
.pl 60

.mb 3

.po 0

.op

THE PLOT EDITOR

USERS' HANDBOOK

Release 1
November 1989

This document has been prepared by:
L.Chiappetti, IFCTR

The software described in this document has
been contributed by the following persons :

L.Chiappetti IFCTR, CNR Milano

.he$PAGThe Plot Editor Handbook (November 1989)
Contents
.pa
.pn 1
.foContents
Page #

Table of content

1. Introduction
1.1 Definitions
1.2 What does the Plot Editor do ?
1.3 The current implementation

2. Instruction for use
2.1 Getting started
2.2 The screen
2.3 File handling
2.4 Giving commands
2.5 Colour codes

3. The directories

4. Editing and adding

5. Deleting

6. How to edit on the screen
6.1 Moving the cursor
6.2 Types of fields
6.3 Editing a frame
6.4 Editing an axis
6.5 Editing a string

7. Frame characteristics
7.1 Typeless characteristics
7.2 Plot frame characteristics
7.3 Histogram frame characteristics
7.4 Function frame characteristics
7.5 Contour frame characteristics
7.6 Axis characteristics

8. String characteristics

9. Resizing

10. Global changes
10.1 Defining a range
10.2 Translating
10.3 Scaling
10.4 Changing parameters

11. Terminating and plotting
11.1 Generating command files
11.2 Plotting
11.3 File saving

.cp50
12. In case of trouble

13. Future improvements

14. Programmers' notes
14.1 Segmentation scheme
14.2 Loading instructions
14.3 Descriptor file layout

APPENDIXES
Appendix A : Error codes
Appendix B : Mnemonic codes for parameters
Appendix C : Tables of descriptor file layout

Amendment history

February 1988 v 0.0 preliminary unofficial software
release (without documentation)

November 1989 v 1.0 official release 1 of software and
associated documentation

.he$PAGThe Plot Editor Handbook (November 1989)
Page #
.pn 1
.pa
.foThe PLOTED Handbook (release 1)
Section 1

1. Introduction

The Plot Editor (PLOTED) is a program designed to handle
complex plots with a sophisticated layout control,
allowing to (edit) change them and generate new variants
very easily in an interactive way, allowing at the same
time to keep a compact re­usable record of the plot
layout.

As an example, this program has been succesfully used to
test and produce a 40­frame plot (combining light curves in 5
different energy bands for 8 observations of a BL Lac), or to
produce standard "summary plots" for spectral fitting analysis.

1.1 Definitions

We start first with some useful definitions :

A plot is what appears on a page. As such it has some
page­associated characteristics, namely the size (A4 or A3)
and the orientation (landscape or portrait) of the page.

A plot consists of objects called frames and strings.

A frame is a rectangular area, generally bounded by solid
lines, containing a cartesian plot, usually related to a
given dataset. The boundaries of the frame correspond to
the axes in user units. The annotations (numbers and
caption) of the axes are outside the frame boundaries, but
associated to it.

A string is a free­standing text (plot title, or
comment of whatsoever nature), not immediately associated
with a frame.

A frame has a number of associated characteristics. The
first one is the frame type, which describes the content,
i.e. the type of plot : currently four types are defined
(the first three in accordance with the usage in the
PABLO plotting program, see the relevant Users'

Handbook) namely :

Plots are cartesian plots of one set of data (the
y­values) versus another (the x­values)

Histograms are cartesian plots of the frequency
distribution (on y) of one set of data (reported on x).

Functions are cartesian plots of the values of an
analytic function y=f(x), generated internally by a
plotting program, without any external dataset (file).

Contours are contour maps of the levels of a quantity
z versus x and y. The z­values are taken from an
image­type file.

.cp4
The remaining frame characteristics may be typeless
or type­related. A typeless characteristic is one that
applies to all frames independently of the type (like
e.g. the origin of the frame on the page, the length of
the axes, the scales in user units, etc.). A type­
related characteristic applies instead only to one
particular type of frame (e.g. the data file name does not
apply to functions, the way to connect data points applies
to normal plots only, the level thresholds apply to
contours only, etc.).

A string has a simpler set of characteristics (like the
position, the text, the character size, the colour etc.)

Still concerning frames, it has to be noted that more
frames may be superimposed. A simple case is that of
insets, that is a small frame plotted in a free space
within the boundaries of a bigger frame. However there are
also cases of fully overtraced frames : this occurs in
a simple case when one wants to plot more than one
dataset in the same physical frame, or when one wants
to plot an analytic function over a set of points. From
the point of view of the Plot Editor each data set or curve
shall be formally considered an independent frame.

However overtracing is used also in other cases. Dummy
frames are allowed for the purpose of adding extra axis scale
labels (e.g. a scale in keV and one in V). A dummy frame is a
frame defined for the purpose of axis annotation only, but
without any associated data file to be plotted (an "empty
plot").

A further definition concerns axis sets. A frame may have
a number of axis sets associated, which is not necessary 2
(it may be none if no axes have to be annotated, which
is typical for overtraced frames). For each set of tics
you want to put on an axis, there is one axis set :
therefore if you want to have tics on the top, bottom,
left and right frame boundaries, this makes 4 axis sets;
and if on any one axis you want two sets of tics (say
big tics every 10 units and smaller tics every 5 units),
this makes 2 axis sets.

Axis sets also have associated characteristics (the tic
spacing, the format of the numeric labels, their
orientation, etc.).

1.2 What does the Plot Editor do ?

It is important to understand what the Plot Editor does,
in order to use it taking maximum advantage of its
capabilities. Befor using the Plot Editor it is important
you plan the layout of your plot.

You should take a piece of paper and plan how many frames you
want, and where you want them located on the page, what data
files they will use, and all nuances of the plot. When you
have done this you may use the program (and after that you
will find very easy to change the layout of your plot, either
to correct bugs in the design, or simply to produce new plots).

.cp5
You should realize that the Plot Editor does NOT plot
anything directly. It creates and mantains (edits) a plot
descriptor file, which contains the description of your
plot in the more general terms as possible (general
means here also independent of the particular plotting
program used).

Additionally, when the editing phase is finished, the
Plot Editor generates the command files for the various
plotting programs supported, and, if requested, also
runs such programs to produce the plot. Of course the
programs supported are installation dependent (in our case
such programs are PABLO, MCONT and LABLER).

The editing of the descriptor file is screen­oriented :
for each frame or string you are shown a form on the
screen, and you may move the cursor around and change

the fields (characteristics) you want to change. You
also have a set of simple mnemonic commands to do global
changes on the file (like e.g. changing the axis length in
all frames, or translating/scaling a frame).

1.3 The current implementation

This section is of interest to system­oriented people
only. Other readers should jump directly to section 2.

The currently available implementation of the Plot
Editor is running on HP­1000 computers under RTE­6 VM
with FMGR. Screen handling supports a range of HP
terminals of the 26xx and 23xx series. Special support
for plotting is given to the HP 7550 HP­GL plotter.

The following considerations about program portability has been
made :

The plot descriptor file format has been designed as
general as possible, and as such it should allow
porting of the program to other systems very easily
(although this does not imply exchange of descriptor
files among heterogeneous systems). However the
descriptor file contains some dependencies on the local
plotting programs supported (see below; these will be
pointed out throughout the text).

The screen handling has been designed to be semi­portable,
that is, it should be able to handle other terminal
types driven by different escape sequences at the expense
of a few changes to some library routines. See
programmers' notes in section 14 below.

The plotting program selection is a local business (which
may be accounted for by the replacement of an entire
segment) : the program currently supported are the
general plotting program PABLO (described in a separate
document), the contouring program MCONT (described
separately in the Exosat and IUE documentation), and the
Labeller program (also described in a separate document)
used to annotate both types of plots on the HP­7550
plotter.

.cp5

.foThe PLOTED Handbook (release 1)

Section 2
2. Instruction for use

A notice for first­time readers : the following sections
should be absolutely read : 2.1, 2.2, 2.4, 4 and 6.
Section 7 and 8 are intended for consultation and
browsing. Sections 10 and 11 should then be absolutely
read. In emergencies, read section 12 instead of panicking.

2.1 Getting started

The Plot Editor is called by the following command :

PLOTED,fname

where fname is the (optional) name (namr in HP terms) of
the plot descriptor file. You may specify a full namr
(name:sc:cr) or an incomplete namr (without security code
and/or cartridge). The handling of incompletely specified names
is described in 2.3 and 11.3 below, when closure of files is
explained.

If you do not specify a name when calling the Plot Editor, you
will be prompted in a manner explained below.

But first of all you should know on which terminals you are
allowed to run the Plot Editor. The terminals currently
supported are:

HP 2397 colour terminal (logical unit 42 in HP room)
HP 2393 graphic terminal
HP 2623 graphic terminal (logical unit 44 in HP room)

It is likely that support to HP 2327 or 2390 may be
implemented easily if not already available. Support to
the HP 2648 is already foreseen in the code, but is
disabled because of a problem with the DC1/DC2 handshaking
during cursor position reads.

HP 2621 dumb terminals are not supported.

Usage of the colour terminal is recommended whenever possible
as the program uses colour coding for various messages in a
manner clearer than on other terminals.

Once you have issued the command, the program starts and
the screen is cleared. However before doing this the
program tries to identify the terminal. If it finds a

terminal not supported ends immediately with an explanatory
message. If it seems to get stuck, type a carriage return
(this should occur only on 2621 dumb terminals which do
not identify) and you will also terminate with a "terminal
not supported" message.

If you have not specified a plot descriptor file (or if you
get any error on such file at startup) you will be prompted
: the prompt occurs in the form of an inverse video field
(it will be in inverse green on a colour terminal) which
you should fill :

.cp5
note this is an alphanumeric field (alphanumeric fields
are explained in 6.2) or better a set of three
automatically parsed alphanumeric fields :

first type the name, up to 6 characters. Note that
carriage return does not work as expected but just as a
blank. At the end of the 6 characters, a colon (:) is
issued by the program, and you input the next field. If
your name is shorter than 6 characters, instead of typing
the necessary blanks or returns, you may type <control D>
or <control T> to jump to the next field.

The next field is the security code, 2 characters,
handled in the same way.

The next and last field is the cartridge, 2 characters.

If you are getting repeated errors accessing a file, you are
continuosly asked for a new name. Try changing the name. If
the problem persists, issue a <control Q>. This should
terminate the program cleanly. If the problem still persist
walk to another terminal and break the program (breaking is
explained in the "troubles" section, 12 below).

If the file is OK the program opens it, displays the
global characteristics (page size and orientation,
number of frames and strings, date of last change). If
the file exists, it may take a while (you will get a
message saying that the program is "ordering" the file).
Ordering and in general the ways files are handled is
explained in 2.3 below.

When the program is ready, it displays its typical screen
layout and a frame directory (if any), and a command
line. It also shows the current definition of the user
keys. The screen layout and the usage of the keys are

described respectively in 2.2 and 2.4 below.

.cp50
2.2 The screen

The typical screen of the Plot Editor appears
partitioned in various areas as shown below :

+­­+
| Descriptor file name Current date |
| Size and orientation Last change date |
+­­+
| Edit and display area |
| .. |
| : :
| : : |
| : area in use : |
| : : |
| :..: |
| |
| not in use |
|
+­­+
| command line ==> |
| message area |
+­­+

.cp3

The top part of the screen contains information relevant
to the whole plot descriptor file. The current time
appears in the top right corner and is updated after each
edit. The top area should always remain on the screen. Two
fields in the top area are worth noticing, that is the
"size" and "orientation" field : this field may be edited
by the RESIZE command (described below in section 9).

The middle (and major) part of the screen is reserved for
editing or display. The frame and string directories are
shown here. Also all the fields related to a single frame
or string to be edited are shown here and are editable
moving the cursor there (see below 6.1). Note that the
lower part of the display area may be unused for edit (in
this case it is "outside of the edit area" and moving
the cursor there will trigger a "termination of edit"
request.

The bottom part of the screen includes a command line

(where the cursor is positioned when giving commands),
marked by an arrow (==>). Below the command line there is
a message area, where the Plot Editor displays messages,
warnings and error messages (in increasing order of
severity).

The first time reader should skip the next section and go
directly to section 2.4 from here.

.cp6
2.3 File handling

The Plot Editor tries to do its best to avoid unwanted
deletion of a plot descriptor file. At the same time it
has to use direct access files to allow fast editing.
The way to overcome this is to work on a copy of the
original file, replacing it only at the very last minute.

If your descriptor file already exists, the Plot Editor
copies it (and reorders it) into a work file at startup.
The original file is then closed, and the program goes on
working on the original file.

If your file does not exist the Plot Editor does not create
it, but creates a work file instead. The name you supply is
remembered.

The name of the work file is PLOTnn::X2, where the value
of your terminal logical unit nn is used to avoid
naming conflicts and designating a file in an unique way.

If the program crashes you may recover any edits done so
far, by renaming the PLOTnn file to a name of your
choice, and restarting working on that. Do the renaming
before calling the Plot Editor again, as the work files
are otherwise overwritten each time !

At the end of an editing session you are presented
with three choices (if you have used a text editor,
these concepts should sound familiar to you) : file, save
or quit.

Quitting is the simplest case : you discard all edits
done, the work file is closed, and the original file
remains untouched (if it did exist; it is not created
otherwise).

Saving is also a simple business : it means that you want

to save your edits to a file different from the original
(you will of course be prompted for a name). The Plot
Editor therefore copies its work file to the designated
file (provided this is not somehow forbidden). The
descriptor file is ordered during the copy, and this
means here also that all deleted frames and strings are
not copied (up to this time it is still possible to
undelete them, from now onwards they are lost). The work
file is then closed. The original file remains untouched
(if it did exist, and it is not even created otherwise :
this in case you changed your mind on the name you wanted
to assign to a new file).

Filing into the original file is more tricky. As the
program as to reorder the descriptor file before filing
(inclusive of removing deleted frames and strings, see
above), it has to copy it somewhere. However copying it
directly to the original file may not always be possible
(the file may be protected or there may be not enough space
on the disk). To avoid corruption of the original file,
the copy is first attempted to another work file, named
this time TEMPnn:sc:cr, where nn is the usual terminal
logical unit number, but the security code sc and the
cartridge cr are derived (as far as they are known to the
program) from those of the original file. If and only if
the copy is succesful, the original file (if existing) is
purged (deleted), and the WORKnn file renamed with the
original (remembered) name.

This way, in case of errors, the original file is not altered,
and you are allowed to cure the error (the most frequent will
be that you have forgotten to give the right security code),
or, as ultima ratio to save the file with a different name.

For details on the way file names, security codes and
cartridges are handled by the program see section 11 below.

2.4 Giving commands

After the startup, the Plot Editor shows you the typical
screen, possibly with a frame directory (if there are
frames in the descriptor file), and displays the command
line.

Commands may be entered on the command line, or also using
the soft keys labelled f1 to f8. On most terminals you
will see the labels for the soft keys appearing

automatically after startup.

There are nine top­level commands, of which the first eight are
assigned to a soft key also. To issue a command, the first
letter (or hitting the corresponding soft key) is enough
(not even a carriage return is required !). The commands
are listed here, together with their mnemonic form :

Frame directory displays the current frame
directory (no further parameters required), see section 3

String directory displays the current string
directory (no further parameters reuired), see section 3

Delete controls deletion and recovery of
frames and strings (it will prompt for a frame or string
number), see section 5

Edit opens a frame or string for edit
(it will prompt for a frame or string number), see
section 4

Add opens a new frame or string for edit
(which can be modelled on a pre­existing frame or string,
whose number will be prompted), see section 4

Resize allows editing of the page size and
orientation fields in sequential mode (see 6.1 for modes),
see section 9

Global edit allows to edit the characteristics of
more than one frame or string, as well as to translate or
scale whole groups of frames or strings (it will prompt
for further actions), see section 10

.cp5
Terminate passes to the termination phase (see
11), where command files are created, plotting programs
are run, and the descriptor file is saved to disk (this
command is protected : you have to type it twice,
otherwise it will return to asking for a new command)

Quit terminates the program immediately,
without saving any change to disk. Use in emergency.
This command is not assigned to a soft key. This
command is protected similarly to the Termination
command.

If you enter any other character than a valid command you will
get an error message. All messages appear below the command
line, and are cleared when you issue the next command. See
2.5 for colour coding of messages and severity.

The main commands are described below in sections 3 to 11 :
have a look at section 4 at first.

Please note the following convention will be used describing
command input modalities :

boldface will indicate a command keyword as you type it

normal typeface underlined will indicate what the computer
types in reply (trying to complete the word, where the
command is typically the initial)

italic indicates a variable field you should enter with the
proper value

2.5 Colour codes

If you run the Plot Editor on a colour terminal, you will
notice that different fields on the screen appear in
different colours and enhancements. Such coding is not
possible on other terminals, however it is replaced
somehow by the use of enhancements like underline, half­
bright, inverse video and blink.

All fields which are just fixed parts of the "form"
appearing on the screen (informative sections) are in
plain white.

.cp3
Fields which appear in yellow are variable fields under
control of the program (not editable), which are
displayed this way to make them noticeable (like the
number of frames and strings in a file).

Fields which appear in green are editable fields. They
will appear in inverse video green when they are being
edited. This usage of the inverse video applies also to
black­and­white terminals.

.cp5
Alphanumeric fields (which may be of variable length) use a

double­colour coding when being edited : inverse video
green indicates a pre­existing non­blank text, while
inverse video yellow indicates space free for a possible
extension.

Red and blink are freely use to give emphasis to some
particularly noticeable fields (e.g. the command line).

Concerning messages, the following coding applies :

Informative messages appear in magenta

Warnings, and messages concerning a selection of a
range of allowed characters, appear in cyan

Error messages appear in red

Moreover, blink, terminal delay and the bell are freely
used to emphasize important messages.

Finally colour coding is employed in the display of
frame and string directories to show the status of the
frame/string :

green indicating a normal (active) frame or string
cyan indicating an inactive frame or string
blue indicating a deleted frame or string

Frame and string status are explained below in sections 3 and 5.

.foThe PLOTED Handbook (release 1)
Section 3
.cp7

3. The directories

A frame or string directory is arranged on the screen on
several columns. There are four major columns, so that
frames (or strings) 1 to 4 fit on the first line, 5 to 8
on the second line and so on. The maximum number of
frames or strings which fit on a screen in the display area
is 72, which is also the maximum number of editable
frames or strings.

Each frame or string is indicated by a sequence number, a
one­letter status flag (alias disposition flag) and a 16­
character identifier.
The meaning of the sequence number is obvious, this is also what
you use to address a specific string or frame in all commands.

The identifier is a name of your choice you assign to a frame
or string to tell it from the others. The name is assigned when
creating/editing the frame or string, as any other
characteristics (although it is not used for plotting). Frames
with a null or blank identifier, will have it displayed with the
word <blank>.

The status flag is also associated (on colour terminals) with
colour coding (see 2.5 above). It may assume three values :

.cp3
a blank flag, with associated green colour, indicates a
normal frame or string, ready to be edited.

an I flag, with associated cyan colour, indicates an
inactive frame or string. This frame cannot currently be
edited until is reactivated again, and will not be
included in the command files for the plotting programs,
however it will remain in the descriptor file.

a D flag, with associated blue colour, indicates a deleted
frame or string. This cannot be edited, unless it is
undeleted, which is always possible before termination.
The frame or string will be actually deleted when the
descriptor file is saved to disk.

.foThe PLOTED Handbook (release 1)
Section 4
.cp7

4. Editing and adding

The only difference between editing and adding is that
editing applies to a pre­existing frame or string, while
adding applies to a new frame or string.

In both cases you have first to specify, according to the
request of the program in the message area, whether you
want to edit/add a Frame or a String (the initial, without
carriage return, is enough).

After that, in the case of editing, you have to supply
the number of the frame or string you want to edit (this
number should correspond to an existing and active frame
or string).

.cp4

In the case of adding instead, the number of the new
frame or string is supplied by the program. However you
are asked whether you want to copy the layout of the
frame or string from an existing one (in which case you
specify its number as above) or create a blank one (in
which case you reply with a 0 (zero)).

The sort of messages you will see on the command line
are like, respectively :

Edit Frame nn

Add String mm copied from nn

Note that the program expects a two­digit frame or string number
nn, if your number is 0­9 type a blank or a carriage return
after the number.

If you get an error message, you are requested to supply the
correct input. If by any chance you want to abort the current
operation (typically if you have requested Edit instead of Add),
you may return to the empty command line just typing a <control
Q>.

Once you have selected the frame or string to edit, a
screenful of information with all the frame and string
characteristics is displayed. This is the current content
of the frame or string (if Editing), or the content of
the template frame or string from which you are copying
(if Adding copying from a preexisting object), or a
"blank" string (if Adding a string "copying from zero").
See section 6 below for hints on how to edit the various
fields.

If you are instead Adding a "blank" frame, you are first
prompted to supply a frame type (types are specified in 1.1
above): just type a single letter (P for Plots, F for
Functions, H for Histograms and C for Contours). Once you have
selected a type, the appropriate "blank" frame screen is shown.

Once the screen is filled, you may edit the individual
fields by moving the cursor there, or jumping
sequentially through the fields, as explained below in
section 6.

When you have finished editing, you should wish to save
the new arrangement for the frame or string (to the work

disk file). To do this you move the cursor outside the
edit area (either on top or on the bottom of the
screen), and press a key. You are then prompted for one of
the following actions (the initial, without carriage
return, is enough):

Write to save the edits (make them permanent,
you will note that the frame or string counter will
increase by one : if the program crashes before current
edits are saved they are irrecoverably lost)

Quit to abort all edits done (the frame or
string will remain as before you started editing; if new
it will not even be created)

Continue if you have changed your mind and want to
go on editing

As a further facility you may also terminate editing while in
the edit area, using a control sequence. Type <control W>
(mnemonic : control WRITE) to save the edits, and <control Q>
(mnemonic : control QUIT) to abort all edits.

BEWARE: if you type <control Q> you are NOT asked any
confirmation !

BEWARE also: if you type <control W> while a field is open for
editing (displayed in inverse video), any edits done to such
field are not saved ; please remember to close the field before
issuing the <control W>.

Note that <control Q> and <control W> have a different meaning
when the cursor is in the axis area (when editing frames), see
6.4 below.

.cp10

.foThe PLOTED Handbook (release 1)
Section 5

5. Deleting

The Delete command controls the frame/string status (i.e.
is used to delete and undelete. In both cases you have
first to specify, according to the request of the program
in the message area, whether you want to delete a Frame or
a String (the initial, without carriage return, is enough).

After that you have to supply the number of the frame or

string you want to operate upon (this number should
correspond to an existing frame or string).

.cp4
Finally you are requested to supply the action (again the
initial letter is enough) as one of :

Delete (mark for deferred deletion)
Inactivate
Undelete

The sort of messages you will see on the command line are
like the following :

Delete Frame nn to be Undeleted

Note that the program expects a two­digit frame or string number
nn, if your number is 0­9 type a blank or a carriage return
after the number.

If you get an error message, you are requested to supply the
correct input. If by any chance you want to abort the current
operation, you may return to the empty command line just typing
a <control Q>.

If a frame or string directory is currently on the screen,
it will be refreshed to indicate the occurred change of
status.

Note that deletion of a frame/string implies just its
status flag (see section 3) is set to "marked for deferred
deletion" (blue on directory display). The frame will be
actually deleted only when saving the descriptor file to
disk.

Inactivation of a frame/string means it remains in the
file, but is not used to generate a plot command file
(hence it is not plotted).

The Undelete command brings a frame/string back to the
active, normal status, irrespective of the previous status
(i.e. it is used to recover both inactive and deleted
frames/strings).

.cp10

.foThe PLOTED Handbook (release 1)
Section 6

6. How to edit on the screen

Most of the edits using the Plot Editor are done in a
screen oriented way (the exception are "global edits" see
section 10). On a typical screen you have many fields
(on a colour terminal they will be displayed in green)
which can be edited. You have generally to select a field
(that is open it for editing) and then you can input
your new value. An open field is always displayed in
inverse video.

The way you move around on the screen and actually edit the
different types of fields is described below.

6.1 Moving the cursor

There are, from this respect, two types of field: truly
screen­oriented fields and sequentially editable fields.

Screen­oriented fields may be edited in any order. To
select a field you move the cursor (with the arrow keys)
to the field you are interested in (or even anywhere in
the comment area close to it), and then hit any key
(typically use carriage return, however note that any key
you hit when a field is not selected will not be written
to the screen, it just signals the program you want to
edit a field). The selected field is displayed then in
inverse video, and you can proceed as in 6.2 below.

When editing on a field is terminated, you are positioned to
the "next" field by default (which however you may choose to
ignore, and move the cursor elsewhere).

Sequentially editable fields are instead selected
automatically by the program. The cursor is positioned on
the first field of a family and this field is
automatically open (appears in inverse video). When you
have edited the field (see 6.2), the cursor is moved to
the next field, which is in turn opened, etc. You are
not allowed to go back to a previous field, but have
to edit all fields of the family in the sequence.

6.2 Types of fields

Fields are classified also according to their content as
numeric and alphanumeric fields. The way these fields are

edited is actually different. However there are some
common characteristics :

A field is displayed with a given length (number of
characters). If you type exactly that many characters,
you do not need to provide a terminating carriage return
(the program "reads" your value and jumps to the next
field).

If you have typed less characters than the maximum lenght,
you may terminate the input issuing a <control D> (always) or a
carriage return (for numeric fields only).

In no case it is permitted to use the line­editing keys (insert
char and delete char).

A numeric field contains only numbers. It is written in a
format selected by the program (integer, floating
point or exponential), and accepts input in free format
(however the underlying variable is typed, in Fortran
sense, therefore only integer values are allowed for
integer variables (it should be obvious when a field is
integer, as it is displayed as such).

You will always be sure about what you have typed, as the
program redisplays the value in its own format once you have
terminated the input (either typing all the requested
characters, or hitting return, or hitting <control D>).

Note that you are not allowed to change (line­edit) what you are
typing, that is you cannot use the arrow keys, nor the
backspace key. If you have typed something wrong, the easiest
way out is to generate a format error (e.g. typing two
consecutive periods (..)).

Numeric fields are subject to error checking. Some errors are
normal format errors, other errors are range errors, which
are field­ and context­dependent (the value should be in a
given range). In all cases an erroneous field is cleared on
the screen, and you are asked to re­enter a correct value.

Of course numeric fields keep defaults : if you type carriage
return, the current value will be preserved (unless it is an
out­of­range value, set by some other means like global editing
to an illegal value).

An alphanumeric field contains a string. As such one wishes
to keep as a default the current value of the string, and
be able to edit it character by character. Limited line
editing capabilities are provided :

Any printable character may be used to overwrite a pre­
existing character at the cursor position. Non­printable
characters are ignored with the exception given below.

The space bar is used to input destructive blanks, i.e.
the typed spaces will overwrite existing characters.

.cp3
The carriage return is used as a non­destructive blank,
i.e. as a way to move the cursor right by one character
at a time. If the previous character is not displayed,
it will appear typing return.
Remember that usage of the arrow keys is not allowed.

Consequently carriage return cannot be used as input
terminator; to terminate input at the current place (and
leave the rest of the string on the right of the cursor
unchanged) use <control D>.

.cp2
Backspace is used to move the cursor left, and go back
editing previous characters. Do not use the arrow keys for
this.

<control T> (mnemonic <control TRUNCATE>) will terminate
the input, and truncate the string at the current
cursor position (all following characters set to blank)

<control Q> and <control W> are recognised in a context
dependent manner. They generally terminate the input,
losing all edits done to the string, and initiate some
special action.

Note that there are no ways to insert characters in a string,
you will have to retype it all over.

Error checking for alphanumeric fields is limited to keywords
assuming only a restricted range of values (e.g. P,F,H,C for
the frame type code).

6.3 Editing a frame

The typical frame screen consists of several fields,
located in different screen regions. The majority of the
fields correspond to frame characteristics (parameters) see
section 7 for help.

The following regions may be individuated :

The frame identifier (title) which is not a frame
characteristic used for plotting (see section 7), which is
an editable alphanumeric field, and is on top of all.

The frame type (a one­character alphanumeric code),
which is editable only the first time the frame is
created as blank, and appears just below (see 1.1 for
types).

The majority of the frame characteristics (see section
7), which occupy the middle part of the screen. Fields
of various types, editable in screen­oriented way. Some
fields are however conditionally editable, in the sense
that edit is allowed only sometimes, in dependence of the
content of other fields. If edit is not allowed the
cursor cannot go there, and the fields cannot be
selected. Examples are the regression parameters (not
editable is the regression flag is set to NO), the axes of
a contour frame (which are always linear and cannot
switch to logarithmic), and a few other fields in
contour frames.

The axis area in the bottom part of the edit area. As
said in 1.1 one frame may have more than one axis sets.
Only one at a time is shown in this area. The first line
of the area indicates both the total number of axis sets,
and the number of the current one. The cursor in the axis
area will start axis editing. Axis editing is described
in 6.4 below.

.cp4
Editing a frame is terminated as usually either by moving the
cursor outside the edit area and selecting an action (W Q C see
section 4), or by issuing a <control W> or <control Q> from
anywhere outside the axis area.

6.4 Editing an axis

One is allowed to edit only one axis at a time. To start
editing one moves the cursor to the beginning of the axis

area and selects it typing any character.

One is then requested to select the axis number. A carriage
return selects the current axis, i.e. the one displayed on the
screen. A number within the range, select an existing axis. A
number equal to n+1 where n is the total number of axes select a
new axis.

As for frames, a new axis can be copied from an existing one
(you are prompted for the number) or be created as blank (you
reply 0 to such prompt).

An axis shall be selected for editing also in order to be
deleted. Deletion is explained below, and takes place
immediately.

Once an axis has been selected, its characteristics are
displayed in various fields. By default a blank axis will
be an X­axis. The axis fields are sequentially editable,
i.e. you have to edit all of them in order.

You may jump from one field to the next (leaving the previous
unchanged) using <control D>, or carriage return for numeric
fields. When you have edited the last field you are prompted
for a terminating action, in reply to the question "is the
axis OK", to be chosen among :

Yes axis is OK, save edits in memory and go back to
axis menu
No axis is not OK, edit it again from the beginning
Quit axis is not OK, abort all edits and go back to
axis menu

You may also terminate axis editing in advance, going
back to the axis menu, typing at any time one of the two
sequences (which take here a different action than when
editing a frame) :

<control W> (control WRITE), to save the edits
<control Q> (control QUIT), to abort all edits

.cp2
Note that the content of the currently open field will not be
saved when using control WRITE.

The following notes apply to the fields of an axis.

.cp5

The axis type field may assume one of the (one­character)
values :

X a main X axis on the bottom of the frame
Y a main Y axis on the left of the frame
Bottom a secondary X axis on the bottom of the frame
Top a secondary X axis on the top of the frame
Left a secondary Y axis on the left of the frame
Right a secondary Y axis on the right of the frame

Delete to delete the current axis

If you want to delete an axis, you are asked for confirmation
(type D again). The axis is immediately removed, and the axis
counter decremented (axes are renumbered). If you remove the
last axis, it may occur you get an (innocuous) error 921 message.

The choice of axis types is relevant to the local
implementation of plotting programs. X and Y axes are used
directly in the command files for the PABLO and MCONT programs,
while the other four cathegories (of obvious meaning for what
their location is concerned) applies to the Labeller program
only (X and Y axes apply also to the Labeller, and are handled
as Bottom and Left axes respectively).

The fields controlling tic size, tic spacing, character
size and orientation apply to the Labeller program
only (see the relevant documentation). Note that PABLO
and MCONT use the character size defined in the frame for
all axes. Also note that tic spacing is not relevant to
logarithmic axes.

Set a zero character size for axes you do not want to annotate.

The format field also applies to the Labeller only and
determines the way numeric labels at tics are written.
The documentation of the latter program describes the
allowed format codes (essentially Fortran format codes,
plus an "hour" format, for linear axes, and EXP or LOG for
logarithmic axes). If you do not want any numeric label,
you should type the word <NONE>, exactly as shown here,
in the format field. Note that the format field is
alphanumeric.

The last field is the label text for the axis caption. The
program tells you the maximum allowed length for this field
(when you have many axes you may run short of space,

otherwise you have typically up to 76 characters). The
part currently in use is displayed in green, the
allowed extension in yellow. The field is an alphanumeric
field. You typically terminate editing with <control D>
or exceptionally with <control T> (TRUNCATE).

Do not use "all blanks" to clear a label, nor do use <control
T> to truncate it to zero­length. This may cause the program
to crash. The correct way to clear a label, is to type as
first characters the word <NONE>. The program will reply with a
(red) "deleted" message. The space taken by the old label is not
released in the file.

.cp4
Note that <NONE> shall be typed in capital letters. Use the
CAPS key as necessary. The label text may be a mixture of
upper and lower case letters, and also include Labeller
escape sequences (see relevant documentation).

The Plot Editor converts the label to upper case, stripping the
escape sequences, and truncating to 30 characters, when
generating a command file for PABLO or MCONT. This way the plot
is still legible.

6.5 Editing a string

Editing a string is simpler than editing a frame, as you
have less fields. Typically you have a string identifier
(not plotted, see section 8), the main string
characteristics, and the string text.

Editing is screen­oriented, and you may edit fields in any
order. Note however the edit area is shorter. You terminate
edit as usual (cfr. 6.3) putting the cursor outside the edit
area, or with <control W> and <control Q>.

The string text is split on the screen on several lines,
which you edit one at a time. However it will be plotted
as a single long string. Note that the entire string
(trailing blanks removed) can be up to 232 characters.
However if you want to edit the command files, note that
the HP EDIT allows editing only up to 150 characters.

Here too the current part of the string is displayed in green,
and the possible extension in yellow. You terminate input with
<control D> or <control T> (TRUNCATE), and do this once for
each line.

Use the CAPS key as necessary. The label text may be a mixture
of upper and lower case letters, and also include Labeller
escape sequences (see relevant documentation).

The Plot Editor converts the label to upper case, stripping the
escape sequences, when generating a command file for PABLO or
MCONT. This way the plot is still legible.

.pa

.fi ploted2.hp

.pl 60

.mb 3

.po 0

.foThe PLOTED Handbook (release 1)
Section 7

7. Frame characteristics

The listing below describes all frame characteristics (see
1.1), as close as possible to the order in which they
appear on the screen. For each frame it indicates the
type of the corresponding field, and the allowed range
of values, plus any hint for editing.

In addition a four­character code for a longer mnemonic name is
given in boldface: this is the code that shall be used to change
a characteristic in more than one frame in global edit mode (see
section 10).

7.1 Typeless characteristics

Frame identifier

This is not a plottable characteristic. It is a 16­char
alphanumeric fields, which contains an user selected title,
displayed in directories. It cannot be changed via global edit.

Frame type

A one­character code (chosen among P,F,H,C), set once when the
frame is created, and not modifiable afterwards.

Subflag or overtrace flag

It is an integer field, assuming the values 0,1 or 2. It
cannot be changed via global edit. It controls the way
frames are overtraced (PABLO users will recognize it is very
close to the "flag for new frame" used there). A value of 0
indicates a self­standing frame : in this case the axes, tics,
etc. will be plotted (by PABLO or MCONT). A value of 1 indicates
an overtraced frame : no new axes will be drawn, and all
information about axis scales (origin, length, start, end)
will be ignored and taken from the "previous" frame (used
when plotting more datasets exactly in the same frame). A
value of 2 indicates also an overtraced frame : in this case
drawing of new axes is inhibited, but the scale is changed
(used when plotting datasets with different scale/units in

the same physical frame, or for "dummy" frames).

X­axis origin XORI gin
Y­axis origin YORI gin

The location of the frame origin in "outer" units (i.e. as
used by the plotting programs, which means pseudo­inches for
PABLO and MCONT). A numeric real field, whose value should
be in the range allowed for a page and orientation as
currently selected (A4 is about 7*10 and A3 is about 10*15
inches, or rotated according to orientation). Note that the A3
size should be suitable for plots going to a terminal or Ramtek
CDU using the full, square screen. See PABLO handbook
appendixes for screen sizes on all devices.

.cp5
X­axis length XLENgth
Y­axis length YLENgth

The length of the axes in "outer" units (inches). Another
numeric real field, which is also checked to be in the range
allowed by the page size and orientation.

X­axis start and end XSTA rt and XEND
Y­axis start and end YSTA rt and YEND

These are in user units (kg, parsecs, number of pears, etc.),
and are numeric real fields without any limitation.

X­axis linear or logarithmic XLIN log
Y­axis linear or logarithmic YLIN log

Alphanumeric fields assuming the values LIN or LOG (for
programmers : only the two last letters are preserved
internally). Note that only linear axes are allowed for
contour frames (edit inhibited).

Frame colour FRCO lour

The colour for frame is an integer field between 0 and 256.
The way colour is handled is device dependent (see also the
PABLO Handbook), typically a 0 colour will cause no plotting.

Colour COLO ur

The colour for plots, also ranges 0­256. For PABLO plots
consult relevant note below.

Character size CHSI ze

The size of the characters for annotations in "outer" units
(inches). In the current implementation applies to PABLO and
MCONT plots only.

Number of axes

This is accessed only indirectly by means of the "axis edit"
capabilities (see 6.4).

.cp12
7.2 Plot frame characteristics

Connect flag CONN ect

This is implementation­dependent. Currently is the PABLO
connect flag (see relevant manual for all details) which
assumes values 0 to 6 :

0 data points not connected
1 data points connected by a broken line
2 as 1, but "also first and last"
3 data points connected by a smooth line (beware !)
4­6 pseudo­histogram modes (see PABLO handbook)

Error bar flag ERRB ars

This determines the way error bars are drawn. Currently is
identical with the PABLO flag of similar usage, a value between
0 and 4

0 no error bars
1­2 error bars on X (or Y) only
3 error bars on both X and Y
4 error diamonds drawn

Symbol size SYMS ize
Symbol number SYMB ol
Colour COLO ur

The size and shape of the symbol to be drawn at each data
point. Sizes are in "outer" units (inches). Use size 0.0 to
draw no symbols. The symbol shapes are coded as a number, and
are implementation dependent. Symbols used by PABLO are

described in Appendix A of the PABLO handbook.

BEWARE of a peculiar implementation of the SYMBol field. This is
defined as a two character alphanumeric field. You may enter a
numeric code, OR the two­letter code CC (programmers: kept
internally as ­1) to exploit the "colour column" feature (see
PABLO Handbook for details).

If you enable the "colour column" the COLOur field assumes a
different meaning, it is a number 1­9 indicating a column
in the data file containing the symbols and colours in which
each point has to be drawn.

Upper limit flag ULFL ag
Upper limit colour ULCO lour l

Implementation dependent. See PABLO Handbook for details.

Regression flag REGR ession
Minimum x MINX
Maximum x MAXX

Implementation dependent. See PABLO Handbook for details. The
regression flag assumes values NO (default) or YES. The
editing of the other two fields is allowed only in the latter
case, inhibited otherwise.

.cp10
Data file name FILE name
Error flag ERRF lag
Header lines HEAD er
First point FIRS t
Last point LAST
X column XCOL umn
Y column YCOL umn

The characteristics of the data file (in the format required by
PABLO, (see relevant documentation). Most of them shall be
obvious. Some parameters are limit checked (i.e. no more than 9
columns in a file, last point cannot be less than first point).

Filename is a 12­character alphanumeric field. If blank or null
(as for dummy frames) it appears as <undefined>. To remove it
just replace it with a blank string.

Error flag is implemented as in PABLO (i.e. 0 for a file "with

errors" and 1 for a file "without errors"). Errors are in the
same column as data, with alternated records value­error,
value­error etc.

7.3 Histogram frame characteristics

Reverse mode REVM ode
Dash size ("trat length") DASH size

Implementation dependent. Control dashed lines according to
usage in PABLO. See relevant manual.

Upper limit flag ULFL ag
Upper limit colour ULCO lour

Implementation dependent. See PABLO Handbook for details.

Data file name FILE name
Error flag ERRF lag
Header lines HEAD er
First point FIRS t
Last point LAST
X column XCOL umn
Percentage flag PERC flag

The characteristics of the data file, similar to those
indicated for Plot frames in 7.3 above. The only peculiarity
for histograms is that the Y­column is not used, replaced by
the percentage flag (0 or 1 as described in PABLO Handbook,
to select absolute number frequency or percentage frequency).

Number of bins NBIN
Histogram start x HSTA rt
Bin width BINW idth

Numeric parameters of self­explanatory meaning (see also PABLO
Handbook).

.cp 10
7.4 Function frame characteristics

Function identifier IDEN tifier

A numeric code for the different supported function.
Implementation dependent (1­20 for PABLO; see Appendix C of
the PABLO Handbook for locally implemented functions).

.cp7
Function parameters PAR1 to PAR5

Up to five real parameters, whose meaning depends on the
function identifier (see Appendix C of PABLO Handbook where
they are labelled however P0 to P4).

Number of points NPTS
Minimum X MINX
Maximum X MAXX

Numeric parameters of self­explanatory mening (see also PABLO
Handbook).

7.5 Contour frame characteristics

Number of levels NLEV els

The number of wished levels. Integer range 1­256

Level code LEVC ode

Implementation dependent. Currently uses the MCONT level
codes (see Exosat and IUE system handbooks):

0 automatic selection of thresholds
1 linear­spaced thresholds between minimum and maximum
2 log­spaced thresholds between minimum and maximum
3 user supplied thresholds
4 thresholds read from a file

The setting of this code conditions the editing of some further
fields. Note that only limited support is given to code 3 (a
warning is issued). As such mode requires the user to
supply a (variable) list of thresholds, which cannot be kept
in the descriptor file, the Plot Editor writes a message in the
command file generated for MCONT. It is care of the users to
replace such messages with the required threshold values. The
edited command file can be saved for future use.

Otherwise for reproducibility in automatic way use level code
4 (to create a level file use program DISPS, see Exosat

and IUE system manuals).

.cp5
Minimum level MINL evel
Maximum level MAXL evel

Integer values, range ­32767 to 32767, according to image file
content. Editing is allowed only for level codes 1 and 2.

Scale­by­pixel­size SCAL e

Implementation dependent. See MCONT documentation quoted
above. The normal value should be YES (but NO is also
possible, though discouraged).

Data file name FILE name

The name of an image file in EXOSAT format (this format is
described in the Exosat system programmers' reference), as
required by MCONT.

Level file name LEVF ile

The name of a file (created by DISPS) containing the level
thresholds. Editing allowed only for level code 4.

7.6 Axis characteristics

Note that all parameters, unless explicitly stated, do not
have a mnemonic name, as they are not globally editable
(they can only be edited in the individual axis).

Axis type

One of X,Y,Top,Bottom,Left or Right. See 6.4

Tic size TICS ize

The tic size in "outer" units (inches). Tics are always
orientated to the top (x­axis) or to the right (y­axis). For
Top and Right axes, or anyhow to invert tic direction, code a
negative size. This parameter is globally editable.

Tic step

In user units, the distance between tics. Not used for log

scales.

Character size for label LBSI ze

The size of characters used for the annotations of a particular
axis (in "outer" units, i.e. inches). In current
implementations applies to Labeller only (PABLO and MCONT use
the frame characteristic). This parameter is globally
editable.

Format

An alphanumeric field, containing a format in the way required
by the Labeller (see relevant handbook, under command NUMBER).

.cp4
Orientation

A one­character code, specifying Normal or Rotated. As
described in the Labeller Handbook, controls the orientation of
numeric labels. Note that centering of numeric labels, and
offset of axis caption take the default values (see Labeller
Handbook under command NUMBER).

Label text

An alphanumeric field, eventually with imbedded escape
sequences.
.cp7
.foThe PLOTED Handbook (release 1)
Section 8

8. String characteristics

The listing below describes all string characteristics
(see 1.1), as close as possible to the order in which
they appear on the screen. For each string it indicates
the type of the corresponding field, and the allowed
range of values, plus any hint for editing.

In addition a four­character code for a longer mnemonic name is
given in boldface: this is the code that shall be used to change
a characteristic in more than one string in global edit mode
(see section 10)

X position XPOS ition
Y position YPOS ition

The position of the string in "outer program" units (in our case
pseudo­inches, see 7.1 above, under XORIgin).

Colour COLO ur

An integer 0­256, device dependent. See 7.1 above, under COLOur.

Slant SLAN t
Orientation ORIE ntation

Real values in degrees (0.0­360.0). No slant is 0 degrees.
Horizontal direction is also 0 degrees.

Character size CHSI ze

The size for characters in "outer" units (inches).

String text

This field is not globally editable. It is a long alphanumeric
field, split on the screen on several lines. Note that the way
the string is divided on the screen is for pure convenience and
has nothing to do with the way the string appears on the plot.
Normally the string appears on a single line (be careful when
editing a Labeller command file, as the string can be longer
than the 150 characters allowed by EDIT). However you may use
the slash (/) to cause division of the string on the screen into
several lines when plotted.

.cp20

.foThe PLOTED Handbook (release 1)
Section 9

9. Resizing

The Resize command enters a short sequential editing of two
fields (which appear close to the top of the screen) :

the page size (alphanumeric) : A4 and A3 allowed

the orientation (alphanumeric one­character codes) :
Portrait or Landscape

These fields affects the limits used for checking the xy axis
origin and length. For square or rectangular screens (10*10
inches as Ramtek or bigger as some terminals), use A3 size
in order to access the entire screen.

10. Global changes

The Global edit command enters a "dialogue" on the
command line. This command is used to apply edit changes
to more than one frame or string. You first specify,
with one­letter codes, what you want to edit (i.e. Frames,
Strings or Both), then the range of frames or strings, and
finally the action and the relevant parameters.

Note that if you select to global­edit Both frames and
strings, you implicitly select ALL frames and strings.
Therefore range selection is bypassed.

The allowed actions are (1­letter codes): applying a
Translation to one or more objects, applying a Scaling to one
or more objects, or Changing one or more parameters in one or
more objects. You are also allowed to Repeat the last action
performed for a different range of frames/string. In the case
you select Both frames and strings (ALL), you are allowed only
to translate and scale.

<Control Q> aborts the global­edit, except if used during a
Change operation (see below).

10.1 Defining a range

A range specification is entered as an alphanumeric
field containing a list of sub­ranges of frames or
strings. As generally the list is shorter than the
space provided, you terminate it with a <control D>.

You specify a frame or string range as a list of one or more
of the following items, separated by commas or blanks :

The keyword ALL to select all frames or strings (if this
keyword appears anywhere in the list, it overrides all
other selections)

The number of a frame or string

A sub­range of frames or strings, in the form nn­mm, to
indicate all objects between nn and mm (included).

.foThe PLOTED Handbook (release 1)
Section 10
.cp3
Hence, to apply a change to frames 1,4,6,7,8,11,14,15,16 you
may code a range list like :

Global Frames 1,4,6­8,11,14­16

If you specify any illegal frames or strings, they are
ignored (a warning is issued).

10.2 Translating

A translation is specified separately in X and Y. The
extent of the translation is specified in "outer" units
(inches) and is equivalent to move the frame x­ and y­
origin (or the string x­ and y­position) by the specified
extent.

You are requested to enter the wished extent (a numeric
field). The default is no translation (0.0).

The sort of dialogue appearing on the command line is like :

Global Frame range Translate in x by xx.x

(a further message about y appears on the same line, overwriting
the one about x, when done)

Note that no checks are done while translating that the
resulting position will fall in a legal place in the
current page size and orientation !!

10.3 Scaling

A scaling is an omothetic transformation specified
separately in X and Y. The extent of the transformation is
specified as a scaling factor with respect to an origin in
"outer" units (inches) and is equivalent to the following
transformations :

x' = a(x­x0)+x0
l' = al

where x,x' is typically a position (x or y frame origin or
string position), and l,l' a length (axis length) or size

(character size).

You are requested to enter the scaling factor a (a real number)
and the origin x0 separately in x and y. The default is

no transformation (a=1.0, x0=0.0).

You are also requested to specify with 1­letter codes
whether the scaling applies to the frame or string Position,
to the Character sizes only, or to Both of them.

.cp4
The sort of dialogue appearing on the command line is like :

Global Frame range Scale in x by a from x0

(a further message about y appears on the same line, overwriting
the one about x, followed by one about positions, characters or
both).

Note that no checks are done while scaling that the resulting
position will fall in a legal place in the current page size and
orientation !!

10.4 Changing parameters

With this option you are allowed to do things like "change
the x­origin of frames 1,4,7,10 and 13 to 5.5 inches", or
"change the tic size in all frames to 0.01 inches", or
"change the colour in frames 7 and 9 to red", etc.

To save time, once you have selected a range, and
specified as action Change, you are repeatedly asked what
you want to change and into which new value you want to
change it. This way you may specify an entire list of
parameters, and pass only once through the list of frames
or strings, doing all the changes simultaneously.

You specify what to change as a four­letter code of the
relevant frame characteristics. Such codes are given in the
titles of the subsections in 7.1 to 7.6 and 8, as well as in
Appendix B.

You specify the value into which to change any previous values
for the selected parameter as a number or string (according
to the type of field). If you do not want to change a
parameter, but keep the default (e.g. you have typed the wrong

parameter name), just enter a carriage return or a <control
Q>. The <control Q> is necessary if you have already started
typing the new value and find it is wrong. In both cases a
flashing "unchanged" message appears.

As you are typing sequences of what and into what, you may
suddenly realize you have requested to change a parameter
which should not be changed. In such case just retype the
parameter name and a <control Q>.
The parameter will be reset as "not to be changed".

When you have given all your list of parameters, you enter
either the keyword GO or a <control W>. This will start
processing all frames or strings in range and doing the
changes.

Note that global changes are not protected in the sense
the new values you specify may be totally illegal, and
the program will not complain (it will next time you try
to edit such a field individually).

On the other hand the program is clever enough to know which
parameter apply to frames and strings, and also to know to
which type of frames a parameter applies : therefore if you
asked to change LEVCode (a contour parameters) in frames 1,7 and
9, and frame 7 is an histogram frame, the latter will remain
intact.

Examples of command line dialogue in the cases quoted at the
beginning of this section are :

Global Frame 1,4,7,10,13 Change XORI 5.5

Global Frame ALL Change TICS 0.01

Global Frame 7,9 Change COLO 1

.cp7

.foThe PLOTED Handbook (release 1)
Section 11

11. Terminating and plotting

11.1 Generating command files

When you have requested termination, you are asked (in the

current implementation) three questions about the
(currently supported) plotting programs LABLER, PABLO and
MCONT, namely :

whether you want to generate a command file for the
indicated program (may reply YES or NO, which is the
default)

what is the name of the command file to be created (this
is an alphanumeric field in the form name:sc:cr, which
is then parsed into name, security code and cartridge
and redisplayed by the program). The name is saved as
default name in the descriptor file (next time it will be
remembered).

Typing a <control Q> anywhere in this phase, will jump to
the "file saving" phase immediately (see 11.3 below).

The next question concern the identification of the
plotting device to be indicated in the command files. This
is currently the logical unit number of the device (see
PABLO Handbook appendixes for local implementations). If
you type a wrong number you will get a list of allowed
logical units (note that "logical unit 1" to indicate your
own terminal is not allowed, use the system logical unit
number).

The program then takes a while to write the command files.

11.2 Plotting

The next question is whether you want the Plot Editor to
schedule the plotting programs immediately. If you reply
YES, the upper part of the screen is frozen, and the
messages from the plotting programs scroll in the lower
part.

You are not allowed to run a plotting program on the same
terminal, while the Plot Editor is still running.

.cp5
If you have selected the HP 7550 plotter (locally unit 38), you
will get extra messages about paper loading. Moreover the paper
orientation will be set automatically by the Plot Editor.

.cp4
In the current implementation, the Labeller is run first,
followed by other plotting programs. As the current release of

the Labeller does not unload paper at the end, this allows to
use the plotter in auto­feed mode (if a single program follows
the Labeller).

If you are instead running PABLO followed by MCONT, you
should still have auto­feed disabled, and reload the paper
manually between programs, when prompted by the Plot Editor.

11.3 File saving

At the end (after plotting if requested), you are asked to
dispose of the edited plot descriptor file (the command
files are already on disk and remain there until
overwritten or deleted).

You may (see 2.3) Quit, File or Save to another file. At the
end the name of the output file as used by the program is
displayed (you can check whether it did put it where you
intended it to go, in the case you did not supply enough
information).

At this stage you may get an error message typically with one
of the following FMP or Fortran codes :

6 506 a work file not found (ignore this message)

7 507 wrong security code (see below for recovery)
2 502 file already exists
32 532 wrong cartridge specified
33 533 cartridge is full
14 514 the cartridge directory is full
8 508 file is in use by another program and locked
15 515 file name has illegal syntax

In most cases, and if you persist getting errors, the easier
way out is to issue a Save command changing the output file
name. A different action may be taken by the program in the
case you get a ­7 error while trying to File (most likely you
forgot to specify the security code, or gave a wrong one). In
such case :

Give the correct security code when prompted
Issue a File request again

Note that if you do not specify the cartridge in a file name,
the file will go the default cartridge (the first one it
finds, generally your private cartridge). The following cases
are possible :

.cp5
a You entered the Plot Editor giving a full name:sc:cr of an
existing file, then

a1 You will be able to File it OK
a2 You can always save it specifying a full namr
other:os:oc
a3 If you save it to other, without specifying security
code and cartridge, they will default to sc and cr

.cp2
a4 If you save it to other::oc, you actually force the
security code to none
a5 If you save it to other:os:, you force it to
the first cartridge found.

b You entered the Plot Editor giving a full namr, with
the wrong security code or without it, you will get a ­7 error
when filing. See above for recovery.

c You entered the Plot Editor without specifying the cartridge

c1 when filing, the file on the original cartridge
will be deleted, and you will unexpectedly find your
file has been written on the first cartridge ! You have
been warned !
c2 saves occur to the first cartridge if none specified

d You entered the Plot Editor with a full namr of a non­
existing file, then you will always be able to file or save it.

e You entered the Plot Editor with a namr like name::cr for
a non­existing file, the file will be created with no security
code.

f You entered the Plot Editor without specifying the
cartridge for a non­existing file, it will be filed or saved to
the first cartridge

.cp7

.foThe PLOTED Handbook (release 1)
Section 12

12. In case of trouble

If you are getting a minor problem, remember that one
of the following actions may in general put you back
working, possibly losing just the last edits :

issue a <control Q>, this will "quit" what you are doing
(the exact details depend on the part of the program you
are in)

issuing a <control W> is often identical to a <control Q>,
except that in some cases (see rest of documentation) the
edits are saved

otherwise walk to another terminal, log in under your user
name and issue a break request to your copy of the Plot
Editor (the copy will be called PLOnn, where nn is the
terminal number); the syntax of the break request is :

SYBR,PLOnn

.cp5
(if you break during startup, you terminate immediately;
if you break while editing a frame/string, you jump back
to command mode; if you break while in command mode, you
jump to the "termination" segment; if you break while
writing command files, such files are closed as they are,
and you jump to the scheduling of the plotting programs)

A seemingly major problem may occur if you type too
quickly, and you get an S=nn COMMAND ? system message.
The fact is that most likely the keyboard will be locked by
the program and you cannot type anything. In this case
do a soft reset of the terminal. This will unlock the
keyboard. You can then type a return to clear the system
message, and then go on typing.

If you get error messages here, check the CAPS key (maybe the
program wants upper case, and the reset changed into lower case).

It is also possible that the screen is altered. If the S=nn
message remains on the screen, ignore it, it is harmless now.
If the screen is shifted, scroll it back to the original
position.

If you used an hard reset by mistake, you have cleared the
screen. This way you have typically lost the top part of the
screen (never mind !), but you will get the rest back when you
do something.

If you are puzzled, close your edit with a <control W> or
<control Q> and restart, and you should get the screen back
all right. It is unlikely that your files have been damaged.

If by any chance the program crashes, issue a soft reset
if the keyboard is locked. You may recover what you have
done by renaming the work file PLOTnn (see 2.3)

.cp 7

.foThe PLOTED Handbook (release 1)
Section 13

13. Future improvements

Possible future improvements not yet implemented concern :

the use of the cursor to select a frame or string to be
edited directly from the directory display;

the use of insert character and delete character when
editing alphanumeric fields

the possibility of deleting entire ranges of frames or
strings

the possibility of inserting "variable" parameters for
file names and other fields, which can be replaced in
one instance (to have true template descriptor files).

.pa

.foThe PLOTED Handbook (release 1)
Section 14

14. Programmers' notes

This section is in lieu of formal program sheet and file
sheet for the plot descriptor files.

14.1 Segmentation scheme

The current implementation of the Plot Editor on the
HP­1000 F under RTE 6­VM (with FMGR) is based on a
segmented program. The linear segmentation scheme (with
SEGLD calling a "dummy main" followed by a call to a
subroutine relocated with the segment) used in the
previous unofficial release has now been changed to
insert the "global edit" segment. Therefore a short
"switching segment" has been introduced :

Old scheme New scheme

MAIN MAIN
| |
| SegX­­­<­­+
| | Seg2

Seg0 Seg0­­­>­­+
| |

Seg1 Seg1

The MAIN root takes care of startup, segment 0 is the command
segment, and segment 1 is the termination segment (which takes
care of command file writing, file disposition and stops).
Segment 2 is the new global edit segment, and Segment X is
just there to allow switching back to command segment.

14.2 Loading instructions

The source of the program is split among the following
files (all of them on cartridge LC):

&PLTED the PLOTED main
&PLTE0 the segment 0 (command segment)
&PLTE1 the segment 1 (termination segment)
&PLTE2 the segment 2 (global edit segment)
&PLTEX the segment X (switching segment)
&PLELB a library of common Fortran routines
PLTCOM include file for the main common block
PLTCO1 include file used by segment mains only
PLTCO2 include file used by segment 2

A transfer file used to compile all source files, generate an
indexed library out of &PLELB, and link everything using the
linker commands contained in #PLTED is provided, and may be
invoked as:

TR,*PLTED

In case of maintenance, avoid deleting all the relocatables,
and make a copy of the transfer file which compiles only the
segments on which you are working.

.cp5
14.3 Descriptor file layout

The schemes in Appendix C describe the structure of
the plot descriptor files used by the Plot Editor.
Such files implement a hierarchy made of the following

components :

a header record
a set of pointer records
a set of descriptor records

There are separate pointer and descriptor records for
frames and strings. Essentially what happens is that :

The file is a type­2 binary direct access file, with
record length 256 bytes.

The header record is the first record, and contains the
information relevant to the whole plot (page size and
orientation, command file names, date of last change,
number of frames and strings). It also points to the first
frame and string pointer records.

.cp2
Each pointer record of one type (frame or string),
autonomously points to the next one (if any). It also
contains information about up to 14 frames/strings, namely
the frame/string identifier, and a pointer to the
frame/string descriptor record

Strings have a single descriptor record, frames have at
least one descriptor record, optionally followed by one
extension record

The layout of the frame descriptor record varies somewhat
depending on frame type, with an attempt to kept orderly
equivalences between fields of similar usage. The last
part of the primary record, and eventually the extension
record contain a variable structure with the axis
information.

All these records may occur in any order or position in the
file, as they are always accessible via suitable pointers.
While editing a lot of new records need to be created, which
always occurs by appending at the end of a file. When a
frame or string is deleted some of them are rendered
inaccessible.

The "ordering" process which occurs during startup and
at file disposition, recovers lost space and rearranges the
pointers such that:

The header record comes first

followed immediately by all frame and string pointer
records in sequence

followed by all frames and string descriptors in order as
pointed, moreover the extension record (if any) follows
immediately the frame descriptor of which it is an
extension.

.cp50

.fi ploted3.hp

.pl 60

.mb 3

.foThe PLOTED Handbook (release 1)
Appendix A

Appendix A
Error codes

This is a listing of all error messages produced by the Plot
Editor, together with some explanation (when the message
itself is not self­explanatory). Errors produced may be
classified as :

Error code is negative FMP errors, see HP quick reference
Error code < 100 FMP and other HP errors (see HP
documents)
Error code 400­700 HP Fortran runtime errors (see
table in

Fortran manual appendix)

all above codes are indicated
below for simplicity as fmp

Error code 800­1000 errors detected by the program,
see below

Here follows a complete listing of all error messages :

Error fmp the following are normal
FMP or runtime errors which may occur opening files,
when improper names are used

opening filename these errors occur when
opening apurging work file filename descriptor file
or a plot commandcreating work file filename file

deleting work file these errors occur during
the QUIT
opening new file filename or FILE terminating phase
(gene­
deleting temp file filename rally an improper file
name or a
creating temporary file filename wrong security code)
deleting old copy of filename
renaming oldname as newname

the following are normal
FMP or runtime errors

(i/o on descriptor files)
which should occur only
if the file is somewhat
corrupted

reading from disk trouble reading
descriptor file
reading descriptor from disk idem
reading extension record idem
reading from input file trouble when reordering
copying to work file idem
initializing new file header trouble opening a new
desc file
initializing frame pointers idem
initializing string pointers idem
in updating work file trouble writing edited
descriptor
writing descriptor record idem
writing header record trouble updating desc
file header
reading pointers from disk self explanatory

Loading base segment these are scheduling
errors, and
reloading base segment should never occur
loading segment n
RP'ing program name these are scheduling
errors for
offing program name the plotting programs,
which maybe already engaged

in session number this is an error in LOGLU
trying to get the terminal session number and should never
occur

the following are format
errors

illegal numeric value this is a standard
format error (49x), indicating a wrong format has been used
when entering data
range specifier ignored this is a format error
when giving a frame or string range in global edit
formatting output field commissioning error,
routine REALX

Error nnn internally­numbered errors

801 zero axis length in frame n self explanatory (zero
inches)
802 zero or negative value for log a log axis cannot start
at zero axis in frame n or negative user
units
815 negative level with log scale on for contours only
frame n
890 schedule on same terminal not cannot plot on same
terminalallowed
891 plot LU locked : program not plotter unit is in use to
othersscheduled
900 There are no frames or strings an edit or delete request
was madeto edit with an empty file
(no strings
900 There are no frames or strings and no frames)

to delete
901 There is nothing to edit in the similar to the above, but
it isdirectory the case of no strings
or no
901 There is nothing to delete in frames

the directory
910 attempt to read nonexisting commissioning
errordescriptor
911 record or wrong type instead of commissioning
errorpointers
912 illegal pointer record indicated commissioning error
915 file name cannot be parsed the file name you
specified cannot be parsed in name, security

code and cartridge !
921 axis number out of range commissioning error
922 axis extension area overflow commissioning error
930 no room for more axes the space for axes is
limited !
950 editing deleted/inactive frames self explanatoryor strings
960 no more frame/strings can be there is a maximum of 72
each !added
970 end of pointer area reached commissioning error
980 impossible frame/string number commissioning error
981 numeric value out of range this is the typical
case of a limit checking, the values input are outside the
limits

982 some parameter changes inhibited while global changing
some parameters for frames of different types share the
same area (sse appendix C) and cannot be changed at same time

.cp55

.foThe PLOTED Handbook (release 1)

Appendix B

Appendix B
Mnemonic codes for parameters

When doing a global edit change, use the following (four
letter) mnemonic codes to indicate a parameter.

in order of appearance

parameters for frames

XORIgin x­axis origin in inches
YORIgin y­axis origin in inches
XLENgth x­axis length in inches
YLENgth y­axis length in inches
XLINlog x­axis is linear (LIN) or logarithmic (LOG)
YLINlog y­axis is linear (LIN) or logarithmic (LOG)
XSTArt x­axis start in user units
YSTArt y­axis start in user units
XEND x­axis end in user units
YEND y­axis end in user units
FRCOlour colour for frame
CHSIze character size in inches used by PABLO
CONNect connect flag for plots
IDENtifier function identifier
NLEVels number of levels for contour plots
ERRBars error bar flag for plots
NPTS number of points for functions
REVMode reverse mode flag for histograms
LEVCode level code for contour plots
SYMSize symbol size for plots
DASHsize dash size (so called TRATLENGTH) for histograms
MINLevel minimum level threshold for contour plots
MAXLevel maximum level threshold for contour plots
SYMBol symbol number or CC for colour column (coded as ­1)
COLOur colour for data in all plots
ULFLag upper limit flag for plots and histograms
SCALe scale­by­picsize for contour plots (Y or N)
ULCOlour colour for upper limits in plots
PAR1 parameter 1 for functions (1­5)
PAR2 parameter 2 for functions (1­5)
PAR3 parameter 3 for functions (1­5)
PAR4 parameter 4 for functions (1­5)
PAR5 parameter 5 for functions (1­5)
FILEname name of data file (for plots, histograms, contours)
ERRFflag flag for file with/without errors (plots and histo)
HEADer number of header lines (plots and histo)

LEVFile name of level file for contour plots
FIRSt first point to be plotted (plots and histo)
LAST last point to be plotted (plots and histo)
XCOLumn column for X (plots and histo)
YCOLumn column for Y (plots only)
PERCflag percentage flag for histograms
REGRflag regression flag for plots
NBIN number of bins for histograms
MINX minimum x for regression in plot or for functions
HSTArt start x for histograms
MAXX maximum x for regression in plot or for functions
BINWidth bin width for histograms

parameters for axes

TICSize size for tic in axes
LBSIze size for character in axis label (used by LABLER)

parameters for strings

XPOSition x­position of string in inches
YPOSition y­position of string in inches
COLOur colour for string
SLANt slant in degrees for strings
ORIEntation orientation in degrees for strings
CHSIze character size for strings

in alphabetic order

BINWidth bin width for histograms
CHSIze character size in inches used by PABLO
CHSIze character size for strings
COLOur colour for data in all plots
COLOur colour for string
CONNect connect flag for plots
DASHsize dash size (so called TRATLENGTH) for histograms
ERRBars error bar flag for plots
ERRFflag flag for file with/without errors (plots and histo)
FILEname name of data file (for plots, histograms, contours)
FIRSt first point to be plotted (plots and histo)
FRCOlour colour for frame
HEADer number of header lines (plots and histo)
HSTArt start x for histograms
IDENtifier function identifier
LAST last point to be plotted (plots and histo)
LBSIze size for character in axis label (used by LABLER)
LEVCode level code for contour plots
LEVFile name of level file for contour plots

MAXLevel maximum level threshold for contour plots
MAXX maximum x for regression in plot or for functions
MINLevel minimum level threshold for contour plots
MINX minimum x for regression in plot or for functions
NBIN number of bins for histograms
NLEVels number of levels for contour plots
NPTS number of points for functions
ORIEntation orientation in degrees for strings
PAR1 parameter 1 for functions (1­5)
PAR2 parameter 2 for functions (1­5)
PAR3 parameter 3 for functions (1­5)
PAR4 parameter 4 for functions (1­5)
PAR5 parameter 5 for functions (1­5)
PERCflag percentage flag for histograms
REGRflag regression flag for plots
REVMode reverse mode flag for histograms
SCALe scale­by­picsize for contour plots (Y or N)
SLANt slant in degrees for strings
SYMBol symbol number or CC for colour column (coded as ­1)
SYMSize symbol size for plots
TICSize size for tic in axes
ULCOlour colour for upper limits in plots
ULFLag upper limit flag for plots and histograms
XCOLumn column for X (plots and histo)
XEND x­axis end in user units
XLENgth x­axis length in inches
XLINlog x­axis is linear (LIN) or logarithmic (LOG)
XORIgin x­axis origin in inches
XPOSition x­position of string in inches
XSTArt x­axis start in user units
YCOLumn column for Y (plots only)
YEND y­axis end in user units
YLENgth y­axis length in inches
YLINlog y­axis is linear (LIN) or logarithmic (LOG)
YORIgin y­axis origin in inches
YPOSition y­position of string in inches
YSTArt y­axis start in user units

.cp55

.foThe PLOTED Handbook (release 1)
Appendix C

Appendix C
Tables of descriptor file layout

File structure

**GRAPH
$X+150
$BOX1500,1510,6
$RECORD1;Header record
BLAENDREC
$RECORD2;First frame pointer record
$STREC$$$ENREC n
BLAENDREC
$RECORD3;First string pointer record
$STREC**$ENREC m
BLAENDREC
$RECORD4;
BLAENDREC
$PUSH$GRAY1500,75,6POPY+75
$RECORDp;(Frame) descriptor record$ENREC q
BLAENDREC
$PUSH$GRAY1500,75,6POPY+75
$RECORDq;optional extension record$ENREC 0
BLAENDREC
$PUSH$GRAY1500,75,6POPY+75
$RECORDn;frame pointer record
$STREC$$$ENREC..
BLAENDREC
$PUSH$GRAY1500,75,6POPY+75
$RECORDm;string pointer record
$STREC**$ENREC..
BLAENDREC
$PUSH$GRAY1500,75,6POPY+75
**ALPHA

The descriptor records occur where pointed by pointers contained
in therelevant pointer record (see below). Frame descriptors
(only) can havean optional extension record (pointed by an
internal pointer). So faronly one extension is supported.

Pointer records are chained, in the sense an internal pointer
points tothe next pointer record of the same type.

In line of principle all records can occur in any position
after theheader; in practice new records are created
appending at the end offile, and everything is reordered
when filing, so that all pointerrecords come first (frames
then strings) and all descriptor records comenext (frames than
strings) in sequence number order (also each record
isimmediately followed by its extension, if any).

.cp50

Structure of header record

Here and in all diagrams below, primary addresses are in bytes
(startingfrom 1). 2­byte fields (when a secondary address is
indicated) areINTEGER*2, and 4­byte fields are REAL*4. All
other fields (including 2­byte fields with no secondary address)
are CHARACTER*n.

**GRAPH
$MACRO111
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND111
$MACRO112
$Y+80$RULE100,1
$Y+40$RULE100,1
$Y+40$RULE100,1
$Y+40$RULE100,1
$Y+40$RULE100,1
$Y+40$RULE100,1
$MACEND112
$X+150
$SMAL
$BOX1500,1885,6
$BYTE 1;
$WORD 1;
$BORDER80;NFRAME number of frames$ENDBOX80;
$BYTE 3;
$WORD 2;
$BORDER80;NSTRING number of strings$ENDBOX80;
$BYTE 5;
$WORD ;
$BORDER80;SIZE size of page (A3,A4)$ENDBOX80;
$BYTE 7;
$WORD 4;
$BORDER80;ORIENTATION (coded as 1=L,2=P)$ENDBOX80;
$BYTE 9;
$WORD 5;
$BORDER80;NBLOCKS number of blocks in file$ENDBOX80;

$BYTE 11;
$WORD 6;
$BORDER80;
FRAME_PTR1 pointer to first frame pointer record$ENDBOX80;
$BYTE 13;
$WORD 7;
..need to reset page number here !!
$BORDER80;
STRING_PTR1 pointer to first frame pointer record$ENDBOX80;
$BYTE 15;
$FNAME;
$BORDER315;
LAB_FILE name of Labler command file$ENDBOX315;
$BYTE 27;
$FNAME;
$BORDER315;
PAB_FILE name of PABLO command file$ENDBOX315;
$BYTE 39;
$FNAME;
$BORDER315;
MCO_FILE name of MCONT command file$ENDBOX315;
$BYTE 51;
$TIMES;
$BORDER280;
Date of last modification (JYEAR, ITIME) EXEC 11
format$ENDBOX280;
$PUSH$GRAYENDPOPY+75
$ELITE
**ALPHA
.pn 44
.cp 50

Structure of pointer records

**GRAPH
$MACRO113
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1

$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND113
$X+150
$SMAL
$BOX1500,1800,6
$BYTE 1;
$WORD ;
$BORDER80;
Type­of­pointer keyword$ENDBOX80;
$POINTARRAY
$BYTE 3;
$WORD ;
$BORDER80;
POINT_VALUE pointer to descriptor record or 0$ENDBOX80;
$BYTE 5;
$IDENT
IDENTIFIER 16­char frame or string identifier$ENDBOX415;
$POINTARRAY
$BYTE 21;
$WORD ;
$BORDER80;
next (second) element of pointer array$ENDBOX80;
$BYTE 23;
$IDENT
$ENDBOX415;
$PUSH$GRAY1500,155,7POPY+155
$POINTARRAY
$BYTE237;
$WORD ;
$BORDER80;
last (14th) element of pointer array$ENDBOX80;
$BYTE239;
$IDENT
$ENDBOX415;
$BYTE255;
.. need to reset page number here
$WORD ;
$BORDER80;
NEXT_PTR_REC pointer to next pointer record or zero$ENDBOX80;
$Y+75
$ELITE
**ALPHA

Pointer records share the same structure for frames and strings,
namelya keyword, an array of 14 pointer­structures, and a final
pointer to thenext record.

The kewyord is equal to ASCII $$ for frames and ** for strings.

A pointer to descriptor record equal to zero, means there
is nodescriptor for such frame/string (does not exist or has
been deleted).

The pointer to the next pointer record is zero only for the last
pointerrecord of the entire chain.

.pn 45

.cp 50
Structure of frame descriptor records

**GRAPH
$MACRO114
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND114
$X+150
$SMAL
$BOX1500,2420,6
$BYTE 1;
$WORD 1;
$BORDER65;
EXTEND_PTR pointer to extension record or zero$ENDBOX65;
$BYTE 3;
$WORD 2;
$BORDER65;
DISP_FLAG disposition flag$ENDBOX65;
$BYTE 4;
$REAL 2;
$BORDER115;
XORIGIN frame origin in inches$ENDBOX115;
$BYTE 9;
$REAL 3;
$BORDER115;
YORIGIN frame origin in inches$ENDBOX115;
$BYTE 13;
$REAL 4;
$BORDER115;
XLENGTH axis length in inches$ENDBOX115;
$BYTE 17;
$REAL 5;
$BORDER115;
YLENGTH axis length in inches$ENDBOX115;
$BYTE 21;
$WORD ;
$BORDER65;

XLINLOG axis is lin (IN) or log (OG)$ENDBOX65;
$BYTE 23;
$WORD ;
$BORDER65;
YLINLOG axis is lin (IN) or log (OG)$ENDBOX65;
$BYTE 25;
$REAL 7;
$BORDER115;
XSTART axis start in user units$ENDBOX115;
$BYTE 29;
$REAL 8;
$BORDER115;
YSTART axis start in user units$ENDBOX115;
$BYTE 33;
$REAL 9;
.. need to reset page number here !!!
$BORDER115;
XEND axis end in user units$ENDBOX115;
$BYTE 37;
$REAL 10;
$BORDER115;
YEND axis end in user units$ENDBOX115;
$BYTE 41;
$WORD 21;
$BORDER65;
FRCOLOUR frame colour$ENDBOX65;
$BYTE 43;
$WORD ;
$GRAYWORD
$BYTE 45;
$REAL 12;
$BORDER115;
CHSIZE character size in inches$ENDBOX115;
$BYTE 49;
$BORDER400;
this area different for each plot type$ENDBOX400;
$BYTE 89;
$BORDER40;
Plot type (coded as P,F,H,C)$ENDBOX40;
$BYTE 90;
$GRAYBYTE
$BYTE 91;
$BORDER250;
this area different for each plot type$ENDBOX250;
$BYTE101;
$WORD 51;
$BORDER65;
NAXES number of axes in this frame$ENDBOX65;
$BYTE103;

$BORDER200;
This area used for axis descriptors
$ENDBOX200;
$Y­160
$BYTE ;$XY+300,+30
eventually continued in extension record
$Y+275
$ELITE
**ALPHA
.pn 46
.cp 50

Plot frame dependent part

**GRAPH
$MACRO111
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND111
$MACRO114
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND114
$X+150
$SMAL
$BOX1500,1585,6
$BYTE 49;
$WORD 25;
$BORDER65;
CONNECT Pablo connect flag$ENDBOX65;
$BYTE 51;
$WORD 26;
$BORDER65;
ERRORBAR Error bar flag$ENDBOX65;
$BYTE 53;
$REAL 14;
$BORDER115;
SYMSIZE Symbol size$ENDBOX115;

$BYTE 57;
$WORD 29;
$BORDER65;
SYMBNO Symbol number (­1 if CC)$ENDBOX65;
$BYTE 59;
$WORD 30;
$BORDER65;
COLOUR Colour value or column$ENDBOX65;
$BYTE 61;
$WORD 31;
$BORDER65;
ULFLAG Upper limit flag (0­1)$ENDBOX65;
$BYTE 63;
$WORD 32;
$BORDER65;
ULCOLOR Upper limit colour$ENDBOX65;
.. reset page number here !!!
$BYTE 65;
$FNAME;
$BORDER315;
DAT_FILE name of data file$ENDBOX315;
$BYTE 77;
$WORD 39;
$BORDER65;
IFERR flag for errors (0,1)$ENDBOX65;
$BYTE 79;
$WORD 40;
$BORDER65;
HDRLINES number of header lines$ENDBOX65;
$BYTE 81;
$WORD 41;
$BORDER65;
PBEGIN first point to be plotted$ENDBOX65;
$BYTE 83;
$WORD 42;
$BORDER65;
PLAST last point to be plotted$ENDBOX65;
$BYTE 85;
$WORD 43;
$BORDER65;
XCOLUMN column for x$ENDBOX65;
$BYTE 87;
$WORD 45;
$BORDER65;
YCOLUMN column for y$ENDBOX65;
$BYTE 89;
$BORDER40;
Plot type (always P)$ENDBOX40;
$BYTE 90;

$GRAYBYTE
$BYTE 91;
$WORD 47;
$BORDER65;
REGRESS regression flag$ENDBOX65;
$BYTE 93;
$REAL 24;
$BORDER115;
REGMINX minimum x for regression plot$ENDBOX115;
$BYTE 97;
$REAL 25;
$BORDER115;
REGMAXX maximum x for regression plot$ENDBOX115;
$Y+275
$ELITE
**ALPHA
.pn 47
.cp 50

Histogram frame dependent part

**GRAPH
$MACRO114
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND114
$X+150
$SMAL
$BOX1500,1585,6
$BYTE 49;
$GRAYWORD
$BYTE 51;
$WORD 26;
$BORDER65;
REVMODE Reverse mode flag$ENDBOX65;
$BYTE 53;
$REAL 14;
$BORDER115;
TRAT_LEN dashed line length$ENDBOX115;
$BYTE 57;
$GRAYWORD
$BYTE 59;
$WORD 30;
$BORDER65;
COLOUR Colour value or column$ENDBOX65;
$BYTE 61;
$WORD 31;
$BORDER65;

ULFLAG Upper limit flag (0­1)$ENDBOX65;
$BYTE 63;
$GRAYWORD
$BYTE 65;
$FNAME;
$BORDER315;
DAT_FILE name of data file$ENDBOX315;
$BYTE 77;
$WORD 39;
$BORDER65;
IFERR flag for errors (0,1)$ENDBOX65;
$BYTE 79;
$WORD 40;
$BORDER65;
HDRLINES number of header lines$ENDBOX65;
$BYTE 81;
$WORD 41;
$BORDER65;
PBEGIN first point to be plotted$ENDBOX65;
$BYTE 83;
$WORD 42;
$BORDER65;
PLAST last point to be plotted$ENDBOX65;
.. rese tpage number here !!!
$BYTE 85;
$WORD 43;
$BORDER65;
XCOLUMN column for x$ENDBOX65;
$BYTE 87;
$WORD 45;
$BORDER65;
PERC_OR_ABS percentage flag (0,1)$ENDBOX65;
$BYTE 89;
$BORDER40;
Plot type (always H)$ENDBOX40;
$BYTE 90;
$GRAYBYTE
$BYTE 91;
$WORD 47;
$BORDER65;
NBIN number of bins in histogram$ENDBOX65;
$BYTE 93;
$REAL 24;
$BORDER115;
START_HISTO histogram start$ENDBOX115;
$BYTE 97;
$REAL 25;
$BORDER115;
BIN_WIDTH bin width$ENDBOX115;

$Y+275
$ELITE
**ALPHA
.pn 48
.cp 50

Function frame dependent part

**GRAPH
$MACRO114
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND114
$X+150
$SMAL
$BOX1500,1600,6
$BYTE 49;
$WORD 25;
$BORDER65;
FUNCTION_ID function identifier (1­20)$ENDBOX65;
$BYTE 51;
$WORD 26;
$BORDER65;
NPTS number of points in function$ENDBOX65;
$BYTE 53;
$GRAYWORD
$BYTE ;
$GRAYWORD
$BYTE 57;
$GRAYWORD
$BYTE 59;
$WORD 30;
$BORDER65;
COLOUR Colour value or column$ENDBOX65;
$BYTE 61;
$REAL 16;
$BORDER115;
PARAMS(1) parameter array start$ENDBOX115;
$BYTE 65;
$REAL 17;
$BORDER115;
PARAMS(2) $ENDBOX115;
$BYTE 69;
$REAL 18;
$BORDER115;
PARAMS(3) $ENDBOX115;
$BYTE 73;
$REAL 19;

$BORDER115;
PARAMS(4) $ENDBOX115;
$BYTE 77;
$REAL 20;
$BORDER115;
PARAMS(5) parameter array end$ENDBOX115;
$BYTE 81;
$GRAYWORD
$BYTE 83;
$GRAYWORD
.. rese tpage number here !!!
$BYTE 85;
$GRAYWORD
$BYTE 87;
$GRAYWORD
$BYTE 89;
$BORDER40;
Plot type (always F)$ENDBOX40;
$BYTE 90;
$GRAYBYTE
$BYTE 91;
$GRAYWORD
$BYTE 93;
$REAL 24;
$BORDER115;
REGMINX minimum x for function plot$ENDBOX115;
$BYTE 97;
$REAL 25;
$BORDER115;
REGMAXX maximum x for function plot$ENDBOX115;
$Y+275
$ELITE
**ALPHA
.pn 49
.cp 50

Contour frame dependent part

**GRAPH
$MACRO114
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND114
$X+150
$SMAL
$BOX1500,1555,6
$BYTE 49;
$WORD 25;

$BORDER65;
NLEV number of levels $ENDBOX65;
$BYTE 51;
$WORD 26;
$BORDER65;
LEVCODE level code (1­4)$ENDBOX65;
$BYTE 53;
$WORD 27;
$BORDER65;
MINLEV minimum level$ENDBOX65;
$BYTE 55;
$WORD 28;
$BORDER65;
MAXLEV maximum level$ENDBOX65;
$BYTE 57;
$GRAYWORD
$BYTE 59;
$WORD 30;
$BORDER65;
COLOUR Colour value or column$ENDBOX65;
$BYTE 61;
$WORD 31;
$BORDER65;
SCALE_BY_PICSIZE flag (0­1)$ENDBOX65;
$BYTE 63;
$GRAYWORD
$BYTE 65;
$FNAME;
$BORDER315;
DAT_FILE name of data file$ENDBOX315;
$BYTE 77;
$FNAME;
$BORDER315;
LEV_FILE name of level file$ENDBOX315;
$BYTE 89;
$BORDER40;
Plot type (always C)$ENDBOX40;
$BYTE 90;
$GRAYBYTE
$BYTE 91;
.. reset page number here !!!
$GRAYWORD
$BYTE 93;
$GRAYWORD
$BYTE ;
$GRAYWORD
$BYTE 97;
$GRAYWORD
$BYTE ;

$GRAYWORD
$Y+275
$ELITE
**ALPHA
.pn 50
.cp 50

Structure of extension record for frame descriptors

**GRAPH
$MACRO114
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND114
$X+150
$SMAL
$BOX1500,665,6
$BYTE 1;
$BORDER600;
continuation of axis descriptors$ENDBOX600;
$BYTE255;
$WORD128;
$BORDER65;
FURTHER_EXT pointer to further extension always 0$ENDBOX65;
$Y+275
$ELITE
**ALPHA

Axis descriptor structure

Note that addresses here are relative to the beginning of
the axisdescriptor. The first axis descriptor starts at byte
103 of the framedescriptor record, the second one just after
the end of the first and soon. As they are variable­length, 16­
bit and 32­bit boundary alignment isnot guaranteed, therefore
word and doubleword addresses are not given.

**GRAPH
$MACRO114
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND114
$MACRO115
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1

$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND115
$X+150
$SMAL
$BOX1500,1040,6
$BYTE 1;
$WORD ;
$BORDER65;
AXFLAG axis type flag (1­6)$ENDBOX65;
$BYTE 3;
.. need to reset page number here too !!
$REAL ;
$BORDER115;
TICSIZE tic size inches$ENDBOX115;
$BYTE 7;
$REAL ;
$BORDER115;
STEP tic step user units$ENDBOX115;
$BYTE 11;
$REAL ;
$BORDER115;
LBSIZE character size inches$ENDBOX115;
$BYTE 15;
$FORMAT;
$BORDER165;
FORMAT (6 chars)$ENDBOX165;
$BYTE 21;
$WORD ;
$BORDER65;
LBLENGTH label length l (in chars)$ENDBOX65;
$BYTE 23;
$BORDER400;
text of label (l chars)$ENDBOX400;
$Y+275
$ELITE
**ALPHA
.pn 51
.cp 50

structure of string descriptor record

**GRAPH
$MACRO114
$Y+40$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$Y+25$RULE100,1
$MACEND114

$X+150
$SMAL
$BOX1500,1435,6
$BYTE 1;
$WORD 1;
$BORDER65;
EXTEND_PTR always zero$ENDBOX65;
$BYTE 3;
$WORD 2;
$BORDER65;
DISP_FLAG disposition flag$ENDBOX65;
$BYTE 5;
$REAL 2;
$BORDER115;
XPOSITN string origin in inches$ENDBOX115;
$BYTE 9;
$REAL 3;
$BORDER115;
YPOSITN string origin in inches$ENDBOX115;
$BYTE 13;
$WORD 7;
$BORDER65;
SCOLOUR string colour$ENDBOX65;
$BYTE 15;
$WORD 8;
$BORDER65;
SLENGTH string length n (in chars)$ENDBOX65;
$BYTE 17;
$WORD 9;
$BORDER65;
SLANT text slant in degrees$ENDBOX65;
$BYTE 19;
$WORD 10;
$BORDER65;
SORIENT orientation in degrees$ENDBOX65;
$BYTE 21;
$REAL 6;
$BORDER115;
SCSIZE character size inches$ENDBOX115;
$BYTE 25;
$BORDER700;
text area n chars (up to 232)$ENDBOX700;
$Y+275
$ELITE
**ALPHA
.. need last reset of page number here !!

The string descriptor record has never extension records

