.pl60

.mb 3

.po O

.he$SELISM The UNIQ command interface for VMS and Unix users -
Definition documentS$SELITE

.fOoSELISM The UNIQ interface - Definition Document - Dec 1990 -
Page #SELITESFF

The UNIQ interface

An unique command interface for VMS and Unix users
Definition document

prepared by L.Chiappetti - IFCTR
Dec 1990

0. Purpose

The purpose of the UNIQ interface is to define and
implement an uniform way by which users of different
operating systems may access the more usual commands
exactly in the same form, so that they can get
accustomed to only one syntax.

This will prevent annoying confusions when one has to
remember many different command forms. Morevover it will allow
a choice of the command syntax which is more natural and
comfortable than the one used by some operating system
(although this is somewhat subjective and linked to the
preference of the authors).

There are two documents related to the UNIQ interface. This
is the definition document (an earlier draft dated Aug 1990
was discussed with B.Garilli, whose comments are gratefully
acknowledged), which collects the requirements and guidelines,
and is not intended for general release. The second document
is the users guide, which should be available to the general
user.

The guidelines used are the following:

Only the more used, standard "file manager" commands
will be affected.

There will be almost no attempt to alter the file naming
(this 1is not a programmatic interface of the type provided
e.g. by the IRAF VOS or the proposed XAS VOS).

The new commands shall be implemented as far as possible
with plain synonyms (Unix csh aliases or VMS symbols) or by
simple ©procedures (Unix shell scripts or VMS .COM files)
at command interpreter level (e.g. DCL or csh). They will
not be implemented via higher level, compiled language
(e.g. Fortran) programs.

The starting implementation will consider VMS and Unix
under csh as target systems. The syntax will be chosen as
an intersection (in the authors' taste) of VMS and Unix,
to be as close as possible to natural language. MS-DOS will
also be considered as an example. The above statement
means that in general a command should be a
pronounciable verb, even if long (DELETE is preferred over
rm); and that the presence of "funny" characters (quotes,
square brackets, slashes etc.) shall be avoided
(unalias 1s preferred over DELETE/SYMBOL) .

.cp5
1. Logging in

1.1 Password and other security features

The setting wup of an account is subject to a number of local
(site—-dependent) arrangements. Therefore they are not
described here (for IFCTR refer to the announcement in "Nuove
facilities di calcolo presso IFCTR", and to the Blue Book).

The only control the general user will have about its own
account, 1s the choice of the password. This is done by
commands SET PASSWORD (VMS) and passwd (Unix). These commands
are used infrequently enough, that is not worthwhile to define
an UNIQ command.

1.2 Welcome and other system messages

It 1is desirable to have most of the site dependent
arrangements which should apply to each session (inclusive of
the definition of the UNIQ interface itself !!) to be handled
by a systemwide login procedure.

The exact content of such procedures is site-dependent and is

described elsewhere (see refs. in 1.1 above). These things are
however arranged differently in VMS and Unix systems (mostly
because Unix systems are generally "personal" or "single

user" workstations). A common arrangement is reached as

follows

Definitions which are permanent (e.qg. system logical
names referring to disks, or permanent server
processes) are Dbetter initiated at boot time. This is

done in VMS by the SYSTARTUP.COM and SYSTARTUP_V5.COM
files, and in Unix by the rc, rc.boot and rc.local
scripts.

Session definitions, applying to all users, are handled
in VMS by the SYLOGIN.COM file. There is no equivalent of
this in Unix: a reasonable solution is to have each
user's .login and .cshrc files linked to a common version.

This way a "system login" is actually executed first. See
1.3 below.

1.3 User defined login commands

Normally an user expects to be able to have a personal,
customized login procedure (a set of commands executed each
time the user logs 1in). In Unix one has in addition the
distinction between some commands which have to Dbe executed
in each shell, and some others only in the login shell. The
normal situation sees the files

VAX: LOGIN.COM

Unix: .cshrc (each shell) and .login (login shell only)
DOS: AUTOEXEC.BAT

IBM: PROFILE EXEC

HP: user HELLO file

.Cp2

Due to the arrangement of 1.2 above to simulate a

systemwide login procedure in Unix, the user cannot do
personal changes to .login and .cshrc. A file .mycshrc (called
immediately by .cshrc before exiting) is provided to perform
the function of user customizable login file.

1.4 the prompt

One nice feature offered by most operating system, is the
possibility of customizing the system prompt. In systems with an
hierarchy of subdirectories, it is quite handy to have the
current directory displayed as part of the prompt. This is done
very easily in MS-DOS.

The design goal is to provide the same facility as in MS-DOS,

i.e. to have (part of) the path displayed and updated
automatically when the directory 1s changed. However,
while the first part is easy 1in all systems, the second
(automatic update) is NOT provided by VMS or Unix.

To provide it one is forced to alter the "change directory"
(see 3.5) command to redefine the prompt.

The current choice is to have the prompt defined as follows

VMS: the last two components of the current path
Unix: the last component of the current path and the
command number

The implementation given is different. Therefore it is also
different the corrective action an user should take to define a
different prompt (e.g. the full path name, or a fixed
prompt), in the case one does not like the default one.

In VMS a global symbol PROMPT is called by the CD
command (see 3.5). The UNIQ choice defines this PROMPT to
point to a particular .COM file. The corrective action
in the user LOGIN.COM is to redefine this symbol to
point to an user .COM file, or to alias a fixed SET PROMPT
command.

In Unix the prompt definition is part of the redefinition
of the cd command (see 3.5) as an alias. The corrective
action in the wuser .mycshrc is to re-alias cd to a
string similar to the one 1in .cshrc, but with a
different prompt setting.

1.5 Getting help

Access to the system help files shall occur via an UNIQ
command. The modalities of the presentation of the help file
will be system dependent (use system's native facilities). The
proposed syntax is:

HELP topic

This command 1s native in VMS (also in IBM VM/SP);
an alias with man is necessary in Unix.

.cpl0

2. File names

2.1 Flements of file names

The syntax of a complete file name is quite different on the
various systems

VMS : node: :disk: [directory] fname.ftype;v
Unix: /filesystem/directory/fname

DOS: disk:\directory\fname.ftype

IBM: fname ftype fmode

HP: fname:sc:cr

there will Dbe no attemp at command interpreter level to
provide an unique filename mapping with a common syntax.
System dependent file names will be used. Also the wildcard
mechanism will be used in system dependent way.

As recommendations one might say that

Unix users are encouraged to use for their files (for
system—dependent files one has to live with whatever
convention is in use) a single dot in the filename, and to

use this consistently with an interpretation of the form
fname.ftype.

VMS users are encouraged to keep a single version of their
files. If for instance one defines a version limit of 2
for the wuser directories, this induces a behaviour
similar to what is common in Unix (that is two versions of
a file, like Unix name and name%, the current and the
backup one). The second version could then be purged as
soon as possible (at logout or at next login).

2.2 Types of files

The concept of file type has different meanings. On one hand
most systems (Unix Dbeing noticeable as not doing that
systematically) use a ftype item in the name to identify
families of files or similar wusage. This is covered by the last
recommendations in 2.1.

Not necessarily related with the naming, files may have
different structures or organizations (variable and fixed,
sequential and direct, etc.). This 1s a very fishy area, of
concern to programmers : some elements in this sense are
available in separate documentation ("A report on tests of

VMS-Unix file exchange", Aug 1990, by L.Chiappetti).

2.3 Security of files

Protection of files 1is arranged in different ways (based
on disk protections on systems like IBM or HP, the latter
with the additional security code; Dbased on an access mask on
systems like VMS and Unix, unfortunately with different
modalities).

One set of recommendations may include

System disk area will be left alone (system-dependent
protection) .However it will be preferred (e.g. for all
public system utilities, as well as for the astronomical
packages) to have publicly readable areas (read-and-execute
access for all).

Truly public data areas will have read-and-write access for
all

Private areas, according to sense of privacy of the owner,
may have either read-and-execute for all, and write for
the owner; or no access for others than the owner.

As far as possible the following mapping of protections
shall be enforced between VMS and Unix systems

VMS OWNER and SYSTEM shall be the same as Unix user.
VMS GROUP shall be the same as Unix group

VMS WORLD shall be the same as Unix other

GROUP and WORLD (group and other) shall be the same
(groups shall be ignored for our purposes, as they are
an annoyance)In general write and delete access shall
go together.

At the level of the UNIQ interface there could be commands to

set the default protection (SET PROT/DEFAULT or umask)
change file protection (SET FILE/PROT or chmod)
change file owner (SET FILE/OWNER or chown)

However the first command (setting file protection) is seldom
necessary, as this will be arranged in the systemwide or user
login. The last command (change owner) is restricted to
SYSTEM (or root), and not available to the general user.

In both cases there is no need for an UNIQ command.

One 1s therefore left with a single set of commands to
change file protection, preferably using a rwx nomenclature
and not a a 777 nomenclature. The first two are recommended,
and the last should be unnecessary (the rule is group=world for
what protections are concerned).

protuser prot set Unix u, VMS S+0 to prot
protother prot set Unix go, VMS G+W to prot
protgroup prot set Unix g, VMS G

.cp20

3. Disk space organization

3.1 Directories and disk sections

One first difference is between systems oriented towards
fixed disk sections (primarily IBM virtual disks or HP
cartridges), and systems oriented towards freely-growing
directories (DOS, VMS and Unix). The latter three share of
course a fixed-size limitation given by the physical disks
(or partition in Unix) size. However in VMS (and DOS) the disk
volume 1s an independent part of the file name, while in Unix
the filesystem (either disk or disk partition) can be mounted
anywhere in a tree.

It would be desirable, at least for some purposes, to adopt an
unique logical scheme similar to Unix, but possibly this goes
beyond the UNIQ interface.

Also it 1s not proposed to change the directory naming in
general, Dbut only for applications like the "cd" command (see

3.5 below). The extent of this being applied to other commands
is worth discussing. In general a mapping of the type
described in 3.5 requires a dedicated command procedure (.COM

file or shell script), possibly through a common service
procedure, and forbids use of plain aliases (or VMS global
symbols) .

3.2 Directory listing

There are many variations on the format of a directory
listing. The proposal for the UNIQ interface is to select one
of those as default and access it via the following command

DIR pathname

This command can be implemented as an alias (symbol) in Unix
and VMS, provided one accepts to use system dependent pathnames.

All other forms will be accessible using the system dependent
commands (DIRE*CTORY in VMS and 1ls in Unix). So far the
pathname is in system dependent format (at a later time one
might think to apply here too the scheme 3.5 below for naming).

It could also be nice to have a DIR which produces an unique
format which is system independent (typically one which
indicates filesizes 1in kbytes and not system-dependent blocks,
or which treats filenames and types as separately aligned
fields), but this requires at least a procedure and possibly a
program.

It would also Dbe desireable to have directories sorted
by the parameters, particularly by file types.

Another desirable feature, which however requires a program,
is an utility similar to the IBM FILELIST or DOS PCTOOLS (full
screen display with possibility of selecting files for
operation).

.cp5
3.3 Disk space available

As a second priority proposal for the UNIQ interface are
commands to:

get the total disk space occupied and free (also as
percentage of the total, similar to IBM Q DISK) for a

physical disk (proposed command name qdisk)

same for a directory (% of quota if setup ?); proposed
command name is qgdir.

a command (cfr. EXEC SIZE on IBM) which returns just the
number of kbtyes for a family of files. Proposed command

name size.

All the above commands should return the quantities in kbytes.

3.4 Access to new disk sections

While access to new disks on fixed-disk systems is complex and
generally possible for temp space only (cfr. IBM DEFINE,

ACCESS and LINK; or HP AC, MC; cfr. also DOS SUBST), this is a
common operation for hierarchical directory systems, and is
candidate for an UNIQ interface command with syntax:

mkdir directory

This is native in Unix, and can be aliased to CREATE/DIRECTORY
in VMS. I propose to set up also some directory
characteristics at this time if possible (e.g. /VERSION in
VMS). TBV if normal file protections are OK for directories.

So far the directory name shall be specified in system dependent
format (only later in the 3.5 format).

3.5 Moving between disk sections

One has first of all to know on which disk a file will be
sought by default, and possibily a way to change this. For
fixed-disk systems this is not always possible, or is quite
rigid (not on HP, vyes on IBM changing a disk mode), while
for directory-oriented systems is a common operation. The
proposal for the UNIQ interface is to have two commands:

cd directory to change the current directory
pwd to know which is the current directory

Although two such command are available in Unix, they need
rewriting. The reason for that is to make them emulate the DOS
CD command, which, in addition to the change of directory
will also reset the current prompt (if arranged to display
the working directory). This does not occur in Unix. However
it can be arranged easily via aliases.It could be possible to
alias the two commands in VMS with SET DEF and SHO DEF. The
latter is OK, but the former is not acceptable. One reason is
the fact that SET DEF does not check on the existence of the
target directory, and VMS complains later. The other is that
the directory syntax of VMS is annoying. A .COM file 1is
therefore mandatory.

The ideal directory naming would be the Unix one, however this
cannot be emulated at DCL level because slashes are special
to it (qualifier delimiters). A different separator (dot or
backslash) should be used.

The following Unix features should be propagated into VMS
(appropriate separator substituted to Unix slash)

/ to map root (DUAO:[000000] ? what about other disks ?)
/dir absolute path, better than VMS [dir]
dir relative path, better than VMS [.dir]
current directory, better than VMS [] (unnecessary ?)
parent directory, better than VMS [-]

Additionally a "blank™ CD command will return to the home
directory.

One should also mantain the possibility of using a VMS
logical as pointer to a directory, and one is forced to keep
the separation between default device and directory. An
improvement w.r.t VMS SET DEF 1is to have a preliminary check
of the existence of the target directory, which is missing in
VMS (with great annoyance).

The following VMS features are absent in Unix, and will be
renounced

grandparent

all below current
all on volume

all one step below
etc.

A further gquestion concerns the setting up of a default

path for executable files (customary in Unix and DOS, but
unavailable in VMS), but this is beyond the UNIQ interface.

3.6 Losing access to disk sections

On fixed disk systems this might mean to hide a disk
temporarily (IBM RELEASE) or permanently (IBM DETACH, HP DC).
On a directory-oriented system it means deleting the directory
and the files below it.

The proposal for the UNIQ interface is a command

rmdir directory

If it is desired that this command automatically deletes all
files in the directory (i.e. "unconditional removal"), in
Unix it i1s necessary to set up an alias to rm -r. In VMS
probably one should use a small .COM file (first change
protections, then DELETE ... as directories are normally
delete-protected in VMS; look for examples in VMS manuals).

.cpl0
4. Handling files

4.1 Creating a file

It 1is not certain whether an utility to create a file without
use of an editor or program is needed. Were it desired, it is
possible to emulate the VMS CREATE command in Unix doing a cat
>file. This will not Dbe implemented in the UNIQ interface.

.cpb
4.2 Copving files

The basic proposal for the UNIQ interface is to have one simple
command with an uniform syntax like

COPY filel fileZ2

This 1s native in VMS, and a simple alias of cp in Unix.
However all peculiarities of the different systems are still
present.

At a later time it would be desirable to handle uniformly
within the UNIQ interface also the "append" and "replace"
functions of the copy command (in IBM terminology). The
"replace" function could easily be aliased to an OVERWRITE
command.

Finally it could be desirable (but possibly can be done only
with a program) to be able to specify a starting and ending
record for the copy (again the example is the IBM COPYFILE
command) .

4.3 Deleting files

In this case the proposal for the UNIQ interface has the syntax:

DELETE file

This 1s done in Unix with an alias of rm, and in VMS with
a small procedure (the main purpose of this is to force a
wildcard-version ;* when no version is specified).

It is suggested to use rm -1 as alias in Unix : this will ask
permission for deletion. This 1s useful due to the
"typeless" (and confusing) characteristic of Unix files, to

prevent unwanted deletions.

In VMS the usage of DEL*ETE as alias will prevent use of the
normal VMS DELETE command, unless this is first saved to some
other alias. It is to be verified how to preserve usage of the
qualifiers (e.g. /CONFIRM) and pass them to the .COM file.

.cp5
4.4 Renaming files

The obvious proposal for an UNIQ interface for this command is

RENAME oldname newname

However 1in both Unix and VMS the corresponding commands
(candidate for an alias) are mv and RENAME, which performs not
only a plain renaming, but also move the directory entry of
the file (still pointing to the same physical file), which
effectively moves the file to another directory.

If this feature is NOT wished as normal behaviour for RENAME
(1f one does not specify a path for newname, the risk is to
move it to the current directory !!), a special procedure
shall be replaced !!

4.5 Moving files

If the "move" feature 1is disabled for the UNIQ RENAME

command, a separate command MOVE could be implemented as an
alias of the "normal" (sic!) behaviour of mv and RENAME (as
suggested in 4.4).

(on fixed-disk systems this is a copy followed by a delete)

.Cpb
4.6 Others

A needed UNIQ interface command is required for typing a file

TYPE file

This shall be aliased in a way to stop display at the end of the
current page (more behaviour under Unix, TYPE/PAGE under VMS),
and possibly to avoid screwups of the terminal if non-printing
characters are 1in the file (a cat switch piped into more in
Unix, VMS ?27?7?).

A Browse-like utility could also be useful (typically
implemented by an edit with a READONLY flag).

A way of looking at a file in hex is also useful (an UNIQ alias
could be made of commands like Unix od or VMS DUMP, Dbut there
are many variants here; possibly only a reduced subset,
e.g. HEXTYPE, should be implemented in the UNIQ interface).

Possibly some form of UNIQ interface (without affecting the
way the system-dependent programs work) could be sought for

file comparing : diff and DIFF (unnecessary)

pattern search : grep and SEARCH

sorting : sort and SORT (unnecessary)
protections: see above 2.3

other file chars: in VMS SET FILE (does not apply to
Unix)

secondary names: Unix 1n (can be done in VMS SET FILE ?)

There 1is a bunch of functions in VMS (UNLOCK, ANA/RMS, SET RMS,
CONVERT, CREATE/FDL, EDIT/SUM, EDIT/FDL) which are system
dependent, but should be looked in detail.

5. Terminal characteristics

5.1 Kevboard characteristics

I propose that system-dependent ways of defining user keys etc.
are left alone and not made part of the UNIQ interface.

.cp3

For the rest it looks like that mapping of keyboards to force a
decent behaviour of VAX terminals (insert toggle, delete-
character in correct order, that is right of the cursor
position, etc.) 1s not possible.

The wuse of arrow keys to recall the commands is acceptable. A
similar facility for Unix shall be appreciated (better than

a !':p and editing with the mouse cut-and-paste), but
possibly requires too deep a change to the shell.

It 1is ©possible to alias the VMS RECALL command with HIS or
history (since it performs similarly to such Unix command) .

Conversely one could have an Unix alias recall to recall and
edit the n-th command.

It is a Dbit annoying that EOF is ctl-D in Unix and ctl-2Z

in VMS, particularly as ctl-Z puts an Unix process in "stopped"
status.

.cp4
5.2 Screen scroll etc.

This feature 1is terminal dependent, and is available in a
decent way only on HP terminals and Sunview windows.

5.3 Querving and setting terminal characteristics

It could be possible to define an UNIQ interface to the
commands used for terminal setting and status querying (SET
TERM and SHO TERM in VMS, tty, stty, tset in Unix). However
these commands are of rare use and complicate syntax. Possibly

a plain QTERM alias for the "query terminal" functions is enough.

5.4 Console spooling

The ©possibility of recording a terminal session in a file is
offered in a handy way only by IBM VM/SP. However in a window
environment like Sunview one has full scrolling functionality
as well as the possibility of doing cut-and-paste of a window
content into a file. In VMS the only way to do a console spool
is a self-SET-HOST with LOG.

No action for UNIQ interface.

6. Querying system characteristics

The following commands which ask system characteristics could be
unified under the UNIQ interface

query the time time (SHOW TIME in VMS, date in Unix)
set the time (not necessary, system manager only)
query CPU time (not necessary, cntl-T in VMS, not

available in Unix)

running programs status (aliased to some variant of ps
in UNIX, possibly to SHO SYS in VMS, see also SHOW
PROC/SYS STATUS, MONITOR

offing program by name (this may be some combination
of status and grep in Unix, where one need the process id

ti kill a process, this has no sense in VMS due to the
different definition of a process)

.cp’
7. Programming

7.1 Compiling
7.2 Linking
7.3 Managing libraries (Include and Relocatable libraries)

All this topics (for Fortran programmers) are handled in a
separate document as the "Real Programmer Tool" interface.

8. Editing

The only action at UNIQ interface level should be to call
EDIT the default editor (the most reasonable one). This
choice 1s 1left to individual user arrangements, except for
the definition of a set of suitable aliases for Sunview's
textedit.

Some key and command mapping shall be possible at least with
some editor (via initialization files).

9. Printing

In 1line of principle PRINT is an obvious candidate for
the UNIQ interface, however 1f one wants to control things
like printing in different fonts and orientations etc. a
different arrangement may be desirable.

The proposed solution sees on Vax a number of commands for the
different fonts : ELITE, SMALL and LANDSCAPE. For the time

being, while Sun has no dedicated printer, the vprint command is
used to route prints to the VAX LNO3.

Possible future improvements may concern a set of special
aliases to handle "file listing" prints (that is, prints in
which the first page - or all pages - are identified by an
header with the file name).

Other candidates for an UNIQ interface are commands to

look at print queue QUEUE (VMS SHO QUE, Unix lpq)

remove print job DEPRINT (VMS DEL/QUE..., UNix
lprm) .

Similar functions might be required for batch queues.

I would leave out of the UNIQ interface the management of print
queues. This 1is so far important only for VMS, and involves a
number of commands: ASSIGN/MERGE (DE)ASSIGN/QUE DEFINE/ and
DELETE/ CHAR and FORM, DELETE/QUE, INIT/QUE, SET DEV (SHO), SET
PRINTER (SHO), SET/QUE SHO/CHAR SHO/FORM START/QUE/MAN (and STOP)

10. Sending signals to system

It 1is difficult to find an unique way to interact with a
running program, or with the system while the program is
running (in the sense one does on HP BREAKing a program, oOr
replying to SS=nn prompt).

There is no space for the UNIQ interface anyhow.

Other areas regarding interaction with the system are:

a) the schedule of job at deferred times, or background jobs
HP: programmatic via EXEC calls;
IBM only disconnected mode;
UNIX: at and & commands, crontab;
VAX: RUN process, SET PROCESS, CANCEL, STOP, SYNCH, WAIT
or programmatic)

b) the use of batch jobs
partially overlaps with the above (Unix at; VMS SUBMIT;
see also JOB, PASSWORD, SET OUTPUT, SET RESTART);
involves all queue handling see 9.)

c) running in disconnected mode

Native in IBM; ©programmatic on HP; VMS
SPAWN+ATTACH+CONNECT+DISCONNECT; Unix nohup.

All the above features are wused seldom, mainly for
system administration, therefore +they will not be considered
by the UNIQ interface.

.cp5
11. Communicating with users

First of all there are two obvious candidates for an UNIQ
interface for a function available on most systems

getting logged user names: WHO VMS SHO USER; Unix
who
identifying oneself: IDENTIFY Unix who am i; VMS
TBD

11.1 One—-line messages

One-line messages are a useful, non-obtrusive way of sending
a brief message to an user.

It looks like there is no obvious way of sending one-line
messages (like the IBM TELL) on VMS (only operator can do it)
or Unix (write allows sending multi-line messages).
Nevertheless a TELL function would be useful.

11.2 Chatting

The "normal" way of talking with other people is a CHAT-like
interface, as provided by VMS PHONE or Unix talk (at least the
names could be unified at the level of UNIQ interface), which
is however a bit cumbersome.

.cpr4

11.3 Mail messages
This is handled in a separate document ("The Link Guide. An
Overview of networking within IFCTR computers") and is not

covered Dby the UNIQ interface.

11.4 Fxchanging files

This 1s also handled in separate documents (see mainly the
"Link Guide" quoted above, and references therein).

There are some different philosophies for what concerns file
transfer

apparently simpler is the remote file copy (as provided by
NFS or DECNET). The copy can be initiated at either end

("get" or "put"), but this is transparent only if there
are no security Dblocks, otherwise it becomes annoying to
supply username and password, and it might not be
possible to send a file to somebody without specific
arrangements.

the 1IBM scheme (which allows only "put" or sendfile
operations) uses an intermediate spool area. This is very
comfortable since one can send a file asynchronously,
without problems of password, and without cluttering the
user permanent area. An emulation of this could be nice.

the ftp scheme requires a sort of login on the remote
node, and therefore shares the problems of the first
philosophy. This is however the best solution for generic
file exchange.

It is proposed to leave this matter out of the UNIQ interface.
It could be possible to provide some simple aliases on a case
by case Dbasis (tovax, tosun, etc. ...). This is better handled
by each individual user according to one's specific needs.

11.5 remote login

It 1is not worthwhile to arrange an UNIQ interface for the
different remote login modes (SET HOST on VAX, rlogin, telnet on
Unix), but more a simple set of aliases (or even dedicated
captive accounts) for the most common nodes to be reached.

This is covered in detail in the document "The Link Guide"
quoted above.

11.6 inguiring on network

I do not know any easy way in TCP/IP to know whether a node
is there (except the Unix ping command), what is the path to
reach it and so on. The equivalent of ping under VMS UCX is
accessible to SYSTEM only.

The VAX SHO NET should offer some capability in this respect,
however I believe finding the exact path to a node requires lot
of interactions with NCP (similarly to the RSCS SMSG in
Bitnet). While it could be useful to provide wuser access
to some NCP functions, it 1is not worthwhile to have a
dedicated UNIQ interface.

.Cp6

11.7 message control

There are functions (like IBM SET MSG, VAX SET BROADCAST, Unix
biff and mesg) to control whether an user wants to allow
reception of incoming messages, "phone" calls and mail
notification. However it is not worthwhile to define an UNIQ
interface for these.

12. Handling tapes

12.1 tape control

It would be desirable to have an UNIQ interface command of the
form

TAPE command drive

where the drive name may be system dependent, and the commands
shall be of the form REWIND, FSF, FSR, BSF, BSR, EOF
(to rewind, skip file/records and write tape marks. (cfr. IBM
TAPE or HP *TAPE). VMS: SET MAGTAPE, Unix: mt. The drive
name could in line of principle have a fixed default for the
case a single tape drive is available. (A command would be
necessary to set the tape density, 1in Unix this will interact
with with the choice of the drive name). The default drive
name should be kept in some environment variable.

The UNIQ interface could also handle tape allocation and

mounting (ALLOC, MOUNT/FOR) and dismount (with or without
unload : DISMOUNT, DEALLOC) on VMS.

12.2 system backups

By definition each system has its own way of doing tape
backups (HP: SAVER/READR; IBM TAPE DUMP/LOAD/SCAN; Unix
tar,cpio; VAX BACKUP) and there 1is no sense 1n providing
an unique interface for what 1is intrinsically different.

12.3 file copving

It would be interesting instead to test whether there is a way
to copy files from/to disk to/from tape in a plain way (like
IBM's MOVEFILE; or Unix dd), handling also blocking/reblocking.

And also (provided there are two tapes) a simple way of copying

tape-to-tape (all, or by files) will be useful.

13. Logging out

Obviously the UNIQ interface should define a single LOG
command for this. What actions are performed is system
dependent (Unix foresees a .logout file to be executed then,
but other systems like VMS may require a procedure to be
written and aliased to the LOG command) .

.Cp6
Appendix

The number of commands in different systems according to their
manual or help files (normal users use only the first column;
the second column is for system management; the third column are
programming commands used in procedures, shell scripts, .COM
files, EXECs etc.; the fourth column cannot be classified of
common use.

machine all users system only procedures other total
HP 43 26 7 - 76
IBM 88 34 l6+exec 58 196
Unix Sun 125 175 50 300 >650
VAX 70 65 28 4 170

UNIQ 31 n/a n/a n/a 31

.pl60

.mb 3

.po O

.he$SELISM The UNIQ command interface for VMS and Unix users -
Users' GuideSELITE

.fOSELISM The UNIQ interface - Users' Guide - Dec 1990 - Page
#SELITESFEF

The UNIQ interface

An unique command interface for VMS and Unix users
Users' Guide

prepared by L.Chiappetti - IFCTR
Dec 1990

Table of content

0. Purpose
1. Introduction
1.1 Directory naming in the UNIQ interface
1.2 File naming in the UNIQ interface
1.3 File ownership and protection in the UNIQ
interface
1.4 Command abbreviation
2. Quick reference
2.1 Command overview (Table I)
2.2 Equivalence with system commands
2.2.1 VMS equivalences (Table II)
2.2.2 Unix equivalences (Table III)
2.3 Correspondence with system commands
2.3.1 VMS correspondences (Table IV)
2.3.2 Unix correspondences (Table V)
reference
Logging in
Changing file protections
Directory listing
Disk space available
Creating a new directory
Changing current directory
Deleting a directory
Copying files
.9 Deleting files
.10 Renaming and moving files
.11 Typing a file
.12 Stopping a program

c
=

O 10 Ul WD

WWWwWwwwwwwwwwHT

.13 Printing

.14 Logged on users

.15 Messages to users

.16 Mail, file exchange and remote login
.17 ftp file exchange

.18 Inquiring on network

.19 Handling tapes

.20 Logging out

W wwwwwww

.pa
0. Purpose

The purpose of the UNIQ interface is to define and
implement an uniform way by which users of different
operating systems may access the more usual commands
exactly in the same form, so that they can get
accustomed to only one syntax.

This will prevent annoying confusions when one has to
remember many different command forms. Morevover it will allow
a choice of the command syntax which is more natural and
comfortable than the one used by some operating system
(although this is somewhat subjective and linked to the
preference of the authors).

There are two documents related to the UNIQ interface. This is
the users guide, which should be sufficient to the general
user. A separate definition document collects the requirements
and guidelines used in the design of the interface (extensive
comments by B.Garilli are gratefully acknowledged), and is
available on request.

The guidelines used are the following:

Only the more wused, standard "file manager" commands
will Dbe affected.

There is almost no attempt to alter the file naming (this
is not a programmatic interface of the type provided e.g.
by IRAF)

The new commands are implemented as far as possible
with plain synonyms (Unix csh aliases or VMS symbols) or
by simple procedures (Unix shell scripts or VMS .COM
files) at command interpreter level (e.g. DCL or csh).
They are not implemented via higher level, compiled
language (e.g. Fortran) programs.

.cp50

The present implementation considers VMS and Unix under

csh as target systems. The syntax has been chosen as an

intersection (in the authors' taste) of VMS and Unix, to
be as close as possible to natural language. MS-DOS was

also considered as an example. The above statement

means that in general a command should be a pronounciable
verb, even if long (DELETE is preferred over rm); and
that the presence of "funny" characters (quotes, square
brackets, slashes etc.) shall be avoided (unalias 1is
preferred over DELETE/SYMBOL) .

1. Introduction

This guide 1is arranged in several sections. After this
general introduction, one finds a quick reference section,
with various tables, followed by a section with details on
specific commands.

The general introduction lists the basic concepts related to
the file system as seen by the UNIQ interface : directory
(path) names (1.1), file names (1.2), file ownership and

protection (1.3).

In the quick reference section (2) table I (section 2.1)

lists the functions covered by UNIQ commands (plus some
other useful commands), and gives the command name, and a
reference to the section where one can find more details
on the exact syntax (when an explicit reference to
section 3 is not given, this is found in Tables II-V).

Tables II and III (for VMS and Unix) in section 2.2 give the
system dependent commands equivalent to each UNIQ command.

These commands are those which are used by the UNIQ interface
to provide its full functions (which are often different from
the system native ones, as explained in section 3).

Tables IV and V (again for VMS and Unix) in section 2.3 give
instead a correspondence of UNIQ commands with some simple
native system dependent commands which provide a reasonable
approximation to the wished functions.

Instructions useful for migration to/from other systems and
sites, brief notes on the implementation of the command (what
to do to implement it on another computer), and also, for
commands fully replacing native commands, the instructions on
how to disable the UNIQ command can be found in Tables II-V

and,

in more detail, in section 3.

The complete syntax, and the differences in syntax and
performance with the system dependent standard commands,
are given in Section 3.

1.1 Directory naming in the UNIQ interface

Directory names are the first part of file names (see 1.2
below). They are different in the two systems :

VMS : device: [dir.dir.dir]

Unix: /dir/dir/dir

Moreover in VMS a logical name can take the place of a device or
directory name.

An UNIQ representation is defined for the purpose of some

commands only,

(simpler)

to be,

under UNIQ/VMS,
Unix definition.

closely resemblant to the

This applies to the commands which

act on directories only (typically QDIR, MKDIR, RMDIR
and possibly DIR and RENAME under some circumstances, when no
filename is used).

The UNIQ representation of directory names is an Unix (or MS-
DOS) like representation, which uses a backslash (\) instead of

the Unix slash (/) as
In additions

in VMS).

VMS peculiar forms :

separator

(slash is a reserved character
the UNIQ representation recognises some

UNIQ VMS equivalent Unix correspondent Meaning
[1 current
[-] parent
nothing SYSSLOGIN nothing see notes
\ [000000] / root
\dir\dir [dir.dir] /dir/dir absolute
dir\dir [.dir.dir] dir/dir relative
A\dir [.dir.dir] ./dir relative
..\dir [-.dir] ../dir brother
device: [dir.dir] device: [dir.dir] not applicable as in VMS
device:dir\dir device: [dir.dir] not applicable as previous
[dir.dir] [dir.dir] not applicable as in VMS
device: device: [000000] not applicable
device:\ device: [000000] not applicable
logical name logical name not applicable as in VMS
recognised [...] not applicable all subdir
recognised [*] not applicable all one down
recognised [——1 not applicable two up

etc.

Notes:

parent is the directory one level above the current one
brother is a subdirectory of parent

a blank is interpreted in a context dependent way; for CD
points to the home (SYSSLOGIN) directory, for other commands to
the current directory.

root is the root of the current default device, or of the
device explicitly specified

absolute paths refer to root, relative to current directory

any string containing a square bracket is untranslated and
assumed to map directly to a VMS pathname

any logical name is immediately recognised and honored
appropriately (this may imply a change of device)

anything containing a colon is assumed as a device name. If
the device and directory are valid, this is equivalent to
issuing a c¢d device: followed by a cd \dir\dir.

In all cases the UNIQ cd under VMS gives error (and remains
where it is) if the target directory is invalid or does not
exist.

.cp3
1.2 File naming in the UNIQ interface

Users are reminded that the syntax of a complete file name
is quite different on the two systems and is not affected by
the UNIQ interface.

In all cases a full file name (not just a directory name, for
which see 1.1 above) is required, the system dependent name is
used. This name has the form

VMS: node: :disk: [directory]fname.ftype;v
Unix: /filesystem/directory/fname

Note Unix has no explicit file type. Also the wildcard mechanism
will be used in system dependent way. Note also the way the
different networking/communication protocols and programs (e.g.
NFS, ftp, Decnet) map filenames among VMS and Unix systems
are not uniform, and often rigid.

Therefore one can just issue some simple recommendations

Unix users are encouraged to use for their files a single
dot 1in the filename, and to use this consistently with
an interpretation of the form fname.ftype (even if this is
not usual or necessary 1in Unix, and is not used by most
system files).

VMS users are encouraged to keep a single version of their
files, and purge them frequently. For typeless files, it is
recommended to add a dot to the end of the filename.

1.3 File ownership and protection in the UNIQ interface

It shall be noted that protection of files is arranged on
systems like VMS and Unix with different modalities. In
practice this means

VMS: has four wuser cathegories (system, owner,
group and world, or SOGW)
Unix: has three user cathegories (user, group and

other, or ugo)

VMS : has four kind of protections (read, write,
execute, delete, or RWED)
Unix: has three kind of protections (read, write,

execute, or rwx)
Also the way protections are expressed is system dependent.

The UNIQ interface recognises only two user cathegories

User maps to VMS OWNER and SYSTEM (they shall have
the same protection) and to Unix user.

Other maps to VMS GROUP and WORLD (or Unix group and
other). They shall have the same protection (groups are
ignored)

The UNIQ interface recognises only three kind of
protections. In practice this means that in VMS one shall
have both WRITE and DELETE access at the same time (this way
it maps to Unix write access).

The UNIQ interface always codes protections as three-—-letter
codes as follows:

rwx Unix rwx, VMS RWED
rw— Unix rw—-, VMS RWD

r—x Unix r-x, VMS RE

r—— Unix r, VMS R
WX Unix wx, VMS WED
w— Unix w, VMS W

X Unix x, VMS E

both no access

1.4 Command abbrewviation

Command abbreviation is NOT covered by the UNIQ interface, and
is left to the operating system native features. In practice
this means

On VMS systems : a native command can generally be abbreviated
to the minimum unambiguous abbreviation (or even extension !).
This is sometimes done in an excessive way (e.g. 1if you use a
non-existing command PRINTA, VMS will think you are using
PRINT !). The degree of abbreviation of an aliased command is
determined in its definition (a definition like COM*MAND ==
value will means that the word COMMAND can be abbreviated up to
the three letters COM, i.e. COM, COMM, COMMA, COMMAN). The
latter form of abbreviation may be used by the UNIQ interface,

and 1s indicated by the notation COMMAND (the part in boldface
is compulsory) .

On Unix systems : one generally does not have abbreviation
enabled. If an abbreviation is wished, this should be
explicitly aliased. In the example above one should first
define "command" and then explicit aliases for each form
like "com", "comm" etc. This is generally NOT done in the UNIQ
interface. When abbreviations are used, they are limited
explicitly to the particular form indicated : e.g. his and

history but not "hist", "histo" etc.

.cp50

2. Quick reference section

2.1 Command overview

Table I :

UNIQO command function overview

Function

logging in

change the user's password
on-line help

recalling the last commands given

editing the last command

changing a file's protection
user protections
group and world protections

making a file executable

directory listing

querying how much disk space
is available on a disk
is taken by a directory

is taken by a family of files

creating a new directory
changing the current directory
querying what is the current directory

deleting a directory and its content

copying a file
deleting a file
renaming a file

moving a file to another directory
typing a file to the terminal
looking at a file in full screen
editing a file

differences between two files
sorting a file

searching a pattern in a file

querying the system time

querying the status of running programs

stopping a program

compiling and linking a program

UNIQ command

system dependent
system dependent
help topic
history

system dependent

protuser prot file
protother prot file

makexec file

dir directory

gdisk disk
gdir directory

size file(s)

mkdir directory
cd directory
pwd

rmdir directory

copy filel file2
delete file(s)

rename file(s) newname

move file(s) newdir

type file
browse file

system dependent
diff filel file2
sort file

search file pattern

date

status

off process

see separate document

Ref.

w ow w =

(€]

.10
.10

w w w w

w

.11
3.11

note
note

note

.cp3

printing a file system dependent 3.13
querying the status of the print queue queue 3.13
aborting a print job deprint printjob 3.13
querying the logged-on users who 3.14
identifying who is using a terminal identify 3.14
sending one-line message to an user tell user message 3.15
chatting with an user phone user 3.15
sending mail to an user mail 3.16
remote file copy system dependent 3.16
remote login system dependent 3.16
Lransferring files via internet ftp 3.17
querying if a remote node is reachable 3.18
via internet ping node 3.18
via decnet isup node 3.18

operating with a magnetic tape

copying files from/to magnetic tape

tape command

to be arranged

.19

logging out of the system logout 3.20
outputting a text to the terminal echo -
remove an alias to a command unalias -

Note: commands diff, sort and search are not strictly part of
the UNIQ interface, as they are native commands (except for
UNIQ/Unix search which is an alias to the native command grep).
Their syntax and usage 1s heavily system dependent.
.pa

2.2 Equivalence with system commands

2.2.1 VMS eqguivalences

The next table gives the equivalence of UNIQ commands
with VMS commands, considering the implementation adopted.
Except for the case an UNIQ command is natively present in
VMS (in which case it uses the exact syntax of VMS), all
other UNIQ commands are implemented as aliases
(technically speaking, VMS global symbols).

In the case they point to an existing VMS command, with or
without non-default qualifiers, they are flagged in the
third column below as aliases and provide the standard VMS
function under a different name. Any argument required by the
VMS command is required also by the UNIQ command, with the VMS
syntax. The second column gives the equivalent VMS command in

full (if space allows; or a note for otherwise peculiar
cases) .

All remaining UNIQ commands are implemented as command
procedures (all files, whose name is indicated in the third
column) reside in directory [LOCAL]). Such commands may be of
two types :

providing a variant of a VMS function (e.g. allowing for a
different argument syntax, like e.g. the case of the
UNIQ directory naming), or provide a function not
available in VMS

alter the behaviour of a VMS command, in the case they
have the same name (e.g. DELETE, RENAME). In this case
pure VMS users shall refer to the detailed explanation to
know the difference, and to section 3 for instructions
in case they want to revert to the VMS standard behaviour.

Table IT : Equivalence of UNIQ command with system commands
UNIQ command VMS equivalence Implementation
logging in return then log in n/a
change password use SET PASSWORD n/a
help HELP topic native
history RECALL/ALL alias
edit last command up-arrow key n/a
change file protection use SET FILE/PROT
protuser command procedure PROTUSER.COM
protother command procedure PROTOTHER.COM
makexec not implemented not necessary
dir use DIRECTORY complex aliasor DIR.COM
.cp3
query disk space use SHOW DEV or DIR
qgdisk command procedure QDISK.COM
qgdir command procedure QDIR.COM
size command procedure SIZE.COM
mkdir command procedure MKDIR.COM
cd command procedure CD.COM
pwd SHOW DEFAULT alias
rmdir command procedure RMDIR.COM
copy COPY filel file2 native
delete command procedure DELETE.COM

rename command procedure RENAME .COM

move
type
browse

edit

diff
sort
search

date
status
off

compiling and

linking

printing
default font
elite font
small font

landscape font

queue
deprint
.cp3

who

identify

tell
phone
mail
ftp

query remote node
ping
isup

tape
tape copy

logout

echo

unalias

.pa

command procedure
TYPE/PAGE file
EDIT/READONLY file

EDIT (for default editor)

DIFF (system dependent)
SORT (system dependent)
SEARCH (system dependent)

SHOW TIME
SHOW SYSTEM
STOP process

described in the document

"The Real Programmer Tool"

use PRINT file
use ELITE file
use SMALL file
use LANDSCAPE file

SHOW QUE/ALL SYS$PRINT

command procedure

SHOW USER/INT/BAT/NET/FULL

command procedure

not available

PHONE user

MATL

alias to $UCXSFTP/ULTRIX

via UCX, system only

command procedure

command procedure

to be arranged

LOGOUT

WRITE SYS$OUTPUT
DELETE/SYMB/GLOB

2.2.2 Unix eguivalences

The next
with

can Dbe

SunOS Unix
implementation

table gives the equivalence of
(using csh),

commands

either

adopted. Except
command is natively present in
uses the exact syntax of Unix),
implemented

MOVE .COM
alias
alias

native

native
native

native

alias
alias

alias

native
complex alias
complex alias

complex alias

alias
DEPRINT.COM

alias
IDENTIFY.COM

native
native

alias
alias
ISUP.COM

TAPE.COM

native

alias

alias

for the

the other UNIQ

as Unix aliases

UNIQ commands
considering the
case an UNIQ

Unix (in which

case it
commands
by

executable shell scripts.

Items flagged in the third column below as aliases may
provide the default Unix function under a different name, or
provide an abbreviation of a native command (in this case they
are flagged as native/alias). Any argument required by the Unix
command is generally accepted by the UNIQ command, with the Unix
syntax, but in some cases the purpose of the UNIQ alias is just
to alter the order. The second column gives the definition used
in the alias command (inclusive of csh placeholders for the
arguments or argument list like \!* but without encircling
qguotes) 1if space allows; or a note for otherwise peculiar cases.

All remaining UNIQ commands are implemented as csh shell
scripts (all files, whose name is indicated in the third
column reside in directory /usr/local). Such commands may be of
two types :

providing a variant of a Unix function or a function not
available in Unix

alter the behaviour of a Unix command, in the case they
have the same name (e.g. cd). In this case pure Unix

users shall refer to the detailed explanation to know the
difference, and to section 3 for instructions in case

they want to revert to the Unix standard behaviour.

Table IIT : Eguivalence of UNIQO command with system

commands
UNIQ command Unix equivalence Implementation
logging in at prompt log in n/a
change password use passwd n/a
help man alias
history history native/alias
edit last command csh !n:s/a/b/ facility n/a
change file protection use chmod
protuser shell script protuser
protother shell script protother
makexec chmod a+x \!* alias
dir ls —aFl \!* | more alias
.cp4
query disk space use du or df

qdisk df \!* alias

qgdir

size

mkdir
cd
pwd

rmdir

copy
delete

rename

move

type
browse

edit

diff
sort
search

date

status
off

compiling and

linking

printing to Laserjet
default font
elite font
small font

landscape font

printing to VAX LNO3
elite font

other fonts

queue
deprint
.cp3
who

identify

tell
phone
mail
ftp

query remote node

shell script
shell script

mkdir
cd \!'*

echo $cwd

prompt setting
rm -r

cp -i

rm - i

shell script

shell script

cat -v \!* | more

view

alias to textedit

qdir

size

native
complex alias
alias

alias

alias
alias
rename

move

alias

alias

SunView only

use xedit if possible

use vi or ed etc.

diff
sort
grep \!':2 \!:1

date

ps —acgux \!* | more

shell script

described in the document

"The Real Programmer Tool"

use print
not available yet
use small

not available yet

use vprint
default with vprint
specify font to vprint

Ipg \!*
lprm \!*

who

use echo and environment

shell script
write

mail

ftp

native
native
alias

native

alias
off

alias

alias

shell script

alias

alias

native

complex alias

tell
alias
native

native

X-window only

all other cases

ping pPing native

isup alias using dnincp alias
tape shell script tape
tape copy to be arranged -=
logout logout native/alias
echo echo native
unalias unalias native

.pa
2.3 Correspondence with system commands

2.3.1 VMS correspondences

The next table gives the correspondence of UNIQ commands
with the closest VMS commands, considering the
implementation adopted. In all cases an UNIQ command is
not exactly aliased to a VMS command, this table gives a
VMS command which performs similarly, Dbut not identically
to the UNIQ command.

This table could be used by someone accustomed to UNIQ
commands, when moving to another VMS site, to find out simple
VMS commands which do the wished function. If one wants instead
to install the entire set of UNIQ commands on another site,

one should copy from IFCTR::DUAO:[LOCAL] the file UNIQ.COM
(alias definitions), and all other .COM files listed in Table
IT above, plus any other file eventually required by those

COM files.

The difference in behaviour between the UNIQ commands and
the VMS correspondences listed below are given in section 3.

Table IV : Closest system commands corresponding to UNIQ

commands
UNIQ command VMS equivalence
logging in standard login procedure
change password SET PASSWORD
help HELP topic
history RECALL/ALL
edit last command up-arrow key or RECALL n

change file protection use SET FILE/PROT in one of its variants
protuser SET FILE/PROT (O:prot,S:prot)
protother SET FILE/PROT (G:prot,W:prot)

dir

query

mkdir
cd
pwd

rmdir

.cp4
copy
delete
rename

move

type
browse
edit
diff
sort
search

date

status
off

compil

linkin

printi

queue

makexec

disk space
qgdisk
qgdir

size

ing

9

ng

deprint

, Cp3
who

identi

tell
phone
mail
ftp

query

fy

remote node
ping
isup

function not required in VMS

DIRECTORY with optional qualifiers

use closest match as indicated below
SHOW DEV device
DIR/GRAND/TOTAL directory
DIR/GRAND/TOTAL files

CREATE/DIRECTORY directory
SET DEFAULT directory
SHOW DEFAULT

cannot be done in a simple way

COPY filel file2
DELETE filename.typ;v
RENAME filel file2
RENAME filel file2

TYPE file (default is /NOPAGE)
EDIT/READONLY file
EDIT file (for default editor)

DIFF (see on-line help)
SORT (see on line help)
SEARCH (see on line help)

SHOW TIME

SHOW SYSTEM
STOP process

FORTRAN
LINK

PRINT file

SHOW QUEUE
DELETE/ENTRY printjob

SHOW USER
SHOW PROCESS

REPLY (operators only)

PHONE user

MATL

FTP (uses VMS syntax, not Unix like)

allowed with system privileges only via UCX
NCP TELL node SHOW EXEC

tape use SET MAGTAPE

tape copy

logout LOGOUT

echo WRITE SYS$OUTPUT string
unalias DELETE/SYMB/GLOB symbol
. pPa

2.3.2 Unix correspondences

The next table gives the correspondence of UNIQ commands
with the closest Unix commands, considering the
implementation adopted. In all cases an UNIQ command is
not exactly aliased to a Unix command, this table gives a
Unix command which performs similarly, but not identically
to the UNIQ command.

This table could be used by someone accustomed to UNIQ
commands, when moving to another Unix site, to find out simple
Unix commands which do the wished function. If one wants
instead to install the entire set of UNIQ commands on another
site, one should copy from sun!/usr/local the shell script
file unig (alias definitions), and all other shell scripts
listed in Table III above, plus any other file eventually
required by those files.

The difference in behaviour between the UNIQ commands and
the Uniqg correspondences listed below are given in section 3.

Table V : Closest system commands corresponding to UNIQ
commands
UNIQ command Unix equivalence
logging in local login procedure
change password passwd
help man topic
history history n
edit last command a general, but impractical way is provided by
csh. Otherwise, 1in SunView, use the cut and

paste facility.

change file protection use chmod with all its variants
protuser (for details see man page for chmod)
protother (for details see man page for chmod)
makexec chmod a+x file

dir use 1ls with all its variants

query disk space use du or df or perhaps find

gdisk df filesystem
qgdir du -s directory
size du -a file(s)
mkdir mkdir directory
cd cd dir (does not set the prompt by default)
pwd pwd
rmdir rmdir dir (not recursive or unconditional)
.cp4
copy cp (may be not protected for overwriting)
delete rm (may be not protected for overwriting)
rename mv (may be not protected for overwriting)
move mv (may be not protected for overwriting)
type use cat, more or page
browse view
edit use textedit in SunView, xedit in X-window and
vi or ed etc. in all other cases
diff diff
sort sort
search use grep or similar commands
date date
status use ps with all its variants
off use kill -9 with process number
compiling and £77
linking generally handled by £77 (else use 1ld)
printing the default Unix command is lpr
a Laserjet attached to the tty port works
better 1if some escape sequences are sent
together with the print job by an appropriate
alias
a local command vprint allows dispatching the
printouts to the VAX LNO3
queue lpg
deprint lprm
.cp3
who who
identify who am i
tell use write
phone write
mail mail

ftp ftp

query remote node

ping ping
isup dnincp show node node
tape use mt
tape copy
logout logout (executes .logout file)
echo echo
unalias unalias
.cp50

3. Full reference section
3.1. Logging in
SELISMThis is not strictly part of the UNIQ interfaceSELITE

The user will automatically find most of the necessary
definitions set up for him at login by the systemwide login
procedure. This procedure is run before the user's private
login procedure, and is, 1n our local implementation

VMS : the SYLOGIN.COM procedure in the system area
Unix: the .login and .cshrc in the user home area

The user can arrange a personal, customized login procedure
(in Unix this is a procedure executed in each shell, not only
in the login shell) by creating the following file in the home
directory.

VMS : LOGIN.COM

Unix: .mycshrc
Note for Unix users : this is unlike normal Unix usage, and
for this reason .login and .cshrc are not real files, but

links to a common version in the system area.

The UNIQ prompt indicates the current directory, and is
automatically updated when one changes directory using an UNIQ
command, similarly to what happens in MS-DOS. The prompt is
set as follows

VMS: the last two components of the current path
Unix: the last component of the current path and the
command number

3.2 Change file protection

SELISMThe next paragraph is not strictly part of the UNIQ
interface$ELITE

Default file protections (applied to all newly created files)
are normally assigned in the login procedure. If an user
wants to change the default protection, one should use the
following system dependent commands. Note that the syntax and
logics of the two commands is radically different (Unix uses
numeric masks); see the relevant help files

VMS : SET PROT/DEFAULT
Unix: umask

The UNIQ commands to assign file protections other than default
are the following

protuser prot file
protother prot file
makexec file (Unix only)

The first command assigns protections to the user cathegory
(for VMS this 1is equal to OWNER and SYSTEM at the same time).
The second one assigns protections (identical) to the
cathegories of group and other (or GROUP and WORLD). A
protection is expressed in UNIQ syntax as a three letter
code : rwx, r—-x, etc. The three letters are (in order) r,w, or
X, (to set read, write—-and-delete or execute bits), or a - (to
remove the respective protection). It is compulsory to specify
all three values at the same time.

The third command is needed on Unix files only, and makes a
file executable (assigns execute access to user, group and
world) .

3.3 Directory listing

The UNIQ/VMS DIR command overwrites the default VMS

command, which remains available if called as DIRECTORY (4 or
more letters).

The UNIQ interface makes a choice for the quantity and
format of information displayed for each file. This is

customizable as follows:

If the VMS user does not like the format used to display the

listing, one shall not redefine the DIR command, but either

unalias MYDIR to obtain VMS default short listings, or
redefine symbol MYDIR with the wished VMS DIRECTORY command.
The one used by the UNIQ interface is

DIRECTORY/SECUR/DATE=MOD/SIZE=ALL/WIDTH=
(DISP=80,0WN=12,FILE=31)

If the Unix user does not like the format used to display the
listing, one can realias dir to a different combination of 1s
flags (see the manual page for 1ls). It is recommended to pipe

the output thru more.
3.4 Disk space available

The UNIQ commands qdisk, qdir and size do not overwrite any

system command (with the exception of size under Unix, which
makes unavailable an obscure and seldom used command). The
syntax and parameters of the three commands are

gdisk disk

where 1in VMS disk is a valid physical device, and in Unix is
a filesystem or directory specification (in the latter case the
information is returned for the entire filesystem to which it
belongs) .

returns the total disk space occupied and free (also as
percentage of the total) for a VMS physical disk or an Unix
filesystem.

qgqdir pathname

where in VMS pathname is a VMS filemask or UNIQ directory
specification, and in Unix a directory specification. In VMS
this returns the space taken by the directory without
descending in subdirectories (unless one explicitly uses a form

like gdir [dir...]). In Unix it always descends in the
subdirectories.
.Ccp2

size file(s)

where file(s) 1s a (system dependent) filename with wildcards.
Returns the total space occupied by a family of files with some
common name. In Unix ignores directories and links.

All the above commands return the gquantities in kbytes (VMS
blocks are 0.5 kbytes).

3.5 Create a new directory

The UNIQ command mkdir directory in VMS accepts directory
specification in VMS and UNIQ format. It is aliased to
CREATE/DIRECTORY/VERSION=5.

3.6 Changing current directory

The UNIQ command ed directory in VMS accepts directory
specification 1in VMS and UNIQ format.

In both cases of VMS and Unix the cd command also updates the
system prompt. If a VMS user wants to change the default
prompt he should unalias PROMPT (to have the default VMS
prompt) or redefine symbol PROMPT to the SET PROMPT he
wishes (to have a fixed prompt) or to a procedure of his
choice (for a variable prompt). If an Unix user wants to
change the default prompt, he should realias the entire cd
command.

The UNIQ default prompt indicates the current directory, and is
set as follows

VMS: the last two components of the current path
Unix: the last component of the current path and the
command number

3.7 Deleting a directory

The UNIQ command rmdir directory deletes a directory
unconditionally (i.e. even if not empty removes all files in
it) and recursively (i.e. removes all subdirectories). In VMS
one can use VMS or UNIQ directory names.

Unix users may restore the default behaviour or rmdir
(conditional to the directory being empty) by unaliasing rmdir.

In VMS rmdir is aliased to a complex procedure which replaces
the wusual VMS lengthy manual equivalent. Such procedure
implies also changing protection to the .DIR file itself
(normally it is delete—-protected) and to any delete-protected
files.

.cp4

3.8 Copying files

The UNIQ command COPY (in both VMS and Unix) forbids copying
over an existing file.

.cp3
3.9 Deleting files

The UNIQ command DELETE file has a different behaviour in VMS
and Unix.

In Unix it will ask permission for deletion. This is useful due
to the "typeless" (and confusing) characteristic of Unix
files, to prevent unwanted deletions.

In VMS this command is a procedure, which makes unavailable the
normal VMS DELETE commands (inclusive of DELETE/ENTRY, etc.).
The procedure will automatically delete all versions of a file
if no explicit ;n or ;* is specified. To pass file DELETE
qualifiers (e.g. /CONFIRM) they shall follow the file argument
and be separated by a blank.

To access standard DELETE (and DELETE/ENTRY etc.) use
the alias VMSDELETE. This works as the normal VMS command.

VMS users wishing to revert to the normal behaviour, just
unalias DELETE.

.cp5
3.10 Renaming and moving files

The UNIQ command RENAME oldname newname behaves differently
than the equivalent VMS (RENAME) or Unix (mv) command. In both
systems it allows renaming only keeping the renamed file in the
same directory.

The move-to-another-directory function is performed by a

separate UNIQ command MOVE file newdir, which moves the file
to a different directory with the same filename (note that
moving is much more efficient than copying and deleting).
On UNIQ/VMS newdir can be expressed in VMS or UNIQ directory
naming.

The default system function is available to VMS wusers as
an alias VMSRENAME, and to Unix users as the native mv

command. VMS users may revert to the default behaviour by
unaliasing RENAME.

Both UNIQ commands operate also with wildcards.

The UNIQ/Unix rename command implements file names and types
(the file type is defined as the suffix after the last dot,

the file name is all the rest). The filename and filetype
portions of newname can be specified as = to have it copied from
the corresponding part of oldname.

The UNIQ/VMS RENAME commands acts differenty on file names and
types. If the filetype (inclusive of the dot) is not specified
(the dot 1s not present) in newname it defaults to the same
filetype as in oldname.Similarly if the filename 1is absent
(nothing before the dot), it defaults to the same as in
oldname.

The following examples work in the same way

rename pinco.panco =.pallino in UNIQ/Unix and
RENAME PINCO.PANCO .PALLINO in UNIQ/VMS or

rename tizio.caio giulio.= in UNIQ/Unix and
RENAME TIZIO.CAIO GIULIO in UNIQ/VMS

give respectively a new name of pinco.pallino and giulio.caio.
3.11 Typing a file

The UNIQ command TYPE is defined to stop at the end of each
page. Unix users should be aware they are using all the
facilities of the more command. To revert to non-paginated
typing, Unix users may use cat, and VMS users can just unalias
TYPE (or use TYPE/NOPAGE if this is required for a single run).

The BROWSE command allows to access the file in a full screen
edit mode (using EDT in VMS and vi in Unix), Dbut with the
file being protected against accidental changes.

We remind here of the VMS DUMP and Unix od commands, wuseful to
look a binary files in hexadecimal, octal, etc.

3.12 stopping a program

The behaviour of the UNIQ command OFF progname is quite
different due to instrinsic differences between VMS and Unix,
and they are also gquite unlike what one expects from a well-
behaved operating systems (e.g the old HP RTE-6).

In VMS every program usually runs under a single process. To
terminate the current program (or image like they call it) one
uses a ctl-Y. In the rare case one has subprocesses
concurrently active (e.g. with IRAF or SMONGO, or using
SPAWN), one can very simply stop each process by name (process

names are given by STATUS or WHO). This uses the plain VMS STOP
command (this works for processes owned by the user; this means
the UNIQ command OFF wont' work for SYSTEM).

In Unix each command runs in a process (or even more than

one). The UNIQ command therefore looks for processes with a
given name, finds the relevant number (or pid : ©process id)
and kills it. If there are more processes owned by the user,
one is presented with the list, and should repeat the OFF
command using the pid as progname. In the case the user is
superuser, the UNIQ OFF command displays also processed owned
by others.

3.13 Printing

As printing may occur in a lot of different ways, this is not
handled completely by the UNIQ interface.

On VAX the VMS PRINT command (used by numerous other utilities)
is left alone (this will normally print in the default Courier
font). Additional commands are added to handle printing in
elite, small and landscape fonts, and take the filename as

argument, eg. ELITE file.

.Cpb

As our Sun has no permanent alphanumeric printer attached, the
question is not relevant. A print alias is defined with implicit
escape sequences for the Laserjet (when attached). The normal

way to print files is to use the vprint file font command to
send prints to the VAX LNO03. If font is not specified it

defaults to elite.

To stop a print job with the UNIQ command DEPRINT
jobnumber, one shall obtain the job number with the UNIQ

command QUEUE.

Note: VAX print jobs sent by vprint can be killed only by
logging on the VAX as user SUNPRINT and selecting menu option 3.

3.14 Logged on users

The UNIQ commands WHO and IDENTIFY have no parameters. Their
output should be self-explanatory. Note that the UNIQ/VMS WHO
displays also non-interactive users.

IDENTIFY is useful to know who is using that free terminal to
which you are lounging.

3.15 Messages to users

The UNIQ command TELL (so far defined only for Unix) is a
simple way of sending short messages. This is preferred to the
use of VMS PHONE or the equivalent Unix talk, which require the
entire screen and force the user to stop what is doing.

3.16 Mail, file exchange and remote login

This is described in a separate document "The Link Guide : an
overview of networking within IFCTR computers".

3.17 ftp file exchange

The UNIQ arrangement for FTP under VMS is to use the Unix-like
interface available under UCX, in preference to the VMS one.
Users wishing to revert to the VMS interface just unalias

FTP. Note however that two aliases FTPV and FTPU will be
permanently defined (not by @UNIQ, but by @LOCAL procedure) to
allow use of respectively the VMS and Unix interfaces.

3.18 inquiring on network

For TCP/IP connections the only way to know whether a node

is there is the Unix ping command. There is no way to
know what is the path to reach it and so on. The
equivalent of ping under VMS UCX is accessible to SYSTEM
only.

For Decnet connections on VMS systems the SHOW NET command

is quite painful. Usage of NCP commands is better, however
finding the exact path to a node requires lot of
interactions with NCP (similarly to the RSCS SMSG in

Bitnet) . The UNIQ ISUP commands provides NCP information
on a remote node.

Note that the implementation of ISUP is different : on VMS it

asks the remote node to identify oneself, while on Sun it
queries the local data base to check whether the node is there.
The first way may be slightly slower, but always works
(unfortunately is not implemented by Sun dnincp), while the
second often returns incorrect information (this is felt
unimportant for the Sun, where one is interested only to local
connections, which should be OK).

3.19 Handling tapes

The purpose of the TAPE command will be that of selecting a
tape drive (according to the system, +this could include the
allocation of the drive), querying its status, setting tape
characteristics (like density), skipping files and blocks and
writing tape marks. This will be implemented by a command like

tape use tapename

to select a particular tape drive (tapename will be system
dependent), and by a command like

tape tapecommand parameter (s)

to issue a given command to the selected tape drive.

This command is presently not implemented and will be
described in a separate "guide to use of tapes" document (to
be written)

3.20 Logging out

SELISMThis is not strictly part of the UNIQ interfaceSELITE
The local implementation of the logout command is as follows

For Unix : 1log is aliased to the standard logout
command. The .logout file is executed while logging off.
In the local implementation this file is a link to a
systemwide logout ©procedure. This procedure includes
some disk cleanup (removal of unwanted files), and a call
to the "fortune" command.

For VMS : the LOGOUT command is aliased to a procedure
LOGOUT.COM, in order to somehow emulate the Unix behaviour.
This procedure (located in [LOCAL]) does what follows:

first finds if a private LOGOUT.COM file exists in the
user's login directory (if yes it executes the commands in
there), then it executes the systemwide procedure in
[LOCAL.SYLOGIN] SYLOGOUT.COM (which does some disk
cleanup and prints a farewell message), finally it
unaliases itself and logs out.

VMS users are warned NOT to include a LOGOUT command in their
private LOGOUT.COM. If they will do it, an infinite loop may
occur.

