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ABSTRACT

Daily monitoring of PKS 2155—304 with the IUE satellite throughout 1991 November has revealed dra-
matic, large-amplitude, rapid variations in the ultraviolet flux of this BL Lac object. Many smaller, rapid
flares are superposed on a general doubling of the intensity. During the 5¢ period when sampling was roughly
continuous, the rapid flaring had an apparent quasi-periodic nature, with peaks repeating every ~097. The
short- and long-wavelength ultraviolet light curves are well correlated with each other, and with the optical
light curve deduced from the Fine Error Sensor (FES) on IUE. The formal lag is zero, but the cross-
correlation is asymmetric in the sense that the shorter wavelength emission leads the longer. The ultraviolet
spectral shape varies a small but significant amount. The correlation between spectral shape and intensity is
complicated; an increase in intensity is associated with spectral hardening, but lags behind the spectral change
by ~1 day. The sign of the correlation is consistent with the nonthermal acceleration processes expected in
relativistic plasmas, so that the present results are consistent with relativistic jet models, which can also
account for quasi-periodic flaring. In contrast, currently proposed accretion disk models are strongly ruled out
by the simultaneous optical and ultraviolet variability.

Subject headings: BL Lacertae objects: individual (PKS 2155—304) — galaxies: active — ultraviolet: galaxies

1. INTRODUCTION

The most puzzling aspect of active galactic nuclei (AGNs)
has always been their high power output coupled with the
small emission region inferred from rapid variability. The char-
acteristics shared by the most rapidly variable objects, BL Lac
objects and optically violently variable (OVV) quasars, collec-
tively called “blazars,” such as high (and variable) polariza-
tion, compact radio structure, a smooth continuum spectrum
from radio through soft X-ray wavelengths, and superluminal
motion, may owe their origin to a relativistic jet (Blandford &
Rees 1978). The unreasonably high inferred radio brightness
temperatures (T > 10'? K; Quirrenbach et al. 1989) and flare
quotients in excess of the Eddington-limited value assuming
accretion efficiency # (Fabian 1979), AL/At > 2 x 10** 5 ergs
s~ 2 (e.g., Feigelson et al. 1986; Morini et al. 1986), often
exhibited by blazars, can most easily be explained by rela-
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tivistic effects. The quantity AL/At is proportional to 6°, where
8 = (y[1 — B cos §]) ! is the kinematic Doppler factor describ-
ing relativistic motion with Lorentz factor y (velocity ) at an
angle 6 to the line of sight.

In the last decade, considerable progress has been made
interpreting the broad-band spectra of blazars in terms of
models of inhomogeneous relativistic jets (Marscher 1980;
Konigl 1981; Ghisellini, Maraschi, & Treves 1985; Worrall et
al. 1986; Hutter & Mufson 1986; George, Warwick, &
Bromage 1988). These models have been very successful, in the
sense that with a minimal number of parameters they usually
fit the continuum spectrum over nearly 10 decades in wave-
length. Unfortunately, the parameters of the model are rarely
well determined because a variety of assumptions can produce
acceptable fits for a large volume of parameter space. The
degeneracy of multiple model solutions vanishes or is greatly
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reduced when variability information is added because the
change in spectrum with intensity is a strong diagnostic of the
emission process (e.g., George et al. 1988; Mufson et al. 1990).
However, the sampling available to date—only a few spectra,
spaced far apart in time—has been sparse, uneven, and
inadequate.

Inhomogeneous jet models are strongly supported by radio
and optical observations, but the situation at higher fre-
quencies is less clear. Alternatives include a two-temperature
accretion disk model (Wandel & Urry 1991) and gravitational
microlensing of background quasars (Ostriker & Vietri 1985,
1990; Stickel, Fried, & Kiihr 1988; Schneider & Weiss 1987).
The disk and jet models differ most at ultraviolet through
X-ray wavelengths, where the spectral curvature is greatest;
among jet models there are differences in how the ultraviolet
and X-ray emission are related (e.g., Ghisellini et al. 1985).
Simultaneous, multiwavelength, well-sampled light curves are
ideal for testing the models. The amplitude and rapidity of
variability in most blazars increases with decreasing wave-
length, so the chances of successfully observing significant
variations at ultraviolet and soft X-ray wavelengths are high.
As other monitoring programs (with the different goal of
mapping the broad emission-line regions in nonblazar AGNs)
have clearly demonstrated (e.g., Clavel et al. 1991), the IUE
observatory is very well suited to regular monitoring of AGNs
because of its ease of scheduling, efficient geosynchronous
orbit, precise photometric calibration and stability, and broad
wavelength coverage.

We designed a monitoring program that would produce
high-quality light curves in several bands, including unprece-
dented spectral coverage in the ultraviolet, extreme ultraviolet,
and soft-X-ray from the combination of IUE, the ROSAT
Wide Field Camera (WFC), and the ROSAT Position Sensitive
Proportional Counter. The object selected for our study, PKS
2155—304, is one of the brightest extragalactic objects in the
ultraviolet and X-ray sky. Like most BL Lac objects, PKS
2155—304 has no strong emission features; the reported red-
shift of z = 0.117 (Bowyer et al. 1984) is probably due to a
galaxy displaced ~4" from the BL Lac object, but a redshift of
~0.1 can be inferred from imaging of the host galaxy (Falomo
et al. 1991). PKS 2155-304 has previously been observed to be
highly variable at both ultraviolet (Maraschi et al. 1986; Urry
et al. 1988; Edelson et al. 1991) and X-ray (Snyder et al. 1980;
Sembay et al. 1992) wavelengths, with some evidence of quasi-
simultaneous variability in those bands, albeit with smaller
amplitudes and longer time scales at the longer wavelengths
(Treves et al. 1989). The soft X-ray spectrum is steep and can be
connected smoothly to the ultraviolet spectrum, implying that
the ultraviolet and X-ray emission mechanisms may be related.
This motivated the first application of relativistic jet (Urry &
Mushotzky 1982) and accretion disk (Wandel & Urry 1991)
models to the continuum emission from PKS 2155 —304.

In 1990, proposals to observe PKS 2155—304 were sub-
mitted to IUE (one to NASA, one to ESA) and to ROSAT (a
U.S. proposal for month-long daily monitoring which was
unsuccessful and a German proposal for intensive monitoring
over a few days). PKS 2155—304 is bright enough to be
observed easily in a half-IUE shift (4 hr) or once per ROSAT
orbit (roughly 2000 s). This paper describes the IUE data set,
which is of unprecedented quality. Associated observations at
other wavelengths are being reported separately, including
month-long ground-based optical, infrared, and radio moni-
toring (Smith et al. 1992; Courvoisier et al. 1993), quasi-

continuous 4* ROSAT observations (Brinkmann et al. 1993),
and multiwavelength cross-correlations (Edelson et al. 1993).
The IUE observations and data analysis are described in § 2 of
this paper, followed by the results in § 3. The implications of
the ultraviolet variability for models of blazars are discussed in
§ 4, and the conclusions are summarized in § 5.

2. OBSERVATIONS AND DATA ANALYSIS

2.1. Observing Strategy

The ROSAT spacecraft constraints restricted observing to a
32 day period from 1991 October 27 to 1991 November 28, so
the monitoring campaign was planned for that time. (In the
end, ROSAT monitored the source only for a few days in the
middle of the month; Brinkmann et al. 1993.) The variability
time scales of BL Lac objects in general, and even this best
studied object PKS 2155—304 in particular, were not well
measured previously, so the observing plan bracketed a range
of time scales. In order to measure moderate time scale varia-
tions (days to a week) we scheduled at least one-half IUE shift
daily from November 1 to November 29 (except on November
8, due to a scheduling conflict). In order to study short-term
variability, 4%6 in the middle of the campaign (November 10.7—-
15.3) were devoted to nearly continuous coverage using about
three shifts per day. A log of the 201 IUE observations is given
in Table 1.

The short-wavelength (SWP) and long-wavelength (LWP)
IUE cameras were exposed alternately, with nominal integra-
tion times of 55 and 25 minutes, respectively. This allowed us
to get two pairs of spectra during each half-IUE shift, in the
absence of any operational problems. Just before each SWP or
LWP exposure, counts from the Fine Error Sensor (FES), the
optical monitor on IUE, were measured on target and on
background. During the continuous observing period, the
SWP/LWP/FES observing cycle was slaved to the 95.8 minute
ROSAT orbital period so that the IUE and ROSAT observa-
tions would be locked in phase, thus greatly simplifying the
cross-correlation between ultraviolet and X-ray light curves.
As a result of this rigid schedule, some IUE exposures had to
be longer or shorter than the nominal exposure times, typically
by a few minutes but occasionally by much more. Exposure
times for each JUE image are listed in Table 1.

2.2. Optical Calibration

The FES counts were converted to optical magnitudes using
the recently developed algorithm of Perez & Loomis (1991),
which takes into account the background due to scattered
light. PKS 2155 — 304 was assumed to have color B—V = 0.26
mag throughout the month, which is the mean value measured
contemporaneously with ground-based optical telescopes (it
did not change much during the monitoring period; Smith et
al. 1992). In any case, the conversion from FES counts to V
magnitude is not terribly sensitive to the color; for example,
using B—V = 0.5 mag would increase V by about 0.06 mag.
Reddening corrections are minimal at these wavelengths (well
within the FES accuracy), and so were ignored. The FES-
derived V magnitudes are given in Table 1, and the optical
light curve is discussed in § 3.1.

2.3. Ultraviolet Spectral Extraction

Spectra were extracted from each of the 201 IUE images
using the Slit-Weighted Extraction Technique (SWET) of
Kinney, Bohlin, & Neill (1991). Note that SWET-extracted
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spectra are the standard output for low-dispersion images in
the Final JUE Archive that is now being created jointly by
NASA, ESA, and SERC (the British Science and Engineering
Research Council). The current IUESIPS software still uses a
boxcar extraction, but the SWET software is publicly available
through the IUE Regional Data Analysis Facility and has been
incorporated into a number of processing pipelines, including
our own.

Details of the SWET procedure can be found in Kinney et al.
(1991), and we merely summarize the major points here.
Empirical spline fits are made to the cross-dispersion point
spread function (PSF) along the spectrum, which constrains
the PSF to vary smoothly in the dispersion direction. This
imposition of information contributes to an improvement in
the signal-to-noise ratio of the extracted spectrum relative to
TUESIPS, while flux is still conserved. The flux at each wave-
length is then determined by fitting the empirically determined
profile, sample by sample, weighted according to a noise model
determined from studies of hundreds of unrelated IUE images.
Discrepant points are eliminated, which automatically
removes most of the cosmic rays, with the exception of those
that fall exactly at the center of the cross-dispersion profile. An
uncertainty is associated with each flux value based on the
noise model. Extensive comparisons of SWET-extracted and
boxcar-extracted spectra show no systematic disagreement
between the two (Kinney et al. 1991).

There is another well-known slit-weighted technique, the
Gaussian extraction or GEX method (Urry & Reichert 1988),
which assumes the cross-dispersion profile is a Gaussian.
Because of this additional constraint, GEX gives a somewhat
better signal-to-noise ratio than SWET for very low signal-to-
noise ratio data, but for well-exposed spectra, systematic prob-
lems at the level of a few percent can occur because the true
PSF is not precisely Gaussian. In the present case, the spectra
are generally well exposed, so that the SWET method is slight-
ly preferred to the automatic GEX algorithms currently avail-
able, which in any case do not produce an error vector.
Nonetheless, we have also extracted all the spectra using GEX,
and compared this to the SWET results. Although there are
small systematic differences between spectra extracted with the
two extraction methods, the results (which depend on fitted
fluxes; see § 2.5) are not affected significantly (see § 3.4).

2.4. Ultraviolet Spectral Corrections

The extracted net fluxes were converted to absolute flux
using the JUE calibration of Bohlin et al. (1990), which pro-
duces absolute fluxes that are up to 10% smaller than the white
dwarf calibration (Finley et al. 1993) being used for the IUE
Final Archive. A correction was made for degradation in the
SWP sensitivity (Bohlin & Grillmair 1988, as updated through
1989.36 by R. Bohlin, private communication). The extrapo-
lation to 1992 introduces some noise on the 5 A scale but
should not cause absolute flux errors of more than 1% in
broad bands. No sensitivity correction was made to the LWP
net flux.

We then considered a reddening correction. The column
density of hydrogen through the interstellar medium of our
Galaxy toward PKS 2155— 304, as measured with the 2° x 3°
beam 21 c¢m survey of Stark et al. (1992), is Ny, = 1.78 x 10%°
atoms cm~2 Using an IUE-based average conversion of
log Ny /E(B—V)=21.72 4 0.26 cm~ 2 mag ! (Shull & Van
Steenberg 1985), this corresponds to E(B—V) ~ 0.034 mag,
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with large uncertainties (discussed in detail in § 3.4). The actual
line-of-sight column density could be different due to small-
scale, high-latitude fluctuations (e.g., Elvis, Lockman, & Wilkes
1989), but the soft X-ray spectrum of PKS 2155— 304 is consis-
tent with this column density of absorbing cool gas (e.g., Cani-
zares & Kruper 1984; Madejski 1985), as are results from the
Hopkins Ultraviolet Telescope, which is sensitive down to 912
A (J. Kruk, private communication). These results all indicate
there is little or no internal reddening in PKS 2155—304.

The IUE spectra were dereddened using E(B—V) = 0.034
mag and the average Galactic curve from Seaton (1979). The
dereddening correction has often been ignored by previous
IUE observers of PKS 2155—304, ourselves included, but it
makes a significant difference. The dereddened flux is 31%
greater at 1400 A and 21% greater at 2800 A than the observed
flux, and the fitted energy spectral index is typically 0.07 flatter
in the SWP and 0.32 flatter in the LWP.2* Because the amount
of dereddening is uncertain, the absolute ultraviolet luminosity
is uncertain, but this remains true whether or not the dered-
dening correction is applied.

Since we are interested in the source properties unmodified
by the accident of transmission through our Galaxy, further
discussion focuses on the dereddened spectra, keeping in mind
that the amount of reddening is uncertain. The accuracy of the
assumed Galactic reddening is considered further in § 3.4.

2.5. Ultraviolet Spectral Fitting

Using an iterative, y? minimization fitting routine, the dered-
dened IUE spectra were fitted to a simple power-law model for

the form
A\b2
F,= bl():) . 1)

The fit parameters are the normalization, b,, at fiducial wave-
length 4, and the slope, b,. The definition of power-law slope
seen most often in the literature is the energy index, «, where
F, oc v™% which is related to b, via & = 2 + b,. The results are
given here in terms of the energy index, «, but the fitting was
done in wavelength space, with no resampling to frequency
space.

Two sample fits to the data, chosen to be representative of
the median intensities and the mean y2 values for the SWP and
LWP samples as a whole, are shown in Figure 1; the SWET
error vectors are plotted below each spectrum. (In order to
show the raw extracted spectra, the data and fits in Fig. 1 are
not dereddened.) The wavelength ranges over which the data
were fitted were 1230-1950 A for the SWP camera (which
excludes the geocoronal Lyman-o region) and 2100-3100 for
the LWP camera. Wavelength regions affected by SWP
camera artifacts (Crenshaw, Bruegman, & Norman 1990), at
1277-1281 A, 1286-1290 A, and 1660-1666 A, were excluded,
as was the region 1470-1540 A, in which unusual features were
apparent in many of the spectra. These excluded regions are
shown as light dotted lines in Figure 1a. Since the artifacts in
the LWP camera are of low contrast, no spectral regions were
excluded in those fits. The power-law fit is clearly good, as is
generally true for all the spectra.

24 The effect of reddening is greatest at the shortest wavelengths, but the
change in spectral index is actually greater in the LWP band than in the SWP
band because the slope of the reddening curve over the heavily weighted part
of the LWP band is larger than the slope in the SWP band.
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FIG. 1.—Representative spectra from among the 201 spectra in the data set. In both cases the source intensities are approximately the median values for the
month-long monitoring campaign, and the exposure times are typical. Regions excluded from the power-law fitting are shown as dotted lines. Best-fit power law
models, weighted according to the SWET error vector plotted in the panel at bottom, are shown as smooth curves; the spectra have not been dereddened, so the fits
shown differ from those presented in Table 2. (a) An SWP spectrum obtained on 1991 November 14, with x2 = 3.44 for the best-fit power-law model. (b)) An LWP

spectrum obtained on 1991 November 10, with y2 = 2.25 for the best-fit power law.

Results of the fits to dereddened spectra are given in Table 2.
The normalization is at 1400 A for SWP spectra and 2800 A
for LWP spectra (as in Edelson et al. 1992). These wavelengths
are close to the flux-weighted means of each band (~1560 A
and ~2568 A, respectively, for « = 1), so that the uncertainty
in the derived flux is small; they are in regions of the cameras
where the signal-to-noise ratio is good; and they were chosen
to be relatively far away from one another, increasing the inde-
pendence of the SWP and LWP flux measurements. The
reduced y? values in Table 2 were calculated using the raw
SWET errors, prior to the correction procedure described in
the next section.

We also fitted combined spectra, which is to say pairs of
SWP and LWP spectra taken close together in time, spliced
together at 1978 A. Power laws were fitted to the wavelength
range 1230-3100 A, excluding the same regions as in the SWP
analysis above, as well as 1900-2150 A (which has relatively
large errors anyway). The results are given in Table 3. The
advantage of fitting combined SWP-LWP spectra is that the
longer baseline in wavelength gives smaller uncertainties on
the fitted flux and spectral index; however, the mismatch
between SWP and LWP spectra seen in previous work (e.g.,
Urry et al. 1988; George et al. 1988) and again here (see § 3.3)
illustrates how the absolute values of fitted flux and spectral
index depend on the uncertain intercalibration of the two
cameras. Therefore, for absolute values of the flux and spectral
index, the estimates from fits to the individual spectra (F 0o,
F1800> %swp, and a; wp, in Table 2) are better than those from
the combined fits (¢ and F, in Table 3). We consider the latter
quantities when evaluating changes in spectral shape and
intensity because of the larger bandwidth for the power-law fits
(the combined spectral index is an effective hardness ratio
between the SWP and LWP cameras).

2.6. Error Analysis

Estimating the error bars reliably is the key to the detection
and evaluation of variability. IUE spectra are dominated by

systematic noise, including well-known features at the wave-
lengths mentioned above. A continuum estimate from direct
measurement would have a relatively large error bar (the
variance in some interval around that wavelength), including
both local statistical noise and fixed-pattern noise. Like most
BL Lac objects, however, PKS 2155—304 has a smooth and
approximately featureless spectrum which is well fitted by a
simple power-law model. The flux calculated from a fitted
power law gives a much smaller error bar than direct measure-
ment because information from the full band is used.

The initial estimate of the uncertainty in the flux measure-
ment comes directly from propagated uncertainties on fit
parameters. The latter are derived from the error matrix calcu-
lated in the least-squares fitting procedure (e.g., Bevington
1969), which in turn depends linearly on the SWET errors used
to weight the input data points. Thus, the estimated uncer-
tainty in the flux measurement scales linearly with any modifi-
cation to the SWET error.

While the relative sizes of the SWET errors make sense, the
x* distribution for the 201 spectral fits is far from acceptable.
The mean reduced y? values for the SWP and LWP fits are
{x2> =3.76 and {y?) = 2.42, respectively, where the number
of degrees of freedom is taken as the number of points fitted in
the spectrum (539 and 535, respectively) minus the number of
fit parameters (two). The probability of exceeding either of
these values given the number of degrees of freedom is van-
ishingly small. The power-law model appears to be a good fit
to the data, and there are no systematic trends in the residuals
that would indicate a different model might be preferred, so
either the SWET errors are underestimated or the number of
degrees of freedom (the number of independent points in each
spectrum) is overestimated.

Previous authors (e.g., Clavel et al. 1991) have suggested
normalizing the error vector for a given spectrum by the
square root of the reduced y? value for that fit. In our view this
is not the best approach, as it makes the 2 distribution for all
the fits look like a delta-function when in fact the y2 values
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Normalized Number

Normalized x,,z for Power—Law Spectral Fits

F16. 2—Cumulative distribution of normalized reduced y* values for
power-law fits to the 99 LWP (dark histogram) and 102 SWP spectra (light
histogram), compared to the expected probability P(x2) (curve). The mean of the
distribution is 1, by definition, since the SWET error vector was corrected by
the square root of the means of the original distributions (2> = 3.72 for the
SWP and (y2?) = 2.42 for the LWP). In both cases, a K-S test gives a reason-
able probability (Py_g > 0.5) that the observed and expected distributions are
the same.

should be distributed as 2. (It might be the best approach in
the case of a single measurement.) Here we have a large
number of measurements (201), so we imposed the condition
that the mean of the reduced x? distribution be 1, as is expected
for this many degrees of freedom. (The 102 SWP spectra and 99
LWP spectra were handled separately; characteristics of the
cameras such as graininess and fixed-pattern noise are quite
different, so there is no reason to expect the corrections to the
error vectors to be the same in the two cases.)

Scaling the SWET errors by 1.94 for the SWP spectra and
1.56 for the LWP spectra gave normal y? distributions. Not
only were the mean values 1, by definition, but a Kolmogorov-
Smirnov (K-S) test showed no difference between the observed
distributions and the expected P(y2). (The cumulative y2 dis-
tributions are shown in Fig. 2.) The uncertainties in the fitted
fluxes were thus increased by those factors. A similar procedure
was followed for the combined fits, where the mean reduced y>
value using the uncorrected sigmas was {y2) = 3.42. In this
case, however, although the mean of the corrected distribution
was adjusted to be 1, a K-S test gave a low probability
(4.7 x 10~ %) that the observed distribution was drawn from a
normal x? distribution. Thinking this might be related to the
different camera characteristics, we refit the combined spectra
normalizing SWP errors by 1.94 and LWP errors by 1.56. The
resulting reduced x? distribution had a mean of 1.11, so we
renormalized the errors by 1.05 = (1.11)}/2. The final ¥2 dis-
tribution, with mean equal to 1, was still incompatible with the
expected distribution (P < 3.9 x 107> according to a K-S test),
probably because of the mismatch between SWP and LWP
spectra. This reinforces our belief that the individual fits are
better for measuring fluxes or spatial indices, while the com-
bined fits may be more sensitive (due to the broader
bandwidth) to trends in either flux or spectral index.

There can still be residual errors in measured quantities,
such as spectral index or fiducial fluxes, associated with the
reproducibility from one spectrum to the next. These must be
included when evaluating light curves. IUE fluxes of standard
stars are reproducible at the ~1.25% level (Bohlin 1988), so
errors of this magnitude were added in quadrature to the inter-
nal flux errors estimated above (as in Edelson et al. 1991). In
general, the internal photometric error is considerably smaller
than 1.25%, unless the exposure time is unusually short. Esti-
mating the repeatability of the spectral index measurements
was more complicated. In their study, Clavel et al. (1991) esti-
mated residual errors in measured quantities by comparing
close pairs of spectra and assuming no variability on short time
scales. If the estimated errors were really 1 ¢ errors, the differ-
ence in measured values divided by the estimated error (the
quadrature sum of the two individual error estimates) should
be normally distributed, i.c., a Gaussian with zero mean and
unit dispersion. A variance larger than one, Clavel et al.
argued, meant the uncertainties on that measured quantity
should be increased by just that factor. Since PKS 2155-304 is
much more rapidly variable than their target, the Seyfert
galaxy NGC 5548, this procedure was not appropriate for our
flux measurement; hence the 1.25% photometric correction
adopted as described above. However, it was the best alterna-
tive for evaluating the uncertainty on spectral index, particu-
larly as the spectral index is certainly less variable than the flux
(see § 3.2). Adjacent spectra taken closer in time than 5 hr
were compared; this included 75 pairs of SWP and 69 pairs of
LWP spectra. The variances in the distributions of normalized
errors for short- and long-wavelength spectral indices were
1.94 and 2.41, respectively, so the error estimates in ogyp and
oy wp Were increased by those factors. The distributions of nor-
malized, scaled errors were then consistent (= 50% probability
according to a K-S test) with the normal Gaussian distribution
expected. This procedure was repeated for combined spectra,
comparing 78 pairs of adjacent, combined SWP-LWP spectra,
taken within 5 hr of one another. Here, the scale factor for the
combined spectral index was 2.18, and the final distribution
was consistent with a Gaussian (~ 59% probability, according
to a K-S test).

The estimation of errors in the flux and spectral index, in
summary, involves several steps. First, the SWET error vector
is propagated through the fitting procedure to get initial uncer-
tainties for the parameters of the power-law fit, b, and b,.
Next, uncertainties in both b; and b, are increased by a factor
equal to the square root of the mean of the reduced y2 distribu-
tion, (x2>'/2, where (x2) = 3.76 for the SWP and {32) = 2.42
for the LWP. This is effectively scaling up the SWET error
vector so that (32> = 1 in both cases. The final error estimate
on the flux at 4, is equal to the quadrature sum of the scaled
error on b, and 1.25% of b,. The final error estimate on the
spectral index was derived by increasing the scaled error on b,
by 1.94 for the SWP, 2.41 for the LWP, and 2.18 for the com-
bined SWP-LWP fits, so that it represents the 1 ¢ error for the
observed differences between adjacent measurements of a.
Since this assumes no intrinsic variation between adjacent
measurements, it is if anything an overestimate of the error on
the spectral index.

As a check, we did look at the distribution of normalized
errors in the fluxes, using the uncertainties calculated as
described above. In all three cases (SWP, LWP, and combined
SWP-LWP values), the distributions were consistent with the
expected Gaussian distributions (62%, 13%, and 38% prob-
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ability, respectively, according to a K-S test), indicating that
our error estimate for the flux is at worst an overestimate.

A procedure similar to that used for determining the uncer-
tainty in spectral indices was used to estimate the global mean
uncertainty in the FES-derived magnitude. Using a trial value
for the uncertainty, we generated the normalized error dis-
tribution for pairs of adjacent measurements separated by less
than 5 hr, looking for a value that would give a variance equal
to 1. The normalized error distribution for AV = 0.08 mag had
variance equal to one and was consistent (97% probability
according to a K-S test) with a Gaussian distribution centered
on zero. It is also commensurate with previous estimates
(AV ~ 0.07 mag) of the accuracy of the FES (Holm & Crabb
1979; Barylak, Wasatonic, & Imhoff 1984). This is therefore a
good estimate of the mean uncertainty in the FES magnitudes,
but it does not account for possible infrequent, anomalous
FES measurements, for systematic trends in FES errors with
FES count rate, or for any systematic offset from other optical
measurements (€.g., Smith et al. 1992; Courvoisier et al. 1993),
such as might be due to incorrect color corrections.

3. RESULTS

3.1. Ultraviolet and Optical Light Curves

The monitoring campaign was a great success. Our BL Lac
object cooperated nicely, increasing in intensity by a factor of 2
over the month to roughly its historical maximum brightness.
The light curves for the full month and for the central period
are shown in Figure 3. During the intensive monitoring, the
ultraviolet flux varied by ~30% in several distinct flares that
are well sampled apart from a possible dip during the 7 hr gap
on November 11. The width of these rapid flares is roughly a
half-day; if we define an exponential variability time scale as
t,ar = (dIn F/dr)™ 1, then values for these flares are less than 2
days. Such fast ultraviolet variations have been detected pre-
viously in only two blazars, PKS 2155—304 and Mrk 421,
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while slightly longer and/or lower amplitude flares have been
seen in another three (3C 279, OI 158, and OD 26; Edelson
1992). The ultraviolet flares of PKS 2155—304 show no dis-
cernible asymmetry in time according to a dI/I test (Wagner &
Witzel 1992). The depth of the dip during November 12 is
unclear. The low SWP point comes from a very short exposure
of only 13 minutes—most SWP exposures lasted 55 minutes,
and the next shortest exposure was 25 minutes—and no corre-
sponding dip is seen in the LWP light curve, so the SWP point
should be considered uncertain (see § 3.4).

Based on the rapid flaring seen during the intensive monitor-
ing, it appears we probably failed to sample the fastest time
scale flares during the rest of the month, although the overall
doubling of the flux is well sampled. The fractional variability
is comparable for the SWP and LWP bands: both light curves
show a doubling of flux, and in both bands the variance is
about 15% of the mean flux. This is in contrast to the historical
trends in other blazars, where long-term IUE monitoring indi-
cates the SWP flux is more variable than the LWP flux
(Edelson 1992).

The FES light curve, shown in Figure 4, shows the same
trends as the ultraviolet light curves, on both long and short
time scales, although the larger error bars mean the variations
are less well defined. Although the light curve is given as V
magnitude (from the algorithm used to convert FES counts to
optical magnitudes; Perez & Loomis 1991), the FES sensitivity
is slightly bluer than the V band.

The SWP, LWP, and FES fluxes are all highly correlated,
as shown in the discrete cross-correlation functions (DCF;
Edelson & Krolik 1988, with additional minor modifications
by J. H. Krolik, unpublished) for SWP versus LWP and SWP
versus FES (Fig. 5). The peaks of both DCFs are at zero lag,
with an upper limit of 0?1, but both cross-correlation func-
tions are asymmetric, in the sense of the short-wavelength
emission leading the longer wavelength emission. These are not
necessarily contradictory; see interpretation in § 4.2.
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FiG. 3.—Ultraviolet light curves of PK'S 2155 — 304. (a) The full month-long light curve, with fitted LWP fluxes at 2800 A (open squares) and SWP fluxes at 1400 A

(filled circles) on the same scale. Both long- and short-wavelength fluxes doubled during the month, with no apparent lag. The four SWP fluxes that are uncertain
due to anomalously short exposure times are circled. (b) Expanded view of the intensive monitoring period, during which IUE observations were nearly cor}tinuous.
The LWP scale is at left; the SWP scale, at right. Many rapid flares have clearly been well sampled. Five cycles with period ~0?7 can be seen, but the reality of the

quasi periodicity cannot be established without a longer data train.
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F1G. 4—Optical light curves deduced from the IUE FES monitor for (a) the full month and (b) the intensive monitoring period. FES counts were converted to
approximate V magnitude according to the prescription of Perez & Loomis (1991), which takes into account the contribution of scattered light. Typical error bars of

~0.08 mag (see § 2.5) are shown in each panel.

The autocorrelation functions of the SWP, LWP, and FES
light curves are shown in Figure 6. The SWP and LWP give
similar results, while the FES amplitude is generally smaller
because the relative errors are larger. (For the SWP and LWP,
the behavior of the autocorrelation functions suggests the esti-
mates of flux errors were about right. Note that in the method
of Edelson & Krolik 1988, the amplitude of the cross-
correlation or autocorrelation function depends on the
binning, and hence the error bars, so that it can be formally
larger than unity.) On long time scales, the autocorrelation
functions suggest smooth “red ” power spectra, with relatively
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9 L
3
2 L
gm 5
B L
s -
3
3 L
2o
—
5 L
(&}
a L
1]
o
o L
S _gl
_1 _I 1 | 1 L1 1 ’

0
Lag (Days)

FiG. 5—Discrete cross-correlations between SWP flux and longer wave-
length flux for the intensive monitoring period. Filled circles: SWP flux at 1400
A vs. LWP flux at 2800 A ; open circles: SWP vs. FES flux. The light curves are
highly correlated, with peak at zero lag (with an upper limit of less than a few
hours), and at the same time asymmetric (the excess positive correlation at
positive lags corresponds to the short-wavelength emission leading longer
wavelength emission).

more power on longer time scales. However, on shorter time
scales (using the data from the well-sampled, 4.6 day intensive
monitoring) they are modulated with a period of ~0%7, with
the first harmonic also seen, at ~1%5. This quasi-periodic
behavior can be seen going through five cycles in the light
curves (Fig. 3b), despite the gap at November 11.5.

The significance of this possible periodicity is unclear. Were
there only a few peaks (< 3), it could almost certainly be dis-
missed as spurious (Press 1978). Signals with red power spectra
frequently show spurious periodicities on time scales that are
an appreciable fraction of the length of the data stream because
there are too few large-amplitude components at low fre-
quencies to achieve the Gaussian behavior of the central limit
theorem. The fact that the apparent period is closer to one-fifth
of the intensively sampled stream, and that the light curve
shows little power at other frequencies, tempts us to believe
that it may be real; but this would only be a comfortable
conclusion if there were 10 or 20 periods (so that the central
limit theorem would indeed apply). The sampling in contempo-
raneous optical monitoring was not sufficient to detect periods
shorter than a few days (Smith et al. 1992). This period is not
present in extensive, well-sampled optical data taken in 1988
(Carini & Miller 1992), which means, since we now know the
optical and ultraviolet are closely related, that any periodicity,
if real, is transitory. Only a longer run of intensive monitoring
can clearly confirm or refute the stability of this periodicity.

3.2. Ultraviolet Spectral V ariability

A key point in the interpretation of the continuum emission
from PKS 2155—304 is the relationship between variability in
intensity and spectral shape. Previous monitoring has sug-
gested that the spectral index varies little during flares in inten-
sity, but this observation was always restricted to grossly
undersampled light curves. The present campaign, with its
improved sampling, should be more sensitive to related varia-
tions in flux and spectral index. The variation of spectral index
throughout the run is shown in Figure 7. According to the y?
statistic, the model of constant spectral shape can be ruled out:
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FiG. 6—Discrete autocorrelation functions for SWP flux at 1400 A ( filled circles), LWP flux at 2800 A (open squares), and FES flux (open circles). (a) Calculated
for the full 30 day data set, which is probably undersampled. There is correlation out to several (~ 5) days. The amplitude of the FES autocorrelation is low because
of the larger relative errors in the photometry. (b) Calculated for the 4%6 intensive monitoring period only. The SWP and LWP autocorrelation functions are very

similar, and both show a peak at a lag of about 0¢7.

%2 = 4.68 for the combined spectral index. This is also seen in
the SWP camera alone, where 32 = 1.94 [P(x?) = 5.9 x 107 %]
for a constant fit to agwpe. (The variation in the LWP spectral
index is not significant, y? = 0.98, because of the larger errors
due to the low signal-to-noise ratio below 2400 A.)

Plausible physical processes causing intensity variability,
such as acceleration of radiating particles near a shock, predict
accompanying changes in the spectrum of the emitted radi-
ation. For example, electron acceleration would cause spectral
hardening with increasing intensity. Thus one might expect
flux and spectral index to be inversely correlated. Such corre-
lations have been found previously for Mrk 421 (Ulrich et al.
1984) and OJ 287 (Maraschi et al. 1986), although these studies
referred to data taken over much longer time intervals. In the

present case, a nonparametric Spearman rank-order corre-
lation test suggests an inverse correlation between F 40, and
aswp (P = 9.2 x 1072 of occurring by chance for the full data
set; P = 0.07 for the intensive monitoring period only), but not
between F,g00 and oy wp (P = 0.87 and P = 0.76 for full and
intensive periods, respectively) or F,q00 and o¢ (P = 0.41 and
P = 0.19 for full and intensive periods, respectively). Figure 8a
shows the scatter plot of the last of these, with filled circles
indicating data from the intensive monitoring period.

Previous authors found no correlation between flux and
spectral index for PKS 2155—304, but did find a correlation
between AF and Aa, where the change is measured between
pairs of spectra taken close in time (Maraschi et al. 1986; Urry
et al. 1988; Edelson 1992). In the present instance, in contrast,
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F1G. 7—Variability of the combined spectral index (a) over the full month and (b) during the intensive monitoring period. The model of a constant spectral shape

has y2 = 4.7, so is strongly rejected.
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change in spectral index and change in flux are not strongly
correlated; Figure 8b shows the change in spectral index versus
the change in flux for the combined SWP-LWP spectral fits.
The probability of correlation between Ax and AF for the
intensive monitoring period (measured from adjacent data
points) is significant only for the lower quality LWP data
(P > 99.9%). For the full data stream, using the differences
between daily averages, Aa and AF are marginally anti-
correlated for the SWP data (~96.7%). In neither case are the
combined SWP-LWP data correlated or anticorrelated. We
conclude that there is no significant direct correlation between
instantaneous spectral shape and intensity, or changes thereof,
in the IUE data.

Given the importance of understanding spectral variability,
we explored a new tool for measuring the phenomenon. We
applied the discrete correlation function (Edelson & Krolik
1988), usually used to investigate flux-flux correlations, to the
cross-correlation between flux and spectral index for the inten-
sive monitoring period, where the light curve is well sampled.
The results are shown in Figure 9 for the SWP and LWP fits
(which track each other well). There is clearly structure in this
DCF. The negative lag means that changes in the spectral
index precede changes in the intensity, and the negative corre-
lation amplitude means that spectral hardening (decreasing )
is associated with increasing intensity. Thus, there appears to
be some kind of inverse correlation between spectral index and
intensity, but with a lag of 1-2 days.

3.3. Ultraviolet Spectral Shape

The spectral shape in the ultraviolet band depends critically
on the dereddening correction. When no correction is applied,
the LWP spectral indices are systematically higher than the
SWP spectral indices (e.g., Edelson 1992). This implies flat-
tening of the spectrum toward shorter wavelengths; that is, a
“concave-up ” shape in v-F, space, in contrast to the overall
“concave-down ” shape of the radio through soft X-ray spec-
trum. An excess at long wavelengths due to inclusion of star-

light is not expected, as the host galaxy for PKS 2155—304
detected in deep optical imaging (Falomo et al. 1991) is too
faint (V ~ 16.5) relative to the nuclear point source. The spec-
tral curvature goes away, however, when a dereddening correc-
tion with E(B— V) = 0.034 mag is applied. (If we fit the entire
ensemble of combined SWP-LWP spectra to a power-law
model leaving the reddening correction as a free parameter, y2
is minimized for this value.) Figure 10 shows the distributions
of SWP and LWP spectral indices for three assumed values of
E(B—V): 0.0 mag, 0.034 mag, and 0.05 mag. With no correc-

Cross—Correlation Amplitude

Lo by
2

-1 I ] | - 1 l I | | I —
-2 -1 0
Lag (Days)
F1G. 9—Discrete cross-correlation of spectral index vs. intensity for the
intensive monitoring period. Filled circles: F 440 VS. dgwp; Open squares: F 440
vs. o, wp. Note the dip at —1 day. The negative lag means change in the
spectral index precedes change in intensity, and the negative correlation ampli-
tude means that spectral hardening (decreasing «) is associated with increasing
intensity.
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curvature can be claimed. The reddening correction adopted (panel a) brings the SWP and LWP distributions most closely into agreement.

tion, the LWP spectra are steeper; with E(B— V) = 0.05 mag,
the SWP spectra are steeper; and E(B—V) = 0.034 mag is
roughly the value at which the SWP and LWP spectral indices
agree best. Thus, while the amount of reddening remains
uncertain (see § 2.3), the assumption that the ultraviolet spec-
trum is either a flat power law or concave-down would indicate
a minimum reddening of E(B— V) ~ 0.03 mag.

Taking the reddening into account, then, there is no evi-
dence for spectral curvature in the ultraviolet band. The flat-
ness of the UV spectral index (x < 1) means that peak of the
luminosity emitted from this BL Lac object is in the far-
ultraviolet, as noted by previous authors.

3.4. Systematic Errors

The absolute calibrations and sensitivity corrections are the
largest sources of uncertainty in the absolute value of the flux.
The IUE calibrations available—the one used in our pipeline
(Bohlin et al. 1990), the white dwarf calibration being used for
the IUE Final Archive (Finley et al. 1993), and the standard
IUESIPS calibration (Cassatella, Lloyd, & Riestra 1988)—
result in calibrated fluxes that differ by less than 10%. The
Bohlin calibration tends to be lower than the IUESIPS cali-
bration for the SWP (the average ratio is 0.93).

The SWP sensitivity correction is roughly 1% per year aver-
aged over the whole waveband. The extrapolation from 1988 is
uncertain. We have applied no sensitivity correction to the
LWP, although one has been published (Teays & Garhart
1990). Such a correction would possibly alleviate the camera
mismatch, as in our results the SWP flux is too high relative to
the LWP.

There are small systematic differences in the shapes of IUE
spectra extracted with GEX and with SWET. However, the
ratio of the extracted spectra averaged over the full waveband
is close to 1. The parameters of the fitted spectral indices in the
two wavebands differ systematically (by Ax ~ 0.1 for the LWP
and Ao ~ 0.2 for the SWP) but the results of combined fits are
essentially identical. Therefore, the results are independent of
extraction method. (The advantage of the SWET technique,
providing independent error estimates for each data point,
remains.)

As mentioned earlier, the amount of reddening along the
line-of-sight to PKS 2155—304 is uncertain. With no dered-
dening, the absolute ultraviolet flux would be ~20%-30%

lower than the numbers quoted in Table 2 and the spectral
shape would be concave-up (i.e., there would be excess long-
wavelength flux above the SWP power law). There is no
obvious explanation for an intrinsic spectrum of this shape,
whereas concave-down spectra can result naturally from syn-
chrotron losses. The available evidence is generally consistent
with our assumed value of E(B— V) = 0.034 mag, which would
correspond to an approximately flat (i.e., not concave-down or
-up) spectrum, but the uncertainties are large. One might
reduce the uncertainty in Ny, due to small-scale fluctuations in
the interstellar medium by using PKS 2155—304 as a back-
ground radio source at 21 cm, although that would introduce
another uncertainty due to the unknown spin temperature of
the gas. Another approach would be to estimate the extinction
in the extreme ultraviolet, which is very sensitive to the H 1 and
He 1 column densities (particularly the latter), using the recent-
ly obtained EUVE spectrum (Malina & Bowyer 1992). The
total optical depth at 100 eV corresponding to Ny, = 1.78

x 10%° atoms cm™2, assuming He 1 is 10% by number, is
T ~ 11, quite high considering that PKS 2155—304 is one of
the two brightest extragalactic sources detected with the
ROSAT WFC (Pounds et al. 1992) and was also detected in the
short-wavelength (E ~ 100 eV) filter of EUVE (Malina &
Bowyer).

After our analysis was completed, we learned of an unpub-
lished 21 cm emission measurement by Lockman & Savage
(1993), Ny; = 1.36 x 10%° cm ™2, made with a 21’ beam and
careful attention to the antenna sensitivity pattern (e.g., see
description in Lockman, Jahoda, & McCammon 1986). This
value for the Galactic hydrogen column density, which is
somewhat lower than the Stark et al. (1992) value we used,
would corresponds to E(B— V) = 0.026 mag and would result
in lower absolute fluxes than those given in Table 2, by about
6% for the SWP and 3% for the LWP, or about 22% and 18%
higher, respectively, than the observed fluxes. The total optical
depth at 100 eV for this column density would be 7 ~ 9.

In any case, the uncertainty in the gas-to-dust ratio domi-
nates the uncertainties in the assumed E(B— V). The scatter in
the conversion factor deduced by Shull & Van Steenberg
(1985), for example, gives a 1 o range for E(B—V) of
0.014 — 0.047 mag. In addition, we used the conversion appro-
priate to the full sample of 205 stars; a conversion for the 53
halo stars only, log Ny ,/E(B—V) = 21.83 cm ™2 mag ™!, gives
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E(B—V) = 0.026 mag for the Stark et al. (1992) value of Ny,
or 0.020 mag for the Lockman & Savage value of Ny,, with
somewhat larger uncertainties.

Collectively, the uncertainties in absolute calibration, sensi-
tivity corrections, and dereddening corrections amount to
10%—-15% uncertainties in the measured absolute flux. How-
ever, since the same corrections are applied to all the spectra,
the relative fluxes are not affected by these uncertainties.

Like many blazars, PKS 2155—304 can be highly polarized
(e.g., Smith et al. 1992; Allen et al. 1993). Because the IUE
spectrographs use gratings, spurious variability could in prin-
ciple be introduced by changes in polarization. During the
monitoring campaign, the U-band polarization of PKS
2155—304 was always <8% (Smith et al. 1992), so that the
effect would have been no larger than the quoted uncertainties.

Finally, systematic errors arising in only a handful of spectra
or FES images are not taken into account by our error analysis
procedure, which assumes that the exposures have similar
properties. This is probably a reasonable assumption for most
of the data, which were obtained under similar conditions.

Exceptions include the four unusually short SWP exposures

(points circled in Fig. 3), since short IUE exposures have been
shown to give systematically low fluxes (Walter & Courvoisier
1991). The errors on quantities measured from these SWP
exposures are almost certainly underestimated.

4. DISCUSSION

4.1. Intensity Variability

Throughout our month-long observing campaign, the ultra-
violet and optical flux of PKS 2155— 304 increased by a factor
of 2. The light curves are far from smooth, however, with rapid
lower amplitude events superposed. During the intensive mon-
itoring period in the middle of the month, there are a number
of well-sampled, large-amplitude (~30%) variations which
appear to have a quasi-periodic time scale of ~0%7. Whether
this periodicity is real requires a longer data train with equal or
better sampling. The exponential time scales associated with
the most rapid events are a few days or less; the actual time in
which flux was seen to double was approximately 10 days.
Similar fast, intraday variability, including the appearance of
quasi periodicity, has been seen in optical observations of BL
Lac objects (Quirrenbach et al. 1991). Such short time scales
are consistent with the predictions of the standard relativistic
jet and accretion disk models for BL Lac objects (e.g., Konigl
1981; Wandel & Urry 1991).

The possible periodicity at ~15-20 hr is one of the most
intriguing yet ultimately frustrating results of the present cam-
paign. We have sufficient data that we cannot automatically
dismiss it as an artifact of the length of observation or of poor
sampling; on the other hand, we lack enough data to be con-
fident of its reality. During our observations, PKS 2155 —304
was in a particularly bright state, as was the BL Lac object OJ
287 when a possible periodicity was detected in its optical light
curve (Carrasco, Dultzin-Hacyan, & Cruz-Gonzalez 1985). It is
clearly important to obtain longer, high-quality light curves of
PKS 2155—304 in a bright state.

Meanwhile, keeping in mind the uncertainties, we explored
what such a period, if real, might mean. One possible origin of
a periodicity is orbital motion. The nearest stable orbit around
a black hole is at a few (n 2 3) Schwarzschild radii, where
Rg = 2GMyy/c?. Using Kepler’s law and ignoring relativistic
effects, the central black hole mass is related to is the orbital
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period, T, by Mgy = Tc*/[4(2)*>an>2G]. If the ultraviolet
emission is not relativistically beamed, then My, < 1.3 x 108
M. Relativistic beaming would shorten the observed time
scale relative to the true time scale, and so would allow higher
masses in this simple limit.

In the context of a relativistic jet picture, the periodicity can
be explained if the production of the jet is closely coupled to
the orbital dynamics. For example, Camenzind & Krocken-
berger (1992) considered jets that are magnetically collimated
winds emanating from the inner edge of an accretion disk. In
this model, spiraling motion of plasma bubbles moving along
magnetic field lines in the jet causes quasi-periodic fluctuations
in observed intensity simply as a result of a smooth variation in
the Doppler factor. The rotation period of the escaping plasma
bubbles is initially the Keplerian period of the inner disk,
increasing beyond the Alfvén point, R,, as (R/R,)?, where R is
the perpendicular distance of the bubble from the jet axis. The
bubbles become collimated and are observed at R > R,. The
observed period will be shorter by the factor (1 — 8 cos 6),
where 0 is the inclination of the jet, due to a relativistic projec-
tion effect.

For PKS 2155— 304 there are no firm estimates of either the
Lorentz factor or the inclination angle (cf. Urry & Mushotzky
1982 and Ghisellini et al. 1985), but assuming y ~ 5, as appro-
priate for one of the more active X-ray—selected BL Lac objects
(Padovani & Urry 1990), and 6 < 1/y ~ 10°, the observed
period of 0%7 corresponds to a true period of 1.7 x 10° s. For
R/R, ~ 10 (Camenzind & Krockenberger 1992), the Keplerian
period at 5Rg is then 1.7 x 10* s and the black hole mass is
1.8 x 10" M.

The ultraviolet flux from PKS 2155— 304 varies between 1.3
and 2.7 and 10~ !° ergs cm =2 s~ (1200-3000 A). For a redshift
of z ~ 0.12 (assuming H, = 50 km s~ ! Mpc~?, and isotropic
emission), this corresponds to an ultraviolet luminosity of 0.9
to 1.9 x 10%® ergs s~ !. A 30% change in intensity occurring
over a day (for example, around 1991 November 13-14) corre-
sponds to AL/At ~ 5 x 10*° ergs s~ 2, which is only a factor of
4 below the fiducial limit for Eddington-limited accretion with
efficiency n = 0.1 (§ 1). We estimate a bolometric correction of
~10 for PKS 2155—304 using published multiwavelength
data. (Given the flat ultraviolet spectral index, « < 1, the bolo-
metric correction depends most strongly on the detailed ultra-
violet through soft X-ray spectrum, for which we use the data
summarized by Wandel & Urry 1991.) If the UV, extreme UV,
and X-ray flux all vary comparably (see Edelson et al. 1993),
the flaring monitored in 1991 November would in fact have
exceeded the limit, suggesting relativistic beaming is present.

4.2. Spectral Variability

The spectral variability observed is intriguing, and not easily
interpreted. The fluxes within both JUE bands and the optical
flux deduced from the FES are all well correlated with no
discernible lags on time scales 23 hr. The cross-correlation
functions are asymmetric, however, in the sense that short-
wavelength emission leads the long. This may indicate that the
emitting volumes are not significantly different across the
ultraviolet band, but that radiative losses are sufficiently
energy dependent that the short-wavelength flux decays faster
than the long-wavelength flux.

The overall amplitude of variability is roughly the same in
the short- and long-wavelength IUE bands, but the ultraviolet
spectral shape does vary significantly during the campaign.
Comparing Figures 3 and 7, we can see that the relation
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between intensity and spectral shape is not simple. While the
source flux doubled in the first 10 days, the spectral index
increased briefly and then returned to roughly its initial level.
In the latter half of the month, while the source intensity
remained high, the spectral index steepened. During the inten-
sive monitoring period, the flux—spectral index relationship is
similarly complicated.

Spectral variability is a strong diagnostic of any emission
process. The general sense of the variation in PKS 2155—304
is that the spectrum hardens with increasing intensity, as
expected for nonthermal processes where increases (decreases)
result from acceleration (radiative losses) of the nonthermal
electron population. The apparent temporal lag (~1 day)
between change in spectral shape and change in intensity
(Fig. 9) is more difficult to interpret.

The specific accretion disk model proposed by Wandel &
Urry (1991), which was constructed to fit the ultraviolet spec-
tral shape and estimated ultraviolet variability time scales of
PKS 2155—304, is ruled out by the close correlation between
optical and ultraviolet IUE light curves, since in that model a
large fraction of the optical flux had to be produced indepen-
dently of the ultraviolet flux. Additional arguments against the
disk model for PKS 2155—304 are based on the observed
wavelength-dependent optical polarization (increasing to the
blue; Smith & Sitko 1991; Aitken et al. 1993) and the extremely
rapid changes in polarization (Smith et al. 1992).

In contrast, the ultraviolet variability is consistent with what
is expected from a relativistic jet. Specifically, Celotti,
Maraschi, & Treves (1991) consider the variability character-
istics of a range of jet models, assuming that an increase in
emissivity is triggered by a signal traveling along the jet,
without affecting the local particle spectra. In this case it is
possible to produce ultraviolet variability with very small spec-
tral changes. All the models predict much stronger X-ray varia-
bility; both the relative amplitude and the lag, if any, are strong
constraints on the details of the model. No detailed calcu-
lations were attempted here because the associated X-ray
variability is the strongest constraint; for further discussion,
see Edelson et al. (1993).

The variability could also be caused by gravitational micro-
lensing. Ostriker & Vietri (1985, 1989) have argued that the
redshift distribution of BL Lacertae objects can be explained
by incorrect identification of the lensing galaxies as the host
galaxies of the BL Lac objects, with the true background
objects being OVV quasars. Specific candidates for micro-
lensing have been suggested for some of the radio-selected BL
Lac objects on the basis of their variability characteristics
(Stickel et al. 1991). If the size of the emitting region is indepen-
dent of wavelength, the variability will be achromatic, as is
approximately the case with the IUE data for PKS 2155 —304.
Rapid variations (t,,, < 1 yr) through microlensing are pos-
sible but require the relative source/lens velocities to be
extremely high, such as the superluminal motion that results
from an aligned relativistic jet. Calculations of the amplifica-
tion pattern due to microlensing that include the macrolensing
shear can even produce a quasi-periodic signal (Wambsganss,
Paczynski, & Katz 1990). Minor spectral changes could be
explained by intrinsic effects in the jet, while the bulk of the flux
variations could be due to microlensing.

5. CONCLUSIONS

In 1991 November, a large multiwavelength campaign was
devoted to monitoring the UV-bright BL Lac object PKS
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2155—304, with coverage from radio through X-ray wave-
lengths. Ultraviolet and optical observations were made with
the IUE satellite on a daily basis throughout the month.
Quasi-continuous coverage, with ~96 minute time resolution,
was undertaken during a 496 period in the middle of the
month. The latter data are well sampled, in the sense that the
fastest flares, with time scales ~ 19, were clearly resolved.

The month-long observations show a doubling of the flux in
about 109, with smaller, more rapid flares superposed on this
general trend. The well-resolved flares during the intensive
monitoring have an apparent quasi periodicity of ~0¢7,
although the data train was too short to confirm the reality of
the period. Such flares might be expected from disturbances
propagating along the magnetic field lines in a jet (Camenzind
& Krockenberger 1992).

The large amplitude and short time scale of the fastest
observed variability probably requires relativistic beaming
(depending on whether emission at other wavelengths varies
comparably, so that the bolometric correction of 10 is
applicable). In the absence of relativistic effects, however, a
simple estimate identifying the periodicity with a Keplerian
orbit at the smallest stable orbit around a central black hole
limits the black hole mass to 1.3 x 10% M.

The short- and long-wavelength ultraviolet light curves are
well correlated with each other, and with the optical light curve
deduced from the Fine Error Sensor (FES) on IUE. The formal
lag is zero, but the cross-correlation is asymmetric in the sense
that shorter wavelength emission leads the longer, suggesting
that the loss time scales are faster for the shorter wavelength
emission, as expected in the synchrotron process.

Small but significant spectral variability is detected. The
ultraviolet spectral index and intensity are inversely correlated
(harder spectra corresponding to higher intensity), but the
change in index leads the change in intensity by 1 or 2 days.
The inverse correlation between spectral index and intensity is
consistent with the nonthermal acceleration processes expected
in relativistic plasmas, so that the present results are again
consistent with relativistic jet models.

The accretion disk scenario of Wandel & Urry (1991) is
ruled out by the similarity of the optical and ultraviolet light
curves. The general character of the variability is consistent
with the expectations of relativistic jet models (Celotti et al.
1991; Camenzind & Krockenberger 1992), and we cannot rule
out the importance of gravitational microlensing.
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John Fernley, Rosario Gonzalez, and Antonio Talavera). The
IUE Regional Data Analysis Facility was instrumental in
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