The Real Programmer Tool : procedures for Fortran programmers

The Real Programmer T ool
a set of proceduresfor Fortran programmers

software and documentation

prepared by L.Chiappetti - IFCTR
version 1.6
Jun 1993

Real Programmersdo it in Fortran
The determined Real Programmer can write Fortran programsin any language

Table of content

Table of content

software and document history
1. Introduction

2. Essential capabilities

3. User's guide to commands
3.1 making the commands available
3.2 defining standard directories

3.3 defining options for the compiler
3.3.1 defining the optimization level
3.3.2 defining other options
3.3.3 common features

3.4 compiling a program
3.4.1 handling include files

3.5 linking a program

3.6 compiling and linking a program
3.6.1 Usage of loader files and libraries
3.6.2 Note on library naming

3.7 compiling a library or library member
3.7.1 compiling an entire library

3.8 Editing source, include or library source files
4. Programmer's notes

4.1 progtool

4.2 sourcedir, libsourcedir etc.

4.3 optimize and options

The Real Programmer Tool - 1.6 Jun 1993 - Page 1

The Real Programmer Tool : procedures for Fortran programmers

4.4 compile
4.5 ptlink

4.6 comlink
4.6.1 makeknown

4.7 complib
4.8 edfor, edinc, edlib
APPENDIX : examples of directory trees
a) full hierarchy
b) all sources together

¢) all under same root

software and document history

Aug 90 preliminary version (1.0) of the software (not all functions) and draft version
of the documentation

Feb 91 final version of the software (all functions 1.0), including correction of a few
bugs (1.1). Software not publicly installed.

Apr 91 Final version (1.0) of documentation, and software publicly installed.

Dec 91 Documentation converted to Word (1.1), fixed a few bugs and support for
DECstation in software (1.2). Single-barred changed paragraphs.

Apr 92 Unified Sun and DECstation version of compile (1.3), rearranged handling of

include files. Double-barred changed paragraphs.

May 92 VMS version of ptlink (1.2) changed to use a temporary LNK$LI BRARY to
support multiple search of unresolved references. Thick barred changed
paragraph.

Jun 92 VMS version of compile handles also *.f files for Unix compatibility; Unix
version of compile handles include files differently (this way entire VMS
source directories can be NFS mounted on Unix machines). Thick barred

changed paragraph.
Sep 92 (VMS) makeknown (1.1) also support $PATH
Jun 93 compile 1.5 now supports nested include files

The Real Programmer Tool - 1.6 Jun 1993 - Page 2

The Real Programmer Tool : procedures for Fortran programmers

1. Introduction

Have you ever needed a way of compiling and linking your programs with simple, system
independent commands, without passing all the times long string of options ? Have you ever wished to
be able to edit, compile, link and run programs, when the source, object, library and executable files
all (may) reside in different directories, and may be the data reside in another directory again. Have you
ever got fed up of typing long pathnames, or changing continuosly directory, or struggling with
complicated directory trees where you can never find the library subroutine you need ? Or just do you
want a tool to do all that, and orderly manage your programs ?

The '"Real Programmer Tool" is for vou

The basic logics under this set of procedures is the following:

Have the main program sources somewhere.

Have the sources for library routines in one subdirectory with the name of the library
under somewhere else.

All sources make reference to include files by relative names (ensuring source-
level code portability). These include files are stored somewhere else again.

Object files are by definition scratch.
Library subroutines are kept in object libraries under somewhere else again.

A set of utilities will find all this, and put the executables in the right place and make
them available (this essentially means in VMS you no longer need to type RUN but
can use the program name as a full fledged command with parameters).

You will be able to do all that (including editing the different source files),
irrespective of what your current directory is (may be that is your data directory, for
instance).

A small set of simple procedures (available for VMS and Unix under a very similar
interface) is presented here. The purpose of such procedures is to aid the Fortran
programmer to manage his files (source, relocatable, libraries and executables) in an
orderly way, without however resorting to system-specific or mysterious tools (e.g. make).
It is of course not the only way of doing it, but is a way [am used to.

The procedures have characteristics similar, for those who know it, to the tools developed
for the Milan Exosat system on the IBM (namely COVPI LA, COVLI NK and COVPLI B),
with however substantial additions to handle the new possibilities offered by hierarchical
directory systems (like VMS and Unix). Conversations with B.Garilli are gratefully
acknowledged.

2. Essential capabilities

The Real Programmer Tool - 1.6 Jun 1993 - Page 3

The Real Programmer Tool : procedures for Fortran programmers

All the commands described below can be made available by executing once a simple
procedure progtool!, which defines all the other commands. If an user wishes to have them
always available it is sufficient to call it within the login file (LOG N. COM . cshrc, or
. nycshrc).

I commands are presented in lower case for generality, except whenever upper case is explicitly required. VMS

users can use any case (VMS is case-insensitive).

The essential commands to handle compilation and linking have been prepared
according to the following guidelines (similar to the above mentioned IBM EXEGCs) :

A single command compile should be used for compilation (either of main programs
or of library routines). A set of standard, useful compilation options shall be
generated automatically by this command. The user will not have to deal with long
and awkward compiler command strings.

Additional options of common usage under some contexts (to be determined by the
user) can be stored once for later use, by the command options. In particular the
optimization level (for optimizing compilers) can be stored with an unique syntax by
command optimize.

For what concerns terminal display options, as default operation, the compilation
command will compile silently. If this is not the case, two sets of standard options are
available to allow:

display of compiler messages on the terminal (option term)

display and browsing of messages as well as of the full program listing
(option list)

A command comlink is used to compile and link in one go. The object file is then
deleted. Although compilation-with-linking is the default action under Unix
compilers, it is felt more "didactic" that the user be aware of the difference between
the two steps, in the old JCL spirit of the "CLG" (Compile, Link and Go) steps. (JCL,
the IBM OS Job Control Language, is considered here like the "Latin" of
computers ... not that Unix is such a great leap forward for what hydiosincracies
about syntax is concerned !). This way the same compilation command can be used
for main programs and for library subroutines. In fact comlink calls in turn compile,
the linking command described below, and an internal cleanup procedure.

A standalone command for linking is available. This is currently called ptlink to
avoid naming clashes with the system "link" command. Both ptlink and comlink

accept as argument a loader file, which contains the commands for the linker.

In the current version this loader file just contains a list of libraries. Support to other

The Real Programmer Tool - 1.6 Jun 1993 - Page 4

The Real Programmer Tool : procedures for Fortran programmers

options will be arranged in the future.

A command complib is used to compile library routines and insert/replace them
in an object library. The same command is used to recompile entire libraries. The
intermediate individual object files are deleted.

As underlying philosophy it shall be noted that it is assumed here that subroutines can
be found only in two places : within the same source file as a main program, if they
are called only by that particular program; or in a library. There will not be
independent subroutine object files !!

The case of library subroutines which have to be relocated together (e.g. BLOCK
DATA). and the case of INCLUDE files may require special handling to fulfill the
requirement of source-code-level portability. This is described below.

The additional commands added to take advantage of the capabilities of the
hierarchical directory systems (but to avoid messing up and getting lost in the directory
tree) are designed to define (and store in a "global" area) standard "places" where the other
commands will look. In particular one can edit source, include and library source files
(irrespective of the "current" directoy where one is) with the edfor, edinc and edlib
commands.

In designing the additional commands, I have kept present the need for flexibility. The user
is not forced to a rigid scheme, but can choose his preferred scheme (e.g. a set of "parallel"
directories, or a tree, or even keep everything in a single directory), or even a different
scheme according to each project he is working on.

These commands are of the form command pathname, where the command is one of the
mnemonics listed below, and pathname is either a valid pathname under VMS or Unix,
or (for the VMS case) a pathname in the (Unix-like) form supported by the UNIQ interface
(see "The UNIQ interface. An unique command interface for VMS and Unix users",
L.Chiappetti, December 1990; and also section 3.2 below). In all cases pathnames are
translated in absolute pathnames.

The standard places defined are the following :
sourcedir the directory where the Fortran source files of main programs are to be found
libsourcedir ~ a directory which should contain one subdirectory for each library. Such

library subdirectory will contain the individual Fortran source code of each
library routine.

incdir a directory where source files required by INCLUDE statements are to be
found
relocdir he directory where the relocatable object files (product of compilation) will

be put. This could be a temporary area, as such files are deleted after linking

The Real Programmer Tool - 1.6 Jun 1993 - Pege 5

The Real Programmer Tool : procedures for Fortran programmers

or insertion in a library.
libdir the directory where complete relocatable libraries are to be kept.
targetdir the directory where executables (product of linking) will be stored.
If wished the user can define a standard setup of directories in a command file, and
execute it in his login procedure. Alternatively he can keep project-related setups in different

command files, and execute the relevant one when needed. Unix users shall note that such
files have to be sourced.

Handling of INCLUDE files is currently supported with a precise limitation, due to the
requirement of portability at source code level. The only form of INCLUDE statement which
looks portable is the one :

INCLUDE 'filename.type'
without any path specification. The filename shall be lowercase, the type shall be .inc
and the file shall reside in the incdir (or it shall reside in sourcedir if another type is
used).
Incidentally, due to the highly system-dependent way compilers handle INCLUDE
statements, this means that Fortran programs with such INCLUDE statements (and the
include files located in a directory other than the sourcedir) could generally be compiled
only using the tools described here.
Concerning library names see the "note on library naming" below in 3.6.2.

An appendix gives some possible directory arrangements as examples.

The Real Programmer Tool - 1.6 Jun 1993 - Pege 6

The Real Programmer Tool : procedures for Fortran programmers

3. User's guide to commands

Real Programmers do it in Fortran

The following conventions are used:

A word in boldface shall be typed exactly as it is (command name or option).

A word in italic shall be replaced by a valid parameter. A parameter in parenthesis is
optional (the parentheses shall NOT be typed).

3.1 making the commands available

Just issue the command progtool once (e.g. in your login file).

3.2 defining standard directories

Issue, in any sequence, one or more of the following commands (a good place to put
them is a .COMfile, or Unix script to be sourced, in the top directory of the software
project : I use a file called CONFI GURE. COMor just conf i gur e):

sourcedir (argument)
libsourcedir (argument)
incdir (argument)
relocdir (argument)
libdir (argument)
targetdir (argument)

where the argument can be one of the following :

none in this case the current value is displayed

clear in this case the current value is reset to "undefined" (as it is if the relevant
command has never been entered)

dir a valid pathname of one of the following forms :

Unix:

VMS:

VMS Unigq:

an absolute pathname /dir/dir

a relative pathname dir/dir

a relative pathname ./dir/dir

a VMS pathname dev:[dir.dir] in any valid VMS form (that is any of the elements can
be missing, and any abbreviation like [-], [--] can be used).

a VMS logical name pointing to a valid pathname

a name (translated into [.name], a subdirectory of the current directory)

The Real Programmer Tool - 1.6 Jun 1993 - Pege 7

The Real Programmer Tool : procedures for Fortran programmers

a \name (translated into [name], an absolute pathname on the current disk)

a device:name or device:\name (translated into device:[name], an absolute pathname
on an alternate disk

In all the above cases, each name can be a path of further subdirectories or the form
dindir, i.e. Unix-like but backslash-separated (the slash is a reserved character in
VMS).

For more details about the Uniq directory naming, see section 1.1 of the "Uniq interface
Users' Guide" (quoted above).

In all cases the pathname should be translated into a full pathname. Currently relative
names of the form ../name do not work under Unix : it is recommended to give absolute path
names (/name), or paths relative to the home directory (~/name). In all cases it is verified
that such directory exists (if it does not, the current definition is not changed).

The current definition is kept in global symbols (VMS) or environment variables (Unix)
with upper case names prefixed with PT_ (this way the command sourcedir generates
PT_SOURCEDIR etc.).

If you want, for project purposes (or just to define a "standard configuration") to include
one or more of such commands in a procedure, you may do it freely under VMS .COM
files, but in the case of Unix you shall source such procedure, not call it as a shell script, if
you want that the settings are preserved in the environment of the shell from which you are
calling the procedure.

3.3 defining options for the compiler

If you want to define options other than the default ones described in 3.4 below (or to
override them), you may take advantage of the following procedures. If you execute them
once the compile command will remember them until they are explicitly reset.

3.3.1 defining the optimization level

To choose the optimization level for all subsequent compilation, issue the command:
optimize (argument)

where argument can be one of the following :

none he current setting is displayed

clear the current setting is reset to "undefined"

0 or no optimization (Unix and VMS)

OFF for no optimization (VMS only)

n with n equal to 1, 2 or 3 (under Unix this sets the corresponding

The Real Programmer Tool - 1.6 Jun 1993 - Page 8

The Real Programmer Tool : procedures for Fortran programmers

optimization level, under VMS any value enables optimization)
ON to enable optimization (VMS only)

any any other value enables optimization under VMS, and disables it under
Unix (i.e. reverts to the default behaviour of the compiler).

3.3.2 defining other options

If you want to define additional, system dependent, options in a way that you do it
once, and they are remembered until reset, use the following command:

options (argument)

where argument can be one of the following :

none the current setting is displayed
clear the current setting is reset to "undefined"
string a valid string of options in the syntax required by your compiler (with the

exceptions noted below).

VMS: you can prefix your options with the slash (/) required by the
compiler, or not do it (provided you separate different options with
blanks). options will generate the correct syntax. Note this means
that if any option requires arguments the latter shall NOT be
separated from the option by any blank.

You cannot specify more than 8 options (DCL limit)

Unix you can prefix your options with the minus (-) required by the
compiler, or not do it (but you shall always separate different
options with blanks). options will generate the correct syntax.
Note this means that if any option requires arguments the latter
shall NOT be separated from the option by any blank.

Note that in no case you are allowed to add options to the current list: they are overwritten
with the new ones. You have to retype explicitly any options you want to preserve.

3.3.3 common features

Optimization level and other options are stored in global symbols (VMS) or
environment variables (Unix), called respectively PT_OPTIMIZE and PT_OPTIONS.
See the note at the end of 3.2 for the usage of the commands above within Unix scripts (they
have to be sourced).

The Real Programmer Tool - 1.6 Jun 1993 - Page 9

The Real Programmer Tool : procedures for Fortran programmers

Please note that optimize does not necessarily store the options in the format used by the
compiler.

3.4 compiling a program

To compile a Fortran source file, you use the following command (however in the
majority of cases you'll want to compile and link together, see comlink in 3.6 below) :

compile program (option)

where program 1is the name of a Fortran file (without the .FOR or .f filetype specification),
which shall exist in the appropriate place, and option may be one of the following :

none or default behaviour. Compilation is silent, all messages are suppressed
(like IBM VS Fortran NOTERM), except a single warning by compile in case
of errors. Typically used when recompiling a known program.

term enables compiler messages to be displayed on the terminal. Typically used
when compiling a new or modified program, and you are sufficiently sure that
no severe errors will occur.

list if you want to inspect a listing file. Used for debugging. See below for
system dependent details.

The command expects a file program.FOR (VMS) or program.f (VMS and Unix) to
exist in one of the following two places : the current sourcedir if defined, or the
current directory otherwise.

The command creates an option string based on the user setup (commands optimize and
options) and on the following internal defaults :

VMS: SHOWE(| NCLUDE, NOVAP, NOSI NGLE)
Unix: - C (to prevent linking, do not reset)

The command creates an object file program.OBJ (VMS) or program.o (Unix) in one of the
following two places : the current relocdir if defined, or the current directory otherwise.

If listing is required any temporary file is created in the same place as the object files, and
deleted on exit.

For VMS, the program.LIS file is "browsed" entering into EDIT/READONLY (use normal
editing commands to move around). The editor is always EDT, irrespective of any other

private setting of the symbol EDIT.

For Unix on Sun, the Sun Fortran compiler has no listing option. This is emulated as

The Real Programmer Tool - 1.6 Jun 1993 - Page 10

The Real Programmer Tool : procedures for Fortran programmers

follows (under SunView and OpenWindows only) : two windows are opened, one
containing the original source file, and one containing the redirected output messages
of the compiler. Both windows use vi in readonly mode. This choice (instead of the nicer
textedit) is due to the fact that vi allows to display line numbers (useful to locate errors in the
source file). To continue one should quit the source file (yellow) window (typing the vi
command :q). The other window is automatically killed. As additional aid, note that the
error message window is either green (no errors) or red (errors encountered).

For Unix on DEC Ultrix, the DEC Fortran compiler has a listing option (-V), and may
produce program.l. Browsing is emulated as follows (under DECWindows only) : one
windows is opened, containing the listing (inclusive of error messages). The window
uses the notepad editor. To continue one should quit the notepad window (e.g. keying
Alt-Q). Please be sure to quit the editor, otherwise you will be left with a
program.1.BAK liying around. As additional aid, note that the listing window is either
green (no errors) or red (errors encountered).

3.4.1 handling include files

The code of main programs and library routines shall make reference to include files
(which should exist in incdir) by statements like :

INCLUDE 'filename.type'

only. No path name shall be given if you want to preserve portability of the code (as path

names are system dependent). Incidentally (and unfortunately) this means I could not use .TLB text
libraries to handle include files under VMS. (If you are not concerned about portability this is not a problem for

you).

The type of the include file shall be specified explicitly as there is no agreed system-independent standard or
default. If you want portability, you cannot rely on the type being .FOR or .f. Note that the existence of the
include file is checked only at compile time (therefore if it does not exist, this generates a compilation error).

For elegance, compatibility with the XAS convention and ease of use with the trick
developed to cope with the limitations of the DEC Ultrix compiler (see 4.4 below) , it is
compulsory to use type .inc for include files (unless they reside in sourcedir).

The compile command does a few (transparent) changes of directory (described in 4.4
below) to cope with the above policy for include files. This essentially means that you
must use the progtool utilities to compile programs written with include files (this matters if
you are giving your code to external sites), unless the include files reside in the same
directory as the source code (that is incdir is equal to sourcedir).

3.5 linking a program

To link an object file produced by compile, you use the following command
(however in the majority of cases you'll want to compile and link together, see comlink in

The Real Programmer Tool - 1.6 Jun 1993 - Page 11

The Real Programmer Tool : procedures for Fortran programmers

3.6 below) :
ptlink program (loaderfile option)

where program is the name of an object file (without the .OBJ or .o filetype
specification), which shall exist in the appropriate place, loaderfile is the optional name of
a file of instructions for the linker (necessary only to specify libraries or other special
requirements) and option may be one of the following : none at all, term or list.

option applies to VMS systems only. If any (non null) option is specified, linker error
messages are displayed on the terminal. The Sun Unix linker does not display messages
anyhow (except if a map option was passed down by the Fortran compiler). In all cases the
ptlink command will display an own message telling whether errors have occurred.

Since this command will seldom be used alone, for all other parameters refer to the comlink
command below.

3.6 compiling and linking a program

To compile and link a Fortran program in one go you use the following
command :

comlink program (loaderfile option)

where program is the name of a Fortran source file (without the .FOR or .f filetype
specification), which shall exist in the appropriate place, loaderfile is the optional name of a
file of instructions for the linker (necessary only to specify libraries or other special
requirements) and option may be one of the following : none at all, term or list.

The loaderfile is discussed below. To call comlink with compiler options, but without
loader file use :

"

comlink program """ option
This command executes in turn : compile for compilation (see 3.4 for details); ptlink for
linking (see 3.5) and its own internal cleanup procedure.

For the meaning of the options, which are passed to the procedures called and are
essentially used by compile only see 3.4 above. Any non-null option will also cause linker
messages to be displayed on the terminal on VMS systems (they are otherwise disabled;
the Sun Unix linker does not provide any message, except if a map option is inherited from
the compiler).

compile expects a file program.FOR (VMS) or program.f (VMS and Unix) to exist in

one of the following two places : the current sourcedir if defined, or the current
directory otherwise.

The Real Programmer Tool - 1.6 Jun 1993 - Page 12

The Real Programmer Tool : procedures for Fortran programmers

See 3.4 above for a discussion of compilation options.

compile creates (and ptlink expects) an object file program.OBJ (VMS) or program.o
(Unix) in one of the following two places : the current relocdir if defined, or the current
directory otherwise. The object file is always deleted on exit by comlink (but not by ptlink).

If listing is required any temporary file is created by compile in the same place as the object
files, and deleted on exit.

ptlink creates an executable file program. EXE (VMS) or program (Unix) in one of the
following two places : the current targetdir if defined, or the current directory otherwise.
In the case of VMS systems, comlink purges all older versions of the executable, in the
case of succesful linking only.

In the case of VMS only, comlink calls makeknown at the end. This auxiliary utility
may also be called standalone (not normally done) with the following syntax :

makeknown program (path)

Essentially this utility defines a symbol program pointing to the image path:program.EXE,
which is therefore installed as a VMS foreign task. Note that this occurs only if the symbol
does not already exist with a different value !

If a logical $PATH is defined as a list of directories, and this includes the path
argument, makeknown will generate a symbol pointing to $PATH:program.EXE

If makeknown is succesful, the program can be invoked without RUN, just by typing the
name (and passing parameters is enabled).

Note that path, if not specified, defaults to current targetdir. Also note that path, if given,
shall be in full VMS form. Uniq or partial forms are not recognized (normally they have
already been translated by comlink). If you really have to use it, express path always in the
full form device:[dir.dir].

In the case of Unix, targetdir shall be in the search path care of the user in order to
invoke the command (a rehash might be necessary anyhow).

3.6.1 Usage of loader files and libraries

If a loaderfile is specified as second argument to ptlink or comlink, this means a
file loaderfile. LOADER (VMS) or loaderfile.loader (Unix) shall exist in either the current
sourcedir if defined or the current directory otherwise.

In the current implementation only the first (only) line of such file is used. Such file will

The Real Programmer Tool - 1.6 Jun 1993 - Page 13

The Real Programmer Tool : procedures for Fortran programmers

contain a list of relocatable library names, in the correct order required by the linker.

These names shall be in the format described in 3.6.2 below, and are used to construct the
run string for the linker. The libraries shall by default exist in one of the current two places :
the current /ibdir if defined, or the current directory otherwise. If however a pathname is
prefixed to the library name, this is used to construct the run string.

The result of this may be system dependent and has not been tested.

ptlink does not check for the existence of libraries. If they do not exist, a linking error will
be signalled by the system linker.

In the case of VMS the linker command string is constructed in the following way:

for each library without explicit pathname, a pathname is constructed using either
libdir or the current SET DEF.

such final library names are used as input to the linker, with the / LI BRARY qualifier.

the entire runstring is appended with the following qualifier: /

EXECUTABLE=path:program, where path is either targetdir or the current SET

DEF.

In the case of Unix the linker Id is not called directly, but through the £f77 Fortran
compiler command (which receiving an .o file as input understands it has just to call the
linker). It is this command which takes care of constructing the appropriate options (and
standard Fortran library definitions) for Fortran programs. Additional options (passed thru
by f77 to 1d) are constructed as follows :

the current /ibdir (or the working directory) is used to set up an option -Llibdir.

for each library lib without explicit pathname, an option -l/ib is added to the option
string.

each library name with an explicit pathname is separated into a dirname and
basename, used to set up separate -L. and -1 options

finally a -0 options pointing to the executable file is set up

The Real Programmer Tool - 1.6 Jun 1993 - Page 14

The Real Programmer Tool : procedures for Fortran programmers

3.6.2 Note on library naming

There is a difference in the way the VMS and Unix standard tools understand library
names. Therefore it is necessary to explain how this is interpreted here. A library name of lib
is used as follows:

In VMS :
The relocatable library shall be a [ib.OLB file, located in the current libdir directory.

The sources of the library subroutines shall be located in a subdirectory lib of the
current libsourcedir directory.

Example: if libsourcedir=DUAQ: [LUCI O. FORTRAN] , libdir=DUAQ: [LUCI O. LI B],
library TESTLI B, then the source for the hypothetic routine SUBL is in the file DUAO:
[LUCI O. FORTRAN. TESTLI B] SUBL. FOR, and the entire relocatable library in
DUAO: [LUCI O. LI B] TESTLI B. OLB.

In Unix:
The relocatable library shall be a liblib.a file, located in the current libdir directory.

The sources of the library subroutines shall be located in a subdirectory /ib of the
current libsourcedir directory.

Example: if libsourcedir=/ home/ | uci o/ fortran, [libdir=/ home/ |l uci o/ li b,
library test then the source for the hypothetic routine subl is in the file /
home/lucio/fortran/test/subl.f and the entire relocatable library in /
home/lucio/lib/libtest.a.

Note that if I had called the library test!li b, the relocatable library would be /
horme/lucio/lib/libtestlib.a

3.7 compiling a library or library member

To compile a library subroutine and insert it into the appropriate library use the
following command :

complib library member (option)

while to compile the entire library (see 3.7.1 for details) use instead:

complib library all (option) (Unix,VMYS) or
complib library ALL (option) (VMS) or
complib library * (option) (VMS)

The Real Programmer Tool - 1.6 Jun 1993 - Page 15

The Real Programmer Tool : procedures for Fortran programmers

where library is the name of a relocatable library (as described in 3.6.2 above; without
any .OLB (VMYS) or .a (Unix) filetype specification and without the Unix lib prefix), which
shall exist in the appropriate place, member is the name of the subroutine Fortran source file,
which shall exist in the appropriate place, and option may be one of the following: none
at all, term or list.

Options are passed on to the compile procedure and are described in 3.4 above.

complib uses compile for compilation (however it resets temporarily the sourcedir
specification, to allow library routine sources to reside in a different place than main
program sources). It also handles include files identically as compile.

complib (in single member mode) expects a file member. FOR (VMS) or member.t
(VMS or Unix) to exist in a subdirectory library of either : the current [libsourcedir
if defined, or the current directory otherwise (this implies the subdirectory itself
exists).

compile called by complib creates an object file member.OBJ (VMS) or member.o
(Unix) in one of the following two places : the current relocdir if defined, or the current
directory otherwise. The object file is always deleted on exit by complib.

If listing is required any temporary file is created by compile in the same place as the object
files, and deleted on exit.

complib expects a file library.OLB (VMS) or liblibrary.a (Unix) in one of the following
two places : the current libdir if defined, or the current directory otherwise. If this file does
not exist, it is created explicitly (VMS) or automatically by ar (Unix).

complib, in the case of succesful compilation, will insert the member into the library

(replacing any previously existing member of the same name). In Unix r anl i b is run at the
end.

3.7.1 compiling an entire library

To compile an entire library specify a member of all or *, and note what follows.

The * option, although designed for analogy with Unix syntax. is currently disabled
under Unix, due to unresolved conflicts with the variable and filename substitution
mechanisms.

Under VMS at least one .FOR file shall exist in a subdirectory [library of either : the
current libsourcedir if defined, or the current directory otherwise. Under Unix this test is

disabled due to the above mentioned conflicts and only the existence of the subdirectory
is checked.

The Real Programmer Tool - 1.6 Jun 1993 - Page 16

The Real Programmer Tool : procedures for Fortran programmers

complib then proceeds in an identical manner as in the single member case, except that :

if the library exists already, the old version is first of all renamed (the type is
changed to .OLDOLB (VMS) or .old (Unix))

each member is compiled in turn, any compilation errors are signalled, but the
procedure is not interrupted. The wrong member is not inserted in the library.

however an error inserting a member (Unix only) causes termination
ranl i b (Unix) is run only once after all compilations and insertions are done
if no errors occurred, the old version of the library (if any) is deleted

if errors occurred, and complib is running in interactive mode, the user is presented to
options : keep the new version and delete the old one; or restore the old one (delete
the new one, and rename back the old one)

if errors occurred, and complib was run non-interactively, the old version is restored
by default.

The definition of interactive mode is rather tricky. In VMS it means that COMPL| B. COMhas a depth of 1
(that is, is being called by DCL and not by other . COMfile). In Unix it should mean the same thing, that is
conplib is called by csh, and not by another script, but the implementation is not guaranteed, as
there is no easy way of telling that. Note that with the present definition if conpl i b is run in background, it
will appear to be "interactive". The case of batch mode has not been tested.

3.8 Editing source, include or library source files

Three little utilities are provided to edit source files, include files, and library source files in
their respective sourcedir, incdir or libsourcedir directory, starting from anywhere. Their
syntax is :

edfor file
edinc file.typ
edlib library memberfile

The parameters are self-explanatory. A file type of FOR or .f is appended for source
and library source files, and therefore the type shall not be specified. On the contrary, it is
necessary to specify a type for include files (at least until a convention on this will be
reached, then it could be enforced here).

The editor used is whatever the user gets when he calls "edit" (this assumes he has

defined a symbol of this name to set up his private choice, or that a reasonable choice is set
up for him by the system).

The Real Programmer Tool - 1.6 Jun 1993 - Page 17

The Real Programmer Tool : procedures for Fortran programmers

4. Programmer's notes
The determined Real Programmer can write Fortran programsin any language

These procedures will be moved in DUAO: [LOCAL. PROGTOOL] or /usr/ | ocal from
their current development directories in DUAO: [LUCI O Bl N. PROGTOOL] and /
hone/ | uci o/ bi n, as soon as they are officially released (contextually with the issue
of the present document). External sites wishing to install the software shall check the
dependency on such disk names in the code.

The Unix version has one external dependency, on the shell script Wi ndowsyst em used to
determine which window system (Sunview, OpenWindows, DECWindows or none) one is
using.. The VMS version has the following dependencies on external modules :
PROGTOOL. COM uses the KNOW COM utility (part of XANADU) to set up symbols.
SETXXXDI R uses VMSTRANSLATE. COM and VMSVALI DDI R. COM (part of the Uniq
interface). Most modules use the symbol VMSDELETE to delete files (this is just an alias of
the usual VMS DELETE, which is set up by the Uniq interface, as the latter redefines the
name DELETE).

4.1 progtool

VMS version of progtool is PROGIOCL. COM Shall be defined as known in
SYLOGQ N. It uses the XANADU KNOWcommand to make known all other .COMfiles (all
commands but the "set directory" family). Note the syntax used to call a symbol when
defining a symbol.

Unix version shall be aliased to "source progtool " in . cshrc, otherwise
the current command has to be issued twice (first time as procedure, second time as alias),
or sourced explicitly. Most commands are defined as aliases. The others shall be available if
[usr /| ocal is in the path.

4.2 sourcedir, libsourcedir etc.

VMS versions are global symbols pointing to an hidden .COM file called
SETXXXDI R, which receives an additional argument of SOURCE (for source),
L1 BSOURCE (for libsource), etc.

It calls on its turn VMSTRANSLATE. COM when translation from the UNIQ to the VMS
name form is needed, and VMSVALI DDI R to test existence of directories. They
communicate through a (temporary) global symbol VMST_RETURN. These utilities are
part of the Uniq interface software and are not described here.

The directory paths are stored in global symbols (PT_SOURCEDI R, etc.)

Unix versions are aliases set up by pr ogt ool . Note that the hidden set xxxdi r

The Real Programmer Tool - 1.6 Jun 1993 - Page 18

The Real Programmer Tool : procedures for Fortran programmers

script (similar to the VMS equivalent described above) has to be sourced. As such it cannot
receive arguments, and these have to be passed via (temporary) environment variables.

The reason they have to be sourced is that the directory paths are stored in environment
variables (PT_SOURCEDI R etc.), and these are not passed back to the parent shell by a
script.

The check on valid directories is easily done internally via Unix primitives.

Note the tricky way of checking whether an environment variable exists, when the name of

the variable is a complex expression constructed within the procedure.

4.3 optimize and options

VMS versions are self-explanatory . COMfiles. The relevant info is stored in global
symbols.

Unix versions are aliases set up by pr ogt ool . As described in 4.2 they have to be
sourced and receive arguments thru temporary environment variables, because the relevant
info itself is stored in environment variables (which are not passed back to parent shell by a
script).

This causes some minor complications (use of parentheses) with the argv vector in options.
The loop is better handled (while ...) in Unix than in VMS.

Note sometimes an if then else is needed instead of a single if, because the latter is fully
constructed before being tested ... in which case something like if (variable exists) then
expr(variable) of course cannot be constructed.

4.4 compile

VMS version is a . COM file. The ON ERROR CONTI NUE is necessary to
continue execution and trap return code after an erroneous compilation. Note the use
of lexicals, the tricks to check file existence with a "null" DI R, and the way to set up
the editor in screen mode (also this editor is always EDT, which means any user
private definition of the symbol EDI T is temporarily overridden and restored later).
Now for Unix compatibility, if no .FOR file exists a .F file is tried before giving a "file
not found" error".

Unix version is a csh script. Note the extensive use of parentheses for multi-word
variables, and the usual if then else problem.

Output redirection is used to route the compiler messages to /dev/ nul | (none), the
terminal, or a temporary file.

The Real Programmer Tool - 1.6 Jun 1993 - Page 19

The Real Programmer Tool : procedures for Fortran programmers

The only way to force the object file into a particular directory is to cd there before
running f 77. This is done since version 1.3 and is compatible with the handling of
include files (see below)

The Sun f 77 compiler has no "list" option, and this is emulated (see discussion in user
section above). Note the use of ki | | %to terminate the window containing the compiler
messages.

Handling of include files is now supported. The basic requirement is that source code shall
be ported between VMS and Unix systems (and v.v.) unchanged, without the use of any
preprocessor. Unfortunately the Fortran | NCLUDE statement is not standard (essentially this
derives from the fact it references system-dependent filenames, but there is more to that : on
IBM systems for instance | NCLUDE cannot reference files, but only members of a macro
library, with syntax | NCLUDE (member); this parallels one of the possibilities offered by
VMS, that is referencing a member of a text library, with syntax | NCLUDE '(member)';
unfortunately there is nothing of this sort under Unix, which provides extra flexibility
allowing C-like #i ncl ude directives, which are obviously not portable).

The only way of having a portable | NCLUDE statement is to specify a pathless (relative)
file name, with the syntax | NCLUDE 'filename.typ'. One cannot obviously use absolute
paths, as these are system-dependent. However also the way compilers look for relative
include files is system dependent.

All the above will work and be portable (even without using the progtool utilities) if the
include files resides in the same directory as the program source which references it.

However in our case this is not generally wished : we would like to have include files in a
common incdir, and be reference from main programs in sourcedir, as well as from library
routines in libsourcedir. If all these directories do not coincide one must use the progtool
utilities.

The VMS implementation involves doing a SET DEF to the incdir temporarily just
before calling the compiler. The paths for all other files (source and object) can be given
explicitly on the command line.

In Unix things are trickier. Some of the places the compiler looks for include files
(subdirectories of where the main resides, or / usr/i ncl ude) are not portable. Under SunOS we
originally did a cd to the incdir temporarily. Unfortunately this had a side effect, that is the object file
will be created there (its path cannot be specified). Therefore a corrective action was necessary to
move the relocatable to the relocdir (a plain move with no overheads if the two directories are on the
same filesystem or a physical copy if they are on different filesystem with an overhead in execution
time and disk space, perhaps inconvenient for large programs). In DEC Ultrix Unix the compiler never
looks in the current directory, therefore cd to the incdir does not work. There is no way of specifying a
separate path for include files. They have to be in the sourcedir.

The only way which works in both systems (implemented since 1.3) is to make temporarily soft links to
all files referenced in the source code of a given type (now fixed to .inc) from incdir to where the source
is being compiled. The restriction to a particular file type is not intrinsic, but just makes easier to remove

The Real Programmer Tool - 1.6 Jun 1993 - Page 20

The Real Programmer Tool : procedures for Fortran programmers

the links after compilation without particular bookkeeping. The way to obtain the list of include files uses
a number of peculiar Unix tricks and is commented in the compile script source.

It has to be noted that include files residing in sourcedir (irrespective of their type being .inc or not) can
always be accessed. Moreover an include file of type .inc already existing in sourcedir is never
overwritten nor deleted (if noclobber is set).

Creating the above links from incdir to sourcedir may give problems if sourcedir is a link to a non-Unix
disk. Therefore in 1.4 all links are done to relocdir (this includes an additional link for the source itself),
since a cd to there is made before compilation (actually the cd has to be done earlier otherwise the
windowsystem command fails if done while the cwd is a link).

4.5 ptlink

VMS version is a . COMfile. Uses some of the same tricks mentioned above for compile.
For the rest should be quite simple. So far no "extra" options (other than those set up in the . COMfile)
can be passed to the linker. However, to support multiple search irrespective of the order, a
temporary LNK$SLIBRARY is set up before calling the linker.

Unix version is a csh script. Uses similar tricks as compile. Note the different handling of
library options, and the fact f 77 is used to call | d (see user section above). Note also the linker does
not produce any message if there are unresolved references, just an error status. It is possible to pass
options to the linker, setting them up with options as compiler options (this is the standard behaviour of
f77). Of these the -M option (on Sun) or -WM, -Wm (on Ultrix) are useful to produce a load map.

4.6 comlink

Self-explanatory . COMfile or csh script. Note all the business about purging, and
making the executable image "known" is VMS-specific.

In Unix the executable file is by definition executable (!), that is, has execution
permission set. Of course it can be invoked with its full path, or just by program name if the

targetdir is in the current path.

4.6.1 makeknown

In VMS there is nothing like the "path" concept of Unix (or MS-DOS). Also an
executable image started with the RUN command is not able to retrieve parameters. If one
wants to be able to call a program by name, one shall set it up as a foreign task (there are
also other ways, but they require system privileges) with a command like :

symbol == ""$path:progname. EXE"
What makeknown does is exactly that. Only additionally it checks that the symbol (which
is by definition the same as the program name) is not already defined to a different thing.

Programmers should note the complex sequence of single and double quotes necessary to
verify whether a symbol exists, and to retrieve its value in a variable.

The Real Programmer Tool - 1.6 Jun 1993 - Page 21

The Real Programmer Tool : procedures for Fortran programmers

makeknown is designed to be called by comlink only. It is possible to call it directly using
two arguments (see above, and .COM file listing), but the path to the directory where the
executable image is to be found can be expressed only in full VMS format (device and
directory) and not in the Uniq format.

As an additional facility, it is possible in VMS to emulate a true path a la Unix (or a la
DOS) defining a logical $PATH pointing to a comma separated list of directories
(separate undocumented utilities PATH and REHASH are available to manage that). If
such a logical is defined, and the directory passed to makeknown is in the list, the
symbol is defined pointing to $SPATH:program (so that the order in the path decides
which executable is actually used).

4.7 complib

Again a . COMfile and a csh script, with some of the usual tricks noted above.

In VMS a LI BRARY/ CREATE is explicitly requested. Also the "member inserted"
messages are generated by LI BRARY/ LOG. The lexical FSENVI RONVENT (" DEPTH") s
used to test interactive mode (as defined in user section).

In Unix I had serious problem to test the content of the libsourcedir directory
using *. f as argument and I had to disable it. It is not necessary to create the library (ar
will do it), but the "member added" message shall be generated by conpl i b. The test of
"interactive mode" is done via an external source file.

This is called i finteractive, and returns a shell variable flag. The way to test
interactivity is the following :

if the name of the current process (as seen by a "long" pS) contains -bi n/ csh
(csh), itis interactive (this occurs in a shell or in something sourced from a shell)

else the same trick is attempted on the parent process. If the parent process is
another shell script, the name will not appear as above, but as /bin/csh
scri pt nane (in this case we are "not interactive")

In both cases the test on the second word of the name shall be on "(csh", not on

"(csh) " (do not understand why, but it is like that).

4.8 edfor, edinc, edlib

These are three very simple . COMfiles or csh scripts, all very similar and self
explanatory. Note that edi nc at the moment requires a file type to be specified, but code
to bypass this (if a convention about a standard type for include files is agreed) is already
present in comments.

The Real Programmer Tool - 1.6 Jun 1993 - Page 22

The Real Programmer Tool : procedures for Fortran programmers

The VMS versions calls the user-defined EDI T with the usual trick of redefining
SYS$! NPUT in user mode (normal way of running interactive programs within a . COMfile).

The Unix version calls the editor using the command "edi t ". This is not normally
there, and should be set-up by the user to his favourite editor (the local arrangement is to
have this definition as part of the Uniq interface : edi t is therefore defined on Suns equal
to t ext edi t, and runs equally well under SunView or OpenWindows, and on DECstation
equal to dxnot epad).

The Real Programmer Tool - 1.6 Jun 1993 - Page 23

The Real Programmer Tool : procedures for Fortran programmers

APPENDIX : examples of directory trees

The examples are shown with VMS naming for the files. The role of the varous directories
shall be obvious. The relocdir and incdir are not shown.

a) full hierarchy

+-- fortran ---+--- mainl.for

| Fo-- L

| +--- i nn. for

I

+-- libraries -+--- libl -+-- subl.for

| | +-- L.

| | +-- subn. for
root ---+ |

| +--- lib2 ----

| +e -

| | |

+-- lib ------- +--- libl.olb

| +--- lib2.0olb

| +e--

| |

+-- exec ------ +--- mal nl. exe

+- - -

+--- mai nn. exe

In this case sourcedir=fortran, libsourcedir=libraries, libdir=lib, targetdir=exec.

b) all sources together

+-- fortran ---+--- mainl.for

| +o-- L

| +--- i nn. for

I I

| +--- |libl -+-- subl.for

| | +-- L.

| | +-- subn. for
root ---+ |

| +--- lib2 ----

I t---

I

+-- lib ------- +--- libl.olb

| +--- lib2.0olb

I t---

I _ .

+-- bin ----+--- mal nl. exe

+o-- L

+--- i nn. exe

The Real Programmer Tool - 1.6 Jun 1993 - Page 24

The Real Programmer Tool : procedures for Fortran programmers

In this case sourcedir=libsourcedir=fortran, libdir=lib, targetdir=bin.

c) all under same root

+--- mainl. for

+--- L.

+--- mai nn.for

I

+--- libl -+-- subl.for

| +- L

| +-- subn. for
pkge ---+

+--- lib2 ----

+- - -

I

+--- libl.olb

+--- lib2.olb

+- - -

+--- mai nl. exe

+--- L.

+--- mai nn. exe

In this case sourcedir=libsourcedir=libdir=targetdir=pkge.

In all cases remember :

compile reads a source from sourcedir
writes an object to relocdir
ptlink reads an object from relocdir
writes an executable to targetdir
comlink executes in order conpi | e and pt | i nk and
deletes the object from relocdir
complib reads a source from [libsourcedir.library
updates a library in libdir
using as temporary area relocdir

The Real Programmer Tool - 1.6 Jun 1993 - Page 25

