
variables).

Finally a Version 1 package for IBM systems (under VM/SP
and VS Fortran) was developed by the author at IFC,
for use in the Milano Exosat analysis facilities. The
only actual requirements for such an implementation were

a way of passing argument strings to programs, and a new
RHPAR emulation routine. However some modifications were
made to the rest of the package as well, to support
CHARACTER variables instead of INTEGER*2 arrays, and to
cope with incompatibilities between HP and IBM systems
(e.g. due to the fact one is a 16-bit and the other a
32-bit machine). A complete description of the user's
features is provided in Chiappetti et al. (1987, Proc. 3rd
Cosm. Phys. Nat. Conf., 289).

The latter modifications hindered the compatibility and the
exchange of software between the two systems, which was
possible only imposing a set of rules (like it has been
done for the IFC temporal analysis package).

Hence the need of rebuilding a new package (the present
Version 2), which is truly machine-independent, and is
described in the present document. It 1s hoped this
package can be easily transported to other machines (e.g.
VAX) withy minimum effort.

1.3 New features

This section 1s mainly concerned with users familiar
with the Version 1 RHPAR package. The functioning of the
package, 1in regards of the users, is unchanged (see the
Exosat System Handbook, by L.Chiappetti & B.Garilli,
section 2.9, and Chiappetti et al., op.cit. section 3). See
my note (CONVERS.IA) of May 5, 1987 for programmers
instruction about the use of the Version 1 package.

Under Version 1 programs using a command file called routine
FROM, and programs using no command file did not call any
routine. ©Now all programs shall call routine COMFIL.
Additionally, HP programs using no command file do not need a
SFILES directive any more.

Under Version 1 different routines (RDPAR, RDARR, RDANG) were
used to read a single parameter, or an array of parameters
of the same type. The calling interface for such
routines was slightly different on different machines. An
unique routine READIN replaces all the above, enabling to
read any number of parameters of mixed types, including
characters.

Under Version 1 echo of strings (not read from the
terminal) was care of the user program. This is now

automatically handled by READIN. Also all logical unit
assignment are concealed to the user.

Under Version 1, in the case the dialogue of a
program was depending on some of the preceding answers, it
was care of the user program to keep trace of parameter
numbering. Now READIN is able to read by default the next
parameter, unless otherwise instructed.

Under Version 1 the escape character in command files
(used to force terminal input) was a backslash on HP and a
slash on IBM. Now both are supported on both machines. A
terminal EOF handling for IBM is also provided.

A set of "interrogation"™ utilities, not available in Version

1, is also provided, together with new character
string handling utilities.

1.4 Scheme

A typical program generally requires the following
actions to be performed

a get access to a command file, if any

bl set default values to parameters

b2 write a prompt to user terminal

b3 get a reply from run string, command file or terminal
b4 read the values from the reply

b5 echo the reply

b6 1if an error 1is encountered act in consequencecontinue
processing

the above is done for each read

The above is implemented under Version 2 as follows (steps Dbl
and b2 are of course care of the user) :

.Cp2
a call routine COMFIL to access the command file (if any) or
set the appropriate logical unit (if reading from terminal)

b3 call READIN from run string, command file or terminal

b4 do a formatted or free-format internal read from the
string generated by READIN (for characters see also 9.2)

b5 echo is handled automatically by READIN (this means the
string as read is echoed, not the wvalues !)

b6 obtain information about errors in READIN via routine

COMERR, and about conversion errors in the internal read via
IOSTAT keyword, then act in consequence

1.5 HP implementation notes

The software for the Version 2 package (with the
exception of RCPAR, see 2.2 below) is provided at IFC in
library &LBINT (source) and $LBINT (relocatable).

1.6 IBM implementation notes

The software for the Version 2 package is provided at
IFC in library LUCIOLIB LIBRARY (source) and as separate
members 1in LUCIOLIB TXTLIB (relocatable).

2. The basic interface routine RCPAR

The function RCPAR is the (machine-dependent) interface
routine which retrieves the command string and parses it in
separate parameters. It 1is the only routine which is
fully machine-dependent. A machine-specific copy of it
shall be provided on each machine where the package is
going to be implemented, and is likely to be radically
different on each. All other routines will only require
minor tuning. RCPAR in Version 2 replaces the RHPAR
parsing routine.

It is likely that the user never calls RCPAR directly. It
is called internally by COMFIL and READIN to get a
parameter. The Dbasic syntax and some implementation
notes follow. The calling sequence 1is

LENGTH = RCPAR (N, STRING)
RCPAR shall be defined as INTEGER tout court. It returns the
Nth parameter in the runstring in the CHARACTER variable
STRING. It also returns the length of the parameter string

read in (it returns 0 if no parameter has been found).

2.1 General implementation notes

The RCPAR function acquires the runstring the first time is
called, then keeps 1t internally. The acquisition is
machine dependent (see below). The RCPAR function

also parses the runstring in separate parameters. The
parameter separator (unique) can be encoded in the RCPAR
Fortran code (see below for implementations).

2.2 HP implementation notes

On HP RCPAR is a system-provided routine (see exception
below) .

On HP RCPAR (see Fortran FTN7X manual) may be called as a
function or as subroutine. Always call it as a function for
compatibility.

On HP a runstring generated when invoking a program from
FMGR is of the form RU,program,pl,p2 ... RCPAR
therefore expects two parameters (or at least two
commas) before the first parameter. When passing a
runstring to a program scheduled via CALL EXEC, the buffer
shall begin with two commas.

On HP the parameter separator is a single comma

On HP a parameter may be skipped (null parameter) just
using two consecutive commas

In the case one wants to generate the runstring in a
program and process 1t internally (i.e. as TINTE does
with the emulation of RHPAR provided in file %RXPAR), one
needs to load an emulation of the system RCPAR. The code
(untested) for such emulation is provided (commented out).
The runstring shall be inserted, care of the user program,
in common block /PASS/ (also provided, commented out).
The emulation shall be copied in a separate file,

compiled and linked explicitly.

2.3 IBM implementation notes

On IBM RCPAR is emulated by dedicated Fortran code.
On IBM RCPAR shall be called as a function only.

On IBM the runstring is generated in the calling EXEC with
a statement like

&S = &STRING OF &1 &2 &3 &4

and passed through the console stack as &STACK &S. Note
that RCPAR expects one true blank before the first
parameter (this 1is for compatibility with the HP
original. When typing in the above statement, two blanks
(one separator and one "datum") shall follow the words

STRING OF mandatorily. The console stack (terminal) is
expected on logical unit 5.

On IBM the parameter separator is a single blank. The EXEC
processor will automatically remove surplus blanks.

On IBM a parameter may be skipped (null parameter)
using a placeholder (minus sign). Do not use consecutive
blanks.

No applications using common block /PASS/ are foreseen on
IBM.

The IBM RCPAR disables with a CALL ERRSET the "end of
record" error (error 212), occurring when a string shorter
than expected is read in with an A format.

.cp5
3. Command file access through COMFIL

The COMFIL function shall be called at the beginning of a
program (replacing the call to FROM and all ECHO settings
of Version 1), either if using a command file or not, as
follows

FNAME=COMFIL (K)

Both FNAME and COMFIL shall be declared CHARACTER*12 (this is
likely to be enough on most machines). The K parameters shall
be set to 0 if the program 1is not using any command file.
Otherwise K is the parameter number of the command file
(generally K=1, since the command file is the first parameter).
The function returns the name of the command file (or the word
TERMINAL) .

The logical unit associated to the command file and to the
terminal are those specified in common block /COMCOM/ (see 5

below) .

3.1 HP implementation notes

On HP the command file, on LU 99, is opened with a named

OPEN. The terminal is accessed directly on LU 1 (hence no

SFILES directive is any more required when no command file
is used).

3.2 IBM implementation notes

On IBM the command file, on LU 51, is opened with an OPEN
by unit. The association with unit 51 shall be done via a
FILEDEF 1in the calling EXEC. The terminal is accessed
directly on unit 5 (include a FILEDEF if necessary).

4. Parameter access via READIN

The way to access one or more parameters is here
described. All parameters accessed 1in a single read
shall be given on a single 1line (from terminal or
command file, missing ones may be defaulted with commas
in the case of free-format). If the first parameter of a
set 1s not ©present in the runstring, all the following
parameters read in in the same read are ignored. If the
one of the parameters other than the first 1s missing in
the runstring, it defaults to the previous wvalue. The
complete calling sequence to read a list of values,
including error handling, is

write a prompt

CALL READIN (N, M, MESSAG)

READ (MESSAG, format, IOSTAT=IERR [, ERR=nnn, END=nnn])list
IF (COMERR (KERR) .OR.IERR.NE.O) error action

.Ccp2

The arguments N and M to routine READIN indicate the first
parameter and the number of parameters to be read. If N is zero,
the next parameter is automatically read in. For clarity, it
is recommended to insert at the beginning of the program some
statements like

PARAMETER (NEXT=0,ONE=1)
then calls like the following will be immediately legible

CALL READIN (NEXT, ONE,MESSAG)
CALL READIN(7 , ONE, MESSAG)

respectively as "read in next parameter" and "read in parameter
7". In all cases the parameters are returned in CHARACTER
variable MESSAG (provide adequate length, maximum 130 chars).

The LOGICAL routine COMERR (see 6 below) traps any error
occurred 1in READIN. Conversion errors in the internal READ
shall be trapped autonomously (IOSTAT=IERR) and may be processed
separately (ERR=nnn etc.). See also implementation notes. Note
that MESSAG can be read with any user-defined format, although

one generally will use either free-format (*) for numeric
values and maybe for characters (see 9.2), or A-format for
characters (one might also use a direct character
assignment, which however does not improve legibility of the
program) .

Note that routine TRULEN (see 9.1) is called internally.
See 9.2 for character input handling.

READIN may generate an internal error 999 (trapped using COMERR)
in the case the concatenation of all parameter (strings) read
in exceeds the maximum length of the internal work area. Such
work area (as well as the maximum length of the runstring,

and the maximum length of a single parameter) is currently
fixed to 130 characters (this is consistent with IBM CMS
limitations).

4.1 HP implementation notes

The current version of READIN (as well of all Version 2
package) presume the FTN7X compiler has been generated in
66 compatibility mode (or option 66 is used).

Under such assumption, a carriage return when reading
from the terminal 1is NOT interpreted as End-of-file, but
just terminates current read (default).

A control-D is instead interpreted as EOF. This (or a
command file EOF) returns error -1 (when calling COMERR).

There 1s a difference 1in the READIN code for HP, due
to the inability of FIN7X to handle null strings 1like
A(1:0), and to handle T"overlapping" assignments like A
(1:K)=A(1:L)//B (even 1if L<K).

The READ (MESSAG, *) statement, if MESSAG is empty, blank,
or does not contain some of the parameters, does not

trigger any error.

Format (conversion) errors in READ are trapped via IOSTAT.

4.2 IBM implementation notes

Contrary to IBM standards a carriage return when reading
from the terminal 1is trapped by the IBM version of
READIN and NOT interpreted as End-of-file, but just

terminates current read (default).

Since all actual terminal read is handled via A-format,
reading in a string, the IBM free-format prompt (?) is no
longer displayed.

Since no terminal EOF is therefore available, this is
simulated by the character sequence /*. This, when input
by a terminal, (or a command file EOF) returns error -1
(when calling COMERR) .

The READIN code for IBM presumes the ability to handle null
strings like A(1l:0), and to handle "overlapping”
assignments like A(1l:K)=A(1l:L)//B (even if L<K).

The READ (MESSAG, *) statement, if MESSAG is empty, blank,
or does not contain some of the parameters, triggers error
-1 (in IOSTAT).

Most format conversion errors in READ (like reading a
numeric value from a character field, which is read as all
zeros) do not trigger any error (refer to IBM VS Fortran
manual) .

5. The common block COMCOM

This common block contains all information used internally
by the Version 2 package. The relevant BLOCK DATA
contains all logical wunit customization. The common
block needs not to be included in the wuser program. A
description of the content follows. All values are

INTEGER tout court (or LOGICAL tout court), and defaults
to 16-bit, 32-bit or otherwise according to each machine's
default.

LUCOM is the current logical unit (set to LUIN or

LUFIL by COMFIL), from which command input is taken

ECHO (logical) is true if input is coming from a
command file, false if coming from a terminal.

LUTERM is the logical unit for messages (terminal output)
LUIN is the logical unit of the terminal (input)

NXTPAR is the next parameter to be read

LERR is the error code of last read

LUFIL is the logical unit for command files

All interrogation routines described below access this common
block.

LUFIL,LUIN and LUTERM are the values which may be customized
in the block data on different machines. All other
values are assigned internally.

.cp5
5.1 HP implementation notes

LUTERM 1is set to 1, LUIN is set to 1 and LUFIL is set
to 99 (therefore such logical unit number is reserved).

Necessary S$ALIAS directives are included in all routines.

5.2 IBM implementation notes

LUTERM is set to 61 (since 6, the default for terminal
output, 1is also the destination of error messages). A
FILEDEF 1is therefore necessary. LUIN 1is set to 5 and
LUFIL to 51 (this also requires a FILEDEF).

6. Query last error via COMERR

The logical function COMERR (declare as LOGICAL tout court)
is true if an error has occurred during last READIN. The
error value is returned in KERR, with the calling sequence

e.g.:
IF (COMERR (KERR)) GOTO 999

999 WRITE (luterm, 998)KERR
998 FORMAT (' Detected error ',Ib5)

7. Query if command file defined via COMAND
The logical function COMAND (declare as LOGICAL tout court)

is true if a command file is in use, and false if the
terminal is used as command file. The calling sequence

is e.g.:

IF (COMAND ())GOTO label

8. Query next parameter via COMNXT
The integer function COMNXT (declare as INTEGER tout court)
returns the number of the next parameter to be read. The

calling sequence is

I=COMNXT ()

9. Character handling utilities

9.1 True string length wvia TRULEN

The integer function TRULEN (declare INTEGER tout court)
is used internally, and may be used freely in any program
(even if not using the Version 2 communication package)
to obtain the true length of a character string, with
the following calling sequence

LENGTH=TRULEN (STRING)

The difference with the standard Fortran call LEN(STRING) is
clarified by the following example

let a variable be defined as CHARACTER*12 STRINGand be
assigned a value as STRING ='ARC'

LEN will always return 12 (the length of the allocated memory
area, so called "inherited length" in subroutines
with declaratives CHARACTER* (*)) , while TRULEN will
return 3, that 1s the 1length excluding any trailing blank.

9.2 Free—format character input with EXPAND

The way character string input is handled by standard
Fortran 1is not satisfactory, particularly with
multiple strings (arrays of strings). Let us assume for
example to have an array CHARACTER*6 ARR(3). One can always
read in such an array with a fixed format like (3 (A6,1X).
This implies on most machines (certainly on IBM and HP)
that it is care of the user to format the input field

AAADbbb BBBBbb Cbbbbb

where Db indicates a significative blank, will be read in
correctly as ARR(1l)="'AAA ', ARR(2)="'BBBB ', ARR(3)='C ',
but for instance

AAA BBBB C

will not be read correctly (ARR(1)="'AAA BB', etc.). Using a
generic A-format 1like (3(A,1X)) does not help in this case.
Use of a generic A-format (A) 1s however effective if one is

reading in a single string. The exact number of characters in
the string (eventually padded with blanks) is read in.

If one wants to read multiple strings, one may use list-
directed (free-format) input, however character free-format
expects each value to be enclosed in primes (gquotes), like

'"AAA' '"BRBRBRBR' 'C'

separated by blanks or commas. These will be succesfully read
in by a statement like READ(in, *)ARR. However it is
particularly annoying to have to include quotes,

specially when passing parameters 1in a runstring. To
overcome this, routine EXPAND may be used. The calling
sequence is

KERR=EXPAND (STRING)

where EXPAND shall be declared INTEGER tout court. KERR is
always zero, unless an error in EXPAND has occurred. EXPAND will
take a string, parse it in fields, each field being separated by
a single comma or blank, and rebuild a string containing all
fields enclosed in primes and separated by commas. The
following examples may help

AAA BBBB C becomes 'AAA', '"BBBB', 'C'
AAA, BBBB, C also becomes 'AAA', 'BBBB', 'C"
AAA BBB C becomes 'AAA'," ','BBB','C'

Since the replacement occurs in-place, there shall be enough
space left in STRING for the quotes (two for each field) to be
inserted. If this is not the case KERR is set to a non-zero
value. Note improper handling in the case more than one blank
are used to separate fields (third example above!).

A string, once reshuffled by EXPAND, may be read with
free-format. Summarizing a CALL READIN (NEXT, ONE,MESSAG) may be
followed by

READ (MESSAG, ' (A) ") STRING

which will work as well as
READ (MESSAG, *) STRING

for a single string, but for multiple string one shall use the
second form either passing parameters already enclosed in
quotes, or as follows:

KERR= EXPAND (MESSAG)
READ (MESSAG, *)ARR

Note however that any "missing" parameter is set to a null
string by READIN, and to blank by EXPAND, therefore the
corresponding value 1is assigned as blank (no default kept),
consistently with current character i/o handling. Similarly
occurs with an A-format with a single string. With free-format
in the case of a single string, or with EXPAND for multiple
string, a carriage return, or blank line in command file, will
however keep the default. This form is recommended, the other
shall be avoided, as well as reading in a mixture of
characters and numeric values, like 1.0,ABCD,3.5.

As implementation note, the basic version (IBM) assumes
Fortran to Dbe able to handle "overlapping string" assignments
like

STRING (1:)=PRIME//STRING(1:LL)

On machines (like HP) where this is not possible, alternative
coding shall be used (see the example in the HP implementation).

