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ABSTRACT

Context. The luminosity function (LF) is a powerful statistical tool used to describe galaxies and learn about their evolution. In partic-
ular, the LFs of galaxies inside clusters allow us to better understand how galaxies evolve in these dense environments. Knowledge of
the LFs of galaxies in clusters is also crucial for clusters studies in the optical and near-infrared (NIR) as they encode, along with their
density profiles, most of their observational properties. However, no consensus has been reached yet about the evolution of the cluster
galaxy LF with halo mass and redshift.
Aims. The main goal of this study is to investigate the LF of a sample of 142 X-ray selected clusters, with spectroscopic redshift
confirmation and a well defined selection function, spanning a wide redshift and mass range, and to test the LF dependence on cluster
global properties, in a homogeneous and unbiased way.
Methods. Our study is based on the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) photometric galaxy catalogue, asso-
ciated with photometric redshifts. We constructed LFs inside a scaled radius using a selection in photometric redshift around the cluster
spectroscopic redshift in order to reduce projection effects. The width of the photometric redshift selection was carefully determined to
avoid biasing the LF and depended on both the cluster redshift and the galaxy magnitudes. The purity was then enhanced by applying
a precise background subtraction. We constructed composite luminosity functions (CLFs) by stacking the individual LFs and studied
their evolution with redshift and richness, analysing separately the brightest cluster galaxy (BCG) and non-BCG members. We fitted
the dependences of the CLFs and BCG distributions parameters with redshift and richness conjointly in order to distinguish between
these two effects.
Results. We find that the usual photometric redshift selection methods can bias the LF estimate if the redshift and magnitude depen-
dence of the photometric redshift quality is not taken into account. Our main findings concerning the evolution of the galaxy luminosity
distribution with redshift and richness are that, in the inner region of clusters and in the redshift-mass range we probe (about 0 < z < 1
and 1013 M� < M500 < 5 × 1014 M�), the bright part of the LF (BCG excluded) does not depend much on mass or redshift except for
its amplitude, whereas the BCG luminosity increases both with redshift and richness.

Key words. galaxies: clusters: general – galaxies: groups: general – galaxies: luminosity function, mass function –
galaxies: evolution – X-rays: galaxies: clusters – galaxies: photometry
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1. Introduction

The galaxy luminosity function (LF) and its evolution with red-
shift, galaxy type, or environment is one of the main tools for
constraining models of galaxy formation and evolution.

Knowledge of the LFs of galaxies in clusters is also impor-
tant in cosmology, particularly in view of the future optical or
near-infrared (NIR) wide-field surveys (e.g. Euclid, LSST). The
galaxy LFs of clusters, along with their density profiles, encode
most of the observational properties of galaxy clusters in the
optical. The LF and its evolution is therefore a key parameter in
cluster detection. Moreover, in order to derive cosmological con-
straints from cluster counts, a precise and well-calibrated cluster
mass estimate, based on an observable, is required. The main
mass proxies in the optical are the cluster richness (e.g. Rozo
et al. 2009; Andreon & Hurn 2010) and optical-NIR luminos-
ity (e.g. Lin et al. 2003; Mulroy et al. 2017; Ziparo et al. 2016,
hereafter XXL Paper X), and these proxies often require the
knowledge of the cluster’s LFs, for example, by counting galax-
ies brighter than a characteristic magnitude or by integrating the
luminosity function. Thus, the LF of cluster galaxies is also a
critical property that simulations need to reproduce if they are
later used to characterise cluster finder algorithms or calibrate
observables.

In a pioneering work, based on the Press & Schechter (1974)
work on the mass function, Schechter (1976) proposed an ana-
lytic expression to characterise the galaxy luminosity function,
consisting of the product of a power law by a decreasing expo-
nential function. It is fully characterised by three parameters: the
characteristic magnitude M∗ corresponding to the ‘knee’ of the
function , the slope α of the power law dominating at faint lumi-
nosities, and the characteristic density φ∗. Extensive work has
been devoted in recent decades to evaluating galaxy luminosity
functions in different environments, from field to clusters, in dif-
ferent redshift ranges, and with different selection for galaxies
(colours and types). This resulted in a better theoretical mod-
elling of galaxy and structure formation and evolution (see e.g.
Menci et al. 2002; Mo et al. 2004).

Evolution of the LF with redshift is of particular interest as
it is directly linked to the formation history of galaxies. It has
been shown to be connected both to environment and to galaxy
types. However, one of the main difficulties in the LF deter-
mination from photometric surveys is the correct evaluation of
the background contamination, which is more critical for faint
galaxies. Many analyses focusing on early-type galaxies used
the red sequence (the locus formed by early-type galaxies in
colour–magnitude plane) to optimise the LF determination. Most
of them indicate that the fraction of passive galaxies in clusters
changes with redshift, with a deficiency in low luminosity red
galaxies for high redshift clusters with respect to low redshift
ones (De Lucia et al. 2004, 2007; Stott et al. 2007; Gilbank et al.
2008; Lu et al. 2009; Rudnick et al. 2009), while some others
disagree on this point (e.g. Andreon 2006, 2008; Crawford et al.
2009). This effect suggests that a large fraction of high redshift,
low mass galaxies are blue, and progressively migrate to the red
sequence at lower redshift.

Photometric redshifts, whose quality has highly improved in
the last decade, have led to significant progress in the determina-
tion of the LF of the whole population in the optical rest-frame,
and of the relative behaviour of the early- and late-type galaxy
components (Rudnick et al. 2009; Martinet et al. 2015; Sarron
et al. 2018). Great insight at redshift z > 1 was provided by anal-
ysis in the NIR rest-frame, which traces well the stellar mass
(Muzzin et al. 2008; Mancone et al. 2010).

Concerning the bright end of the LF, various analyses con-
verge to the fact that the characteristic magnitude redshift evo-
lution up to z ∼ 1 can be described by passive evolution of a
population formed in a starburst at high redshift (De Propris
et al. 1999, 2007, 2013; Lin et al. 2006). This has been con-
firmed up to higher redshifts by analyses in the NIR and IR
(Strazzullo et al. 2006; Muzzin et al. 2008; Mancone et al. 2010,
2012). This last analysis also showed a flat faint end slope (α
approximately −1) with no significant redshift evolution and
stressed that the evolution of α and M∗ have to be considered
jointly for any interpretation in terms of evolution, due to the
strong degeneracy between these parameters.

The dependence of the galaxy luminosity function on cluster
mass has also been investigated via observed mass proxies such
as richness, velocity dispersion, or X-ray luminosities and tem-
peratures. Here again, a full consensus has not yet been reached,
with some studies showing differences in the LF in clusters with
low/high mass proxies (Valotto et al. 1997; Croton et al. 2005;
Hansen et al. 2005), while others show little or no difference
(De Propris et al. 2003; Alshino et al. 2010; Moretti et al. 2015;
Lan et al. 2016).

Large cluster samples in X-rays or in the optical have recently
become available, spanning wide redshift and cluster mass
ranges. However, the study of the LF evolution in these samples
is challenging because they are hampered by selection effects,
leading to a bias between cluster masses and redshifts. So far the
approaches that have been used to distinguish between mass and
redshift effects are either splitting the clusters and studying the
LF in redshift and mass bins, as in Sarron et al. (2018), or using
hierarchical Bayesian method that simultaneously models red-
shift evolution and cluster mass dependence, as in Zhang et al.
(2017).

In the end, a full consensus has not yet been reached for the
evolution of the cluster galaxies LF with halo mass and redshift.
The difficulty in comparing the results of the various analyses
comes from the differences in sample selection, redshift and
mass range, radius considered, method used to select galaxies,
and statistical analysis performed. This strongly motivates the
determination of the LF for a statistical sample of clusters with
a homogeneous selection and a firmly tested methodology, and
taking into account the bias between cluster mass and redshift. In
this paper we present the analysis of the optical LFs of a sample
of 142 galaxy clusters, detected in the X-ray by the XXL Sur-
vey and having spectroscopically confirmed redshifts, using the
Canada–France–Hawaii Telescope Legacy Survey (CFHTLS)
photometric data. This unique combination of surveys allows us
to span a wide range of redshifts and X-ray luminosities (and
thus masses). It also enables us to study the LF without being
biased by optical detection method. As we aim to characterise
the luminosity function of the whole galaxy population, we make
use of the state-of-the art photometric redshifts provided in the
CFHTLS T0007 release. For this purpose, we have developed
a new method that optimises the LF estimate from photometric
redshifts using the extensive spectroscopic data provided in the
XXL project for calibration.

The structure of the paper is as follows: we describe the
data in Sect. 2; we present the method used to construct and
parametrise the LFs in Sects. 3 and 4; we show our results
on the luminosity distribution and its dependence on the clus-
ter parameters in Sect. 5; and study the systematic effects in
Sect. 6. Finally, Sects. 7 and 8 are for the discussions and
conclusions.

Throughout this paper, all magnitudes are expressed in the
AB system (Oke 1974). We use an evolutionary model as
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reference for the redshift evolution of the characteristic appar-
ent magnitude m∗. This model was computed with LEPHARE
using the elliptical galaxy SED template BURST_SC86_ZO.SED
from the PEGASE2 library (Fioc & Rocca-Volmerange 1997),
with a redshift of formation zf = 3. We normalised the model
using K∗ values from Lin et al. (2006) corrected to the AB sys-
tem. This leads to a magnitude of M∗R = −21.36 at z = 0 in the r′
band. We use the notation log and ln for the common and natural
logarithm, respectively. Throughout this work we have used the
cosmological parameters H0 = 70 km s−1Mpc−1, Ωm = 0.3, and
ΩΛ = 0.7.

2. Data description

2.1. Custer sample

The XXL survey (Pierre et al. 2016, XXL Paper I) is a
XMM-Newton project designed to provide a well-defined sample
of galaxy clusters out to z > 1, suitable for precision cos-
mology (see Pierre et al. 2011) and for the analysis of galaxy
evolution and active galactic nuclei. The area covered is about
50 square degrees divided in two fields of 25 deg2 each:
XXL-North (XXL-N) and XXL-South (XXL-S). The sensitiv-
ity of XXL is about 10−15 erg s−1 cm−2 in the [0.5–2] keV band
(3σ flux limit for point sources). Both fields benefit from an
almost full imaging coverage in the optical (CFHTLS and HSC
in the north, and BCS and DES in the south), NIR and far-
infrared (e.g. WIRCAM, VISTA, Herschel/SPIRE, Spitzer), and
millimetric (SPT in the south field). The XXL cluster selection
function was derived following the methodology developed for
the XMM-LSS pilot survey and extensively tested on numeri-
cal simulations (see Pacaud et al. 2006). The source detection
algorithm was tested by comparing observations to Monte Carlo
simulations, allowing to define different samples of extended
sources according to their distribution in the extension–extension
likelihood plane: the C1 and C2 class (see also Pacaud et al.
2016, XXL Paper II).

The XXL cluster sample corresponding to the second XXL
data release, XXL-365-GC, is presented in Adami et al. (2018,
hereafter XXL Paper XX). It contains the complete subset of
clusters for which the selection function is well determined plus
all X-ray clusters which have been, to date, spectroscopically
confirmed. In the present study, we used the list of all C1 and
C2 clusters from XXL-365-GC overlapping with the W1 field of
the CFHTLS (i.e. clusters from the XXL-N field having a dec-
lination δ < −3.7) and for which we have spectroscopic redshift
confirmation. This led to a sample of 142 clusters from z = 0.03
to 1.06, among which 93 are classified as C1 and 49 as C2.

The redshift confirmation was made in XXL Paper XX, using
as a criterion the presence of at least three concordant redshifts
or having the redshift of the BCG. Hence, all clusters consid-
ered in the present study can be considered bona fide clusters:
the C1 clusters constitute a “complete sample” (in the cosmo-
logical sense), while the current C2 sample is “pure” but not yet
complete.

Throughout the study, the term “cluster” refers to an
extended X-ray source having undergone spectroscopic con-
firmation. However, some of them may remain undetected by
optical cluster finders if they are too poor or if there is an offset
between the gas and the galaxies. Also, no distinction is made
between groups and clusters. Finally, in the case of multiple
structures, each substructure or group is identified as an X-ray
cluster.
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Fig. 1. X-ray luminosity in the [0.5−2] keV band computed in a 300 kpc
aperture as a function of redshift for the cluster sample used in this
study. Red points and blue squares represent clusters classified as C1
and C2, respectively (see text).

2.2. Cluster parameters from scaling relations

Because of the faintness of some sources, it is not possible to
obtain direct temperature estimates for all clusters. Therefore, in
order to allow studies of the global properties of the full sample,
we used cluster parameters extrapolated from an internally self-
consistent system of scaling relations, based on the [0.5–2] keV
X-ray count rates collected within a physical radius of 300 kpc.
The dedicated procedure is iterative and explained in detail in the
Sect. 4.3 of XXL Paper XX. In the following, these quantities are
identified with the subscript “scal”.

Considering the good agreement between the parameters
directly measured or extrapolated from scaling laws (see Fig. 4 in
XXL Paper XX), and that we are interested in studying a global
behaviour, we do not expect a major change in our results if we
consider one or another type of measurements.

The parameter used in the rest of the study is r500,scal
1, but

we also mention the associated mass estimate, M500,scal. For ref-
erence, Fig. 1 shows the luminosities LXXL

300kpc,scal in the [0.5−2]
keV band and within 300 kpc of our cluster sample, as a func-
tion of redshift. The red dots indicate the C1 clusters and the blue
squares indicate the C2 clusters. It is important to note that since
XXL is not a flux limited survey, but rather surface-brightness
limited, the cluster locus in the Lx−z plane does not follow a
simple law (see Fig. 9 of Pacaud et al. 2006).

2.3. Galaxy catalogues

2.3.1. Photometric catalogue

The optical counterpart of the XXL clusters comes from the
CFHTLS, based on the optical and NIR wide-field imager Mega-
Cam. The CFHTLS is composed of two surveys of different
depth and area: the Deep Survey, split in four regions of 1 deg2

each, reaching an 80% completeness limit in AB of i′ = 25.4
for point sources, and the Wide Survey, split in four regions of
about 155 deg2 in total reaching an 80% completeness limit in
AB of i′ = 24.8 for point sources (see Hudelot et al. 2012, for
more details). In this study data are taken from the W1 field of

1 r500 is defined as the radius of the sphere inside which the mean den-
sity is 500 times the critical density ρc of the Universe at the cluster’s
redshift; M500 is then by definition equal to 4/3π500ρc r3

500.
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the Wide Survey, covering about 64 deg2 which overlaps most of
the XXL-N survey.

The CFHTLS is conducted in five passbands: u*, g′, r′, i′,
and z′, from approximately 300 to 1000 nm. The image stacking,
calibration, and catalogue extraction was performed by the Ter-
apix data centre. We used the latest version of the release, T007,
which provides better image quality and flux measurement preci-
sion than the previous releases, due to improved flat-fielding and
photometric calibration techniques (see Hudelot et al. 2012). The
source detection is made by SEXTRACTOR (Bertin & Arnouts
1996) on composite g′r′i′ images and the flux of the sources is
then measured in each band using the same aperture. This tech-
nique provides reliable fluxes as the aperture is constant in each
band, but may lead to missing distant objects that appear only in
the z′ band (see Szalay et al. 1999).

The masking of bright stars and image defects over the W1
CFHTLS field was performed in a semi-automatic way. Stan-
dard polygons, with a cross shape designed to enclose stellar
spikes, were created for all stars brighter than i′ = 16. Polygon
sizes are proportional to the star magnitude following an empir-
ical relation validated by eye inspection. For the brightest stars
and associated ghosts or for other types of defects (satellite trails,
missing chips, field edges, etc.), polygons were designed by hand
to optimise the effective area to cross-match X-ray and opti-
cal data. The final catalogue contains only unmasked objects
and the magnitude used is MAG-AUTO which is a variable aper-
ture Kron magnitude (Kron 1980) and is well suited for galaxy
studies.

2.3.2. Photometric redshifts

Precise photometric redshifts taking advantage of multiwave-
length photometry are available in the XXL framework (see
Fotopoulou et al. 2016, XXL Paper VI). The quality of these
photometric redshifts is optimised for the highest accuracy per
galaxy; therefore, they are computed using a combination of
wide and deep photometric observations (e.g. using the UKIDSS
and VISTA surveys). They do not, however, cover the full
CFHTLS W1 area homogeneously. This strategy is not optimal
for our statistical study which requires homogeneous redshift
quality across the whole field. We, therefore, used instead the
photometric redshift catalogue associated with the CFHTLS
W1 Survey, which is computed with five bands but presents a
homogeneous quality across the field.

The estimation of the photometric redshifts in the CFHTLS
W1 Survey was made using LEPHARE (see Ilbert et al. 2006;
Coupon et al. 2009). LEPHARE is a Fortran code that computes
photometric redshifts using SED fitting. The procedure is done
in two steps: first, theoretical magnitudes are computed accord-
ing to the set of filters and the SED templates chosen; second,
theoretical magnitudes are fitted to the observed ones using a χ2

procedure, leading to a best fit SED template and a photometric
redshift probability distribution function (PDFz). An optimisa-
tion procedure, based on a spectroscopic training sample, is also
performed to calibrate the SED template set, remove photometric
systematic offset, and introduce priors on the redshift distribu-
tion. A star/galaxy classification is provided by using only size
criteria for bright objects and adding best fit SED criteria for
fainter objects. Bad estimations lead to a contamination of about
1% of stars in W1 and an incompleteness of galaxies of about
2.6% (see Coupon et al. 2009).

The set of SED templates used for the photometric redshift
computations was constructed using elliptical, spiral (SBc and

Scd), and irregular galaxy templates from Coleman et al. (1980)
and a star-forming galaxy template from Kinney et al. (1996)
(AVEROIN LEPHARE SED package, as in Arnouts et al. 2007).
These six SEDs were then interpolated to produce a set of 62
templates.

The statistical choice to get discrete photometric redshift val-
ues from the PDFz was to take its median value zPDF instead of
the mode of the distribution zχ2 (as suggested in the T007 photo-
metric redshift release explanatory document2). Only the objects
with photometric redshift computed with at least three photomet-
ric bands, a χ2/d.o.f. value lower than 100 and a galactic type of
SED were included in the final catalogue. This catalogue was
then cut at a magnitude of i′ = 24.

The XXL spectroscopic data set used in this study is com-
posed of several surveys and follow-ups conducted on the
XXL-N field. It is described in detail in XXL Paper XX and
(Guglielmo et al. 2018, hereafter XXL Paper XXII), but a brief
overview is given in the following.

A large ESO programme has been allocated for XXL spec-
troscopic follow-up and cluster redshift confirmation. In addition
to this programme, several dedicated projects have been con-
ducted by XXL consortium members. The two major surveys
available in the XXL-N field are the VIMOS Public Extra-
galactic Redshift Survey (VIPERS) and the AAOmega GAMA
survey. They overlap, respectively, 16 and 23.5 square degrees
of XXL-N. Other sources come mainly from VVDS Deep and
the SDSS DR10 surveys. All these surveys are photometrically
selected and have different depths. VIPERS objects are selected
using colour–colour diagrams to focus on galaxies between z =
0.5 and 1.2 with a limiting magnitude IAB = 22.5. The other sur-
veys have the following limiting magnitudes: KAB < 17.6 (see
Baldry et al. 2010) for GAMA, IAB = 24.75 for VVDS Deep
and g = 23 for the SDSS-DR10 (see York et al. 2000). All the
spectroscopic data were taken from the CESAM3 database.

Quality flags are available for the majority of surveys,
albeit having different definitions (see XXL Paper XXII, for
details). No quality flags (zflags = − 99) are available for
the spectra coming from SDSS, Subaru, Alpha compilation,
and NED.

2.3.3. Spectro-photometric catalogue construction

The photometric and spectroscopic catalogues were matched
according to their RA–Dec positions, allowing a maximum dis-
tance of one arcsecond. Multiple matches were treated by taking
the nearest object. This procedure resulted in about 3% of the
photometric objects having a spectroscopic counterpart and a
matched catalogue containing about 107 500 objects.

The resulting spectro-photometric sample is highly domi-
nated by GAMA at z < 0.5 (28% of the catalogue) and VIPERS
at z > 0.5 (57% of the catalogue). Other contributions come from
VVDS (at 4%), SDSS (at 4%), and 24 other origins (with less
than 2% of objects each).

We homogenised the spectroscopic quality flags in order to
have equivalent quality definitions. In the following analysis,
we discarded objects with quality flags corresponding to 5%
chances or more of having a false spectroscopic redshift, or with-
out quality information. This high quality subsample includes
61% of the objects from the spectro-photometric catalogue.

2 http://cesam.lam.fr/cfhtls-zphots/files/cfhtls_wide_
T007_v1.2_Oct2012.pdf
3 http://www.lam.fr/cesam/
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Fig. 2. Number of objects with high quality spectroscopic measure-
ments as a function of spectroscopic redshift and magnitude in the i′
band. The black line represents a fiducial evolution model for m∗.
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Fig. 3. Relation between the photometric and spectroscopic redshifts,
including all objects with a secure spectroscopic measurement (see
text). Each grey point represents a galaxy; the black line indicates the
bias b(zspec) and its error (only distinguishable at high redshift), which
was computed assuming a normal distribution. The dot-dashed black
lines indicates zphot = zspec for visualisation purposes.

2.3.4. Spectroscopic redshifts catalogue

Figure 2 shows the number of objects in the high quality sub-
sample of the spectro-photometric catalogue as a function of
redshift and magnitude in the i′ band. The black line repre-
sents an evolution model for the characteristic magnitude m∗ (see
end of Sect. 1). Figure 3 shows the comparison of photometric
to spectroscopic redshifts for all galaxies from the high quality
subsample.

3. Cluster galaxy luminosity function construction

3.1. Luminosity function requirements

The first critical step in the computation of cluster galaxies LFs
is to properly count the right number of galaxies belonging to
the cluster, in a given range of luminosity. In an ideal case,
we would like to identify which galaxies belong to the cluster;
however, precise cluster membership assignments are often dif-
ficult to perform, especially without spectroscopy. Alternatively,
we can select highly probable cluster members, for example,

by using photometric redshifts, and then statistically correct the
field contamination by subtracting estimated counts from control
background fields. The second critical step is to define the range
of cluster galaxy luminosities which will not suffer from incom-
pleteness. The methodology used to address these two points is
developed in the following section.

3.2. Galaxy selection

3.2.1. Selecting galaxies using photometric redshifts

As the number of available spectroscopic redshifts differs greatly
from cluster to cluster, we chose to use only photometric infor-
mation to select member galaxies in order to keep a homoge-
neous selection. We also chose to select photometric redshifts
based on discrete values within a range around the cluster
spectroscopic redshift. A similar treatment was then applied to
control background fields. We discuss here various ways that
have been used in other studies to define the photometric redshift
range that assures a given level of cluster membership complete-
ness, and we present our choice given our current data set.

To select galaxies likely to be at the cluster redshift, we
need to build the distribution P(zphot,gal|zclus), where zphot,gal are
the galaxy photometric redshifts and zclus is the known spec-
troscopic redshift of the cluster. In the most general case this
distribution depends on the galaxy magnitude, type, and red-
shift (e.g. Ilbert et al. 2006). However, due to the large amount
of spectroscopic data required to constrain these dependencies,
the distribution is often averaged over magnitudes and types and
modelled as a Gaussian distribution with a standard deviation
given as σz = σ0(1 + z). If such a parametrisation is useful to
describe the global performances of a photometric redshift algo-
rithm, it may lead to inconsistencies in more detailed selections
based on photometric redshifts.

It has been shown, for instance, that the fraction of catas-
trophic failures (objects with |zphot − zspec| > 0.15(1 + zspec),
following the definition of Ilbert et al. 2006) and the disper-
sion both increase strongly with magnitude and redshift and get
worse for galaxies with starburst SEDs (see e.g. Ilbert et al.
2006). Moreover, the P(zphot,gal|zclus) distributions often show
heavier tails than Gaussian distributions, which could lead to an
additional source of incompleteness if not taken into account.

Thanks to the XXL project, we now have a large associ-
ated spectroscopic catalogue that spans a wide range of redshifts,
galaxy types, colours, and magnitudes, which we used to investi-
gate the magnitude and redshift dependencies of the photometric
redshift statistics. We used the spectrophotometric catalogue
described in Sect. 2.3.3, selecting only secure spectroscopic
redshifts. In all of the following analyses, the error on spectro-
scopic redshifts were considered negligible with respect to that
on photometric redshifts.

A first approach to select photometric redshifts likely to be
at a given spectroscopic redshift zspec (hereafter known as the
ZPDF method) is based on individual photometric redshift prob-
ability distribution functions (PDFz) provided for each object in
the CFHTLS T0007 release. The lower and upper photometric
redshift estimation values zp− and zp+ given in the catalogue are
computed to enclose 68% of the area around the median value
(zPDF). Therefore, 68% of the galaxies at a given spectroscopic
redshift zspec should verify:

zp− < zspec < zp+. (1)

Based on the (zphot − zspec) statistics, we investigated three
other ways to perform the photometric redshift selection, given
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Fig. 4. Completeness (fraction of objects for which the photometric redshift is inside a given slice around the true redshift) of different galaxy
selection methods as a function of spectroscopic redshift and magnitude in the i′ band, for selections at a 1σ (68%) level. In red/blue, the selection
methods lead to over-/underestimate the number of objects. From top to bottom and left to right, the objects are selected using the PDZ errors
(ZPDF method), constant dispersions corresponding to σ1/(1+z) = 0.04 for i′ < 22.5 and σ1/(1+z) = 0.08 for i′ > 22.5 (cte method), a dispersion
computed as a zspec function (zfct method), and a dispersion computed as a (zspec, i′mag) function (zmfct method, used in the rest of the study, see
Fig. 5). The completeness is computed if there are at least 50 objects in the cell.

the cluster spectroscopic redshift: (i) assuming the common
Gaussian modelling with σz = σ0(1 + z) (hereafter known as
the cte method); (ii) assuming a Gaussian modelling with σz(z)
computed in consecutive spectroscopic redshift bins (hereafter
known as the zfct method); and (iii) computing the 68th per-
centiles in bins of redshifts and magnitudes (hereafter known as
the zmfct method).

We defined the completeness of a given method as the ratio
of the number of selected galaxies to the total number of galaxies
in a given (redshift, magnitude) bin. As the selections are at a 1σ
level, the completeness should be consistent with 68.2%. The
completeness computed as a function of magnitude and redshift
are shown by the four maps in Fig. 4.

In the case of the ZPDF method (upper left panel), we can
see that the selection leads to an inhomogeneous completeness
without a clear trend with redshift or magnitude. Except for some
regions, the completeness is generally lower than 68%, showing
that the confidence intervals coming from the PDFz are usu-
ally underestimated. The lack of homogeneity observed in the
completeness may be caused by a potential bias of the photomet-
ric redshifts with respect to the spectroscopic ones. In this case,
using the 68% confidence limits around the median of the PDFz
would lead to a photometric redshift window systematically
shifted with respect to the spectroscopic value.

The advantage of the three other methods, which are directly
computed from the (zphot − zspec) statistics, is that it is easy to
introduce a bias correction that appears to be non-negligible
in the present data set. Indeed, Fig. 3 clearly shows the pres-
ence of systematics in several redshift windows. In particular at
redshifts lower than ∼ 0.1, photometric redshifts are systemati-
cally overestimated, while the opposite trend occurs at redshifts
higher than ∼ 0.9. We quantify the bias b(zspec) as the median of
(zphot − zspec). By computing it in the (zspec, i′mag) plane we saw
that the bias depends mainly on the redshift; we thus computed
it as a function of zspec only in running bins of ∆z = 0.04 from
z = 0.01 to z = 1.31. We found that excluding or not the outliers
before computing the median did not change the bias estimate in
a significant way. The bias estimate and its error are shown by the
black line in Fig. 3. The resulting bias function was introduced
in the three methods described above (cte, zfct, and zmfct).

The completeness map corresponding to the cte method is
shown in the upper left panel of Fig. 4. We used a constant
dispersion σ0 = 0.04 for i′ < 22.5 and σ0 = 0.08 for i′ > 22.5
(as suggested in the T007 photometric redshift release explana-
tory document 2) and we included the bias. The corresponding
selection is the following:

−σ0(1 + zspec) < zphot − zspec − b(zspec) < σ0(1 + zspec). (2)
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We can see that the completeness is still not uniform: it is higher
than 68% for bright objects at low redshift and lower elsewhere,
in particular at high redshift. This may be due to the fact that the
dispersion is not simply evolving as (1 + z) with redshift. As an
example, we can see in Fig. 3 that the dispersion increases with
the redshift, but is also higher in the zspec < 0.1 region.

The completeness map corresponding to the zfct method is
shown in the lower left panel of Fig. 4. We estimated the disper-
sion σ(zspec) as a function of redshift, in running bins of ∆z =
0.04 from z = 0.01 to z = 1.31, by computing the normal median
absolute deviation (NMAD) in each bin, as σ(zspec) = 1.48
median |zphot − zspec − b(zspec)| and thus assuming Gaussianity.
The corresponding selection criteria is

−σ(zspec) < zphot − zspec − b(zspec) < σ(zspec). (3)

We can see that the completeness is still not homogeneous
but biased towards bright objects at every redshift. This occurs
because the dispersion is accurate where the number of objects
is higher, the completeness pattern thus follows the redshift evo-
lution of the median magnitude of the spectroscopic sample.
We, therefore, removed the incompleteness due to redshift evo-
lution of the dispersion but not that due to magnitude variation.
This method is still not satisfying for LF study because it may
artificially flatten the faint end slope.

Finally, the lower right panel of Fig. 4 shows the result
of the zmfct method. This method was designed to obtain the
expected 68% completeness map. We computed the dispersion
of the (zphot versus zspec) distribution using percentiles instead of
NMAD. This dispersion dn was defined as dn = Pn(|zphot − zspec −
b(zspec)|), Pn being the percentile of rank n. We computed it in
the (zspec, i′mag) plane, using running cells of size ∆(z, i′mag) =
0.1 × 0.5 if they contained at least 30 objects. In order to limit
the influence of catastrophic failures, we filtered out the objects
with dispersion values greater than 5 times the standard devi-
ation of the zphot − zspec − b(zspec) global distribution. We then
interpolated the data to obtain a function of (zspec, i′mag). The
dispersion d95, corresponding to 95% completeness, is shown in
Fig. 5; we note that the dispersion increases with redshift and
magnitude independently. Unfortunately, we do not have enough
spectroscopic data to constrain the dispersion for faint low red-
shift objects, as can be seen in Figs. 2 and 5. Finally, we checked
the completeness taking all objects for which

−d68(zspec, i′mag) < zphot − zspec − bias(zspec) < d68(zspec, i′mag).
(4)

The resulting completeness (lower right panel of Fig. 4) is indeed
flat and compatible with 68.2%. We, therefore, used this method
to define the widths of the photometric slices of our raw mem-
bership assignments. We also investigated the effects on cluster
luminosity functions of the three other selection methods in Sect.
6.2.1 and of the selection widths in Sect. 6.2.2.

For each cluster with redshift zclus we thus selected possible
member galaxies by taking all the objects satisfying

−d68(zclus, i′mag) < zphot − zclus − b(zclus) < d68(zclus, i′mag), (5)

where d68(zclus, i′mag) is defined at the cluster redshift and
changes according to the magnitude in the i′ band of each object
considered. We computed dispersions corresponding to 95%
completeness (d95) in the same way as the 68% complete ones.
As we used percentiles and did not assume Gaussianity, d95 is
approximately but not simply equal to 2 × d68.
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Fig. 5. Photometric redshift dispersion d95, computed as the 95th per-
centile of |zphot − zspec − bias(zspec)| in the (z, i′mag) plane. The dots
indicate the centres of the ∆(z, i′mag) = 0.1 × 0.5 cells used to com-
pute the dispersion (if they contain at least 30 objects). The continuous
black line shows the limiting magnitude we impose for the rest of the
study.

3.2.2. Defining the background fields

In order to take into account the contamination of the cluster
galaxy counts by foreground and background galaxies, we chose
to statistically subtract background galaxy counts for each clus-
ter. The selection of local or global background fields to estimate
the counts has been largely debated in the literature. Some differ-
ences may arise, on the one hand, from the fact that selecting a
region too close to the cluster can bias the counts because of cor-
related signal from filaments or enlarged cluster outskirts, and on
the other hand, because the clusters are embedded in the cosmic
web and thus can lie on intrinsically high or low density regions
compared to the whole field. Goto et al. (2002) and Popesso et al.
(2005) showed that, in their rich cluster samples, the differences
between the LF parameters obtained with the two methods were
not significant. However, Lan et al. (2016) found that their global
background estimate, computed using random fields of the same
aperture size as their cluster fields, tended to underestimate the
background level especially for low mass clusters. In this study
we thus chose to use local background fields enclosed in annuli
of 3−5 Mpc around the cluster centres (3 Mpc ∼ 2.5r500 for the
more massive cluster in our sample).

In some cases, the presence of groups in the periphery of the
clusters may lead to an overestimation of the counts in the back-
ground fields. For this purpose, we adopted a similar treatment
to that of De Filippis et al. (2011) and we ran the WAZP clus-
ter finder algorithm (Benoist et al. in prep.) in target mode on
each cluster position and redshift, down to a magnitude of i = 24
to detect structures that may contaminate the background (see
Fig. 6 for an illustration). These structures were masked in the
following analysis.

By masking, we do not take into account the possible pro-
jections along the clusters’ lines of sight and thus we may
overestimate the galaxy counts in the cluster fields. However,
the projected structures in cluster fields are less frequent than
the structures in the background field; therefore, not remov-
ing the structures in the background will bias the counts low.
Castignani & Benoist (2016) found that their membership assign-
ment was less biased when removing the structures in the
background, and Rozo et al. (2015) found that, in their rich
cluster sample, the correlated structures were contributing to
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Fig. 6. Example of a density map of a cluster 10 × 10 Mpc2 field,
constructed using a Gaussian kernel of width σ = 0.1875 Mpc. The
colourbar reflects the signal-to-noise ration (S/N). Only galaxies with
m < m∗ + 3 (or L > 0.06 L∗) are selected and the photometric red-
shift width depends on the galaxy magnitudes and is taken to ensure
68% completeness. The red contours indicate the structures detected by
WAZP, and the white ones show the masked regions. The green inner
circle shows 1 Mpc around the cluster X-ray centre and the dashed green
lines delimitate the local background field from 3 to 5 Mpc. NB: we can
see that this cluster is part of a superstructure.

approximatively 6% of the clusters’ richness. As we are work-
ing with relatively low mass clusters, for which projections are
expected to be rarer, we thus expect less than 6% contamination
on our galaxy counts from possible correlated structures along
the clusters’ lines of sight, and we therefore neglected this effect.

For each cluster, we computed the effective local background
area in Mpc2, taking into account the photometric masks and the
structure masks. We compared counts in the local background
fields to those obtained using the whole W1 field of 68 deg2,
taking into account the photometric masks but not the structures.
Figure 7 shows the distribution of the ratio of local to global
background galaxy densities when structures are discarded and
taken into account from the local background fields (respectively
in blue and red) and using galaxies brighter than m∗+1 (0.4L∗).
As can be seen, before removing the structures, the galaxy den-
sities in the local background fields are in good agreement with
the densities in the global field (< Σlocal/Σglobal >∼ 1). How-
ever, when the structures in the local fields are discarded, galaxy
densities become smaller than in the field on average . This is
because we estimated the density in the global field as the mean
density, which is sensitive to the presence of structures. The
density ratio distributions are approximatively log-normal and
their widths denote the sample variance due to large-scale struc-
tures. We can see that some clusters are located in intrinsically
underdense or overdense regions.

3.3. Defining the luminosity range

3.3.1. Identification of the brightest cluster galaxy

The luminosity of the BCGs has been shown to differ from
the extrapolation of the LF of the other cluster members at
high luminosity (Schechter 1976) and many authors have cho-
sen either not to include them in the calculation of the LF or to
treat them differently (see e.g. Hansen et al. 2005; Wen & Han
2015). We, therefore, investigated the luminosity distribution of
the BCGs separately and removed their contributions from the

Fig. 7. Histogram of the ratio between local and global back-
ground galaxy number densities. Global background refer to the whole
CFHTLS W1 field, whereas local backgrounds refer to annuli of
3–5 Mpc centred on the X-ray cluster positions. The distribution of the
ratio when structures are discarded from (taken into account in) the local
background fields is shown in blue (red). The solid lines indicate the
median values of the ratios.

non-BCG members LFs. By definition, no cluster galaxy can be
brighter, and thus we used the BCGs magnitudes as the bright
limits of our luminosity ranges.

We identified the BCG for each cluster as the brightest galaxy
in the apparent i′ band magnitude inside a projected radius of
400 kpc from the X-ray centre, having either a spectroscopic red-
shift zBCG, such as zBCG = zclus ± 0.004 · (1 + z) (with zclus the
mean cluster redshift) or no spectroscopic redshift but a photo-
metric redshift satisfying Eq. (5). Visual inspection confirmed
134/142 (>94%) BCGs selected with these criteria and allowed
us to identify the eight others. We present an example entry for
the BCG properties catalogue in Table 1.

Our BCG list was compared to the one of Lavoie et al. (2016;
hereafter XXL Paper XV) as we have 40 clusters in common.
We found different BCGs for 4/40 (10%) clusters. These dis-
crepancies correspond to cases were several bright galaxies are
present which makes the identification of the central galaxy dif-
ficult. The absolute magnitudes of the BCGs as a function of
redshift are shown by the red points in Fig. 8.

3.3.2. Limiting magnitudes

The determination of the limiting magnitude is crucial for studies
based on galaxy counts such as the luminosity functions. Pho-
tometric surveys are flux limited and if this effect is not taken
into account, it can produce a spurious decline of the luminos-
ity function at faint magnitudes. We defined the completeness
magnitude as the magnitude at which the completeness starts to
decrease. In general, completeness values are computed during
the survey calibration phase. In the case of the W1 field, the
completeness magnitudes at 80% for extended sources, mag80%,
are given by the CHTLS-T0007 release explanatory document
(Hudelot et al. 2012) and are 24.67 ± 0.14, 24.00 ± 0.10, and
23.69 ± 0.13 in the g′, r′, and i′ band, respectively.

As we use photometric redshifts in this study, we have to
take into account another source of incompleteness coming from
the photometric redshift catalogue construction because not all
of the objects from the photometric catalogue have a good pho-
tometric redshift estimation (computed in three bands or more,
with a χ2/do f value lower than 100 and a galactic type of SED).
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Table 1. Example entry for the BCG properties catalogue of the XXL galaxy clusters.

Name RA Dec z class i′mag,BCG RABCG DecBCG zBCG

XLSSC 115 32.681 −6.588 0.0431 1 14.048 32.6799 −6.5797 0.0429

Notes. Full table is available at the XXL Master Catalogue browser (http://cosmosdb.iasf-milano.inaf.it/XXL) and at the Centre de
Données astronomiques de Strasburg (CDS; http://cdsweb.u-strasbg.fr). Column 1 indicates the XXL cluster’s name, Cols. 2, 3, and 4
indicate the position and redshift of the X-ray cluster center, Col. 5 indicates the apparent magnitude of the BCG in the i′ band, Cols. 6, 7, and 8
indicate the position and redshift of the BCG. When no spectroscopic redshift is available for the BCG, we used instead the photometric redshift
(phot).
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Fig. 8. Redshift evolution of the luminosity range in which the LF
are fitted. The red dots show the absolute magnitude of the BCGs of
each cluster, whereas the blue ones indicate the limiting magnitude we
imposed. A fiducial model (see end of Introduction) for the evolution of
M∗ is indicated by the black dashed line for comparison.

However, we find that this incompleteness is less than 3% for
every magnitude bin and we neglect it in our analysis.

As the low redshift/faint magnitude parameter space region
is not well covered by spectroscopic surveys, the dispersion of
the photometric redshifts in this region is not constrained, as can
be seen from Figs. 2 and 5. Therefore, we defined the limiting
magnitude to be mlim = 20 at z < 0.1, then linearly growing
between 0.1 < z < 0.3, up to mag80% at z > 0.3, as shown in
Fig. 5. According to our fiducial evolution model for m∗, this cut
allows us to include galaxies with m > m∗ + 3 (or L < 0.06 L∗)
up to z = 0.6.

We converted the limiting magnitudes mlim(z) in absolute
magnitudes following Mlim(z) = mlim(z) − µ(z) − max(Kcorr)(z)
with µ the distance modulus and Kcorr the k-correction. The
model taken for the k-correction is the one used by LEPHARE to
compute the absolute magnitudes and depends on galaxy type.
To be conservative we took the maximum value of the Kcorr
at each redshift, corresponding to that obtained for elliptical
galaxies. The limiting absolute magnitude for each cluster, as
a function of redshift, is shown by the blue points in Fig. 8. We
can see that below z = 0.67 the luminosity range is always wider
than ∼ 3 mag.

3.4. Counting galaxies

3.4.1. Galaxy counts in absolute magnitude

As LEPHARE uses SED modelling to compute absolute magni-
tudes, in order to have the absolute magnitude constrained by the
observational data at λrest we need to have λ′u < (1 + z)λrest < λz′ ,
with λ′u and λz′ the wavelengths of the u′ and z′ filters and z the

redshift of the object considered. This condition is satisfied up
to high redshift for the bluest bands. However, redder bands are
known to be more representative of the stellar mass because they
are less affected by star formation. This is why we chose to use
the rest frame r′ band, which is constrained up to z ∼ 0.67.

We assumed that each cluster member is at the mean red-
shift of the cluster. We, therefore, used the value of the absolute
magnitude provided by LEPHARE and computed with the pho-
tometric redshift estimation, and we corrected it by the redshift
distance modulus offset.

After selecting the potential member galaxies for each clus-
ter using their photometric redshifts and the method described
in Sect. 3.2.1, we statistically removed the contribution from
the background galaxies. To do this, for each cluster field we
defined the probability Pout(i′ mag) of not being a cluster mem-
ber as the galaxy number density ratio of the background to the
cluster fields, as a function of apparent magnitude. The asso-
ciated probability density functions were constructed using a
Gaussian kernel density estimator with a standard deviation of
0.5 mag. We then assigned each potential member a random
number n between 0 and 1, and compared it to the probabil-
ity Pout(i′ mag) at the galaxy apparent magnitude. If n < Pout,
the galaxy was discarded from the counts. This procedure was
repeated 100 times: the counts were taken as the average values
and their statistical error contribution were taken as the standard
deviation.

Finally, the counts were made inside projected r500 radii and
in absolute magnitude bins of 0.5 mag. The number of galaxies
per bin was normalised by the bin size and cluster area to obtain
the galaxy surface density φ, expressed in Ngal mag−1Mpc−2. The
associated error in each bin ∆φ j was defined as the quadratic
sum of the Poissonian and the statistical errors on the counts,
normalised by the bin size and cluster area.

3.4.2. Composite luminosity functions

In order to investigate the dependence of the LF with cluster
properties and enhance the S/N, we chose to create compos-
ite cluster luminosity functions (CLFs). The stacking procedure
was made using the method described in Colless (1989) in order
to obtain CLFs extending up to the faintest magnitude limits of
our sample, and thus use all available data, as recommended by
Popesso et al. (2005). We define the following parameters:

– The galaxy surface density in the jth magnitude bin of the
composite luminosity function

φ j =
φ0

n j

∑

i

φi j

φi0
, (6)

where φi j is the galaxy surface density in the jth magnitude
bin of the ith cluster, n j is the number of clusters contributing
to the jth magnitude bin, φi0 is the normalisation of the
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ith cluster, and φ0 is the mean normalisation φ0 = 〈φi0〉i
(whereas in Colless 1989, φ0 =

∑
i φi0). The normalisation

φi0 is defined as the sum of the galaxy surface densities in all
the bins brighter than a limiting magnitude. This magnitude
is tuned to be brighter than the limiting magnitudes of all
the individual LFs in the stack. Possible clusters for which
φi0 = 0 are not included in the CLF.

– The statistical error associated with φ j

δφ j =
φ0

n j


∑

i

(
∆φi j

φi0

)2
1/2

, (7)

where ∆φi j = ∆φ j for the ith cluster.
Another source of errors comes from the intrinsic scatter
between individual cluster LFs inside the CLF. To estimate this
error we computed the CLF counts for 1000 resamplings of the
stack using bootstrap. The final CLF counts were defined as
the medians of the 1000 CLF realisation values, and the stan-
dard deviations σ j were used as the CLF intrinsic scatter per
magnitude bin indicators.

The final errors in each magnitude bin of the CLF were taken
as the quadratic sums of the statistical errors and the intrinsic

scatter,
√
δφ2

j + σ2
j . In general, the statistical errors are dominant

in the bright part of the CLFs and the intrinsic scatter is dominant
in the faint part.

3.4.3. Definition of the cluster richness

In the following analysis, we investigate the LF dependences
on the general properties of the clusters. For this purpose we
chose to use the richness, which is a quantity naturally linked
to the LF and a cluster mass indicator. The richness is a
very promising cluster mass proxy (see e.g. Rozo et al. 2009;
Andreon & Bergé 2012) and has the advantage of being directly
derived from the same photometric galaxy catalogue used for LF
determination.

Precise membership assignment for our X-ray cluster sample
is beyond the scope of this paper, but we instead wish to quan-
tify the galaxy excess at the positions of extended X-ray source
detections. Therefore, richness values λr were computed using
the differences in galaxy density numbers between the cluster
and background fields and their associated errors ∆λr were taken
as Poissonian errors

λR = π · R2 · (Σcf − Σbf) and ∆λR = π · R2 ·
(
Σcf√
Ncf

+
Σbf√
Nbf

)
,

with R the projected radius inside which the cluster field is
defined, Σcf and Σbf the cluster and background field galaxy num-
ber densities, and Ncf and Nbf the cluster and background field
galaxy number counts.

To compute richness values, we used the redshift and mag-
nitude dependent photometric redshift dispersion presented in
Sect. 3.2.1 and we only selected galaxies with m < m∗ + 1 (or
L > 0.4 L∗) in order to be complete up to z ∼ 1 and enhance the
density contrast with respect to the field. Various aperture radii
were explored, as we need to make a compromise between large
radii that introduce interlopers and noise and small ones that are
sensitive to X-ray–optical centring offset. Finally, we chose to
use a constant physical radius to have a mass proxy indepen-
dent from scaling laws, with a size of 0.5 Mpc, compared to the
median r500 of our sample (∼0.6 Mpc). In the rest of the study,
the richness is denoted by λ0.5 Mpc.

4. Luminosity function fitting procedure

4.1. Parametrisation by a Schechter function

In order to characterise the CLFs and to compare them to other
studies, we parametrised them by Schechter functions (Schechter
1976)

φ(L)dL = φ∗
( L

L∗

)α
exp

(
− L

L∗

) dL
L∗

, (8)

and as L
L∗ = 100.4(M∗−M) the function in terms of absolute

magnitude can be expressed as

φ(M)dM = 0.4ln(10)φ∗100.4(M∗−M)(α+1)e−100.4(M∗−M)
dM (9)

with φ∗ the characteristic number density, M∗(L∗) the charac-
teristic absolute magnitude (luminosity), and α the faint end
slope.

Several authors, e.g. Popesso et al. (2005), have found that
luminosity and stellar mass functions are best described by
double Schechter functions in order to model separately the
behaviour of their bright and faint parts. However, we do not
reach sufficiently faint magnitudes to need this double parametri-
sation and consider a single Schechter component sufficient to
describe our data.

The contribution from the BCGs was removed and magni-
tude bins with less than 4.5 clusters contributing were not taken
into account in the fit. Unless specified, the parameters φ∗, M∗,
and α were set free and constrained at the same time.

4.2. Computation of parameters probability density functions

In order to properly define the errors on our parameters, we
chose to estimate their probability density functions (PDFs). To
do so, we computed χ2 values on φ∗ − α − M∗ 3D grids. Due
to the shape of our parameter likelihood, the values are sensi-
tive to the so-called volume effect; depending on the statistical
approach we used to obtain the parameter’s PDFs, we do not
get the same results. In our case, as we use a grid that does not
sample the likelihood profiles finely enough, we used marginali-
sation to obtain the PDF of the parameters. We thus marginalised
over one parameter to compute the error ellipses around the other
two, and marginalised over two parameters to obtain the PDF of
the other one.

The sizes of the grids were chosen to encompass the 99%
likelihood contours, and we verify that if this criterion is satisfied
the choice of the size does not affect the results. Also, the size of
the cells has to be small enough so that the numerical errors can
be neglected.

In the rest of the study we chose to use the median of
the PDF as our statistical approach to get discrete values from
the full likelihoods, as it is stable and not very sensitive to the
grid sampling (we discuss the choice of statistical estimators
in Sects. 6.1 and 7.1). The reported errors on the parameters
are then the 16th and 84th percentiles. The grids were cho-
sen to contain 101 × 101 × 101 points and to be bound by
φ∗ = [0, 125], α = [−3.5, 3.5], and M∗R = [−32,−18] when
binning in redshift and φ∗ = [0, 35], α = [−1.75,−0.25], and
M∗R = [−32,−19] when binning in richness. Due to the low
S/N and number of points of the CLF in the highest redshift
bin (see Sect. 5) the parameter likelihood was sampled only up
to 95%.
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Fig. 9. Composite luminosity functions including all clusters with
a redshift lower than 0.67 (top panel), plus a richness higher than 6
(middle panel) or 10 (bottom panel). The black points represent the
counts, whereas the blue regions show the 68% c.i. around the median
parametrised composite luminosity functions (cyan lines). The red nor-
malised histograms show the magnitude distributions of the BCGs of
all clusters included in each bin. The grey points show the counts when
there are fewer than 4.5 clusters contributing, and are not taken into
account in the fitting procedure.

4.3. Construction of parametrised composite
luminosity functions

The shapes of the parametrised composite cluster LFs were
drawn by sampling the φ∗ − α − M∗ space, according to the χ2

values. We computed 1000 realisations of the parameter set. We
then used the median of the resulting LFs as the parametrised
CLF profile, and we drew the 68% confidence intervals around
it using percentiles.

5. Composite luminosity functions and
dependence on cluster parameters

Composite luminosity functions were computed for the entire
cluster sample with different selections. The methodology used
is described in Sects. 3 and 4. Galaxies were selected using pho-
tometric redshift dispersion ensuring 95% completeness (d95%,
see Eq. (5) and following text). The counts were made in pro-
jected r500 in order to sample the same region for each cluster
to avoid mixing radial dependences with other effects (see e.g.
Hansen et al. 2005, Popesso et al. 2006, Barkhouse et al. 2007).
We restricted the study to the clusters with redshift z < 0.67
in order to have accurate estimations of the absolute magni-
tude in the rest frame r′ band (see Sect. 3.4.1) and treated the
other clusters separately. In the following sections, we analyse
the composite luminosity function of the general sample (z <
0.67) and investigate the dependence of the BCG and non-BCG
luminosity distributions with both redshift and richness.

5.1. Composite luminosity function of the general sample

The composite luminosity function including all clusters up to
z = 0.67 is shown in the top panel of Fig. 9. The black points
represent the counts, whereas the blue regions show the 68%
confidence intervals (c.i.) around the median parametrised com-
posite luminosity function indicated by the cyan line. The red
normalised histogram shows the distribution of the BCGs. The
grey points show the counts when there are fewer than 4.5 clus-
ters contributing, and are not taken into account in the fitting
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Fig. 10. Comparison of our characteristic magnitude M∗ and faint end
slope α values obtained for the z < 0.67 sample with different richness
cuts (black circle, diamond, and square), with those found in the lit-
erature. The small cross indicates the field values from Blanton et al.
(2001), whereas the other points indicate the values for composite lumi-
nosity functions from Goto et al. (2002), Popesso et al. (2006), Rudnick
et al. (2009), and Martinet et al. (2015), including all galaxies (black),
only red sequence galaxies (red), or only blue cloud galaxies (blue). The
high redshift samples are indicated by empty markers. Because of the
good agreement between the bands used by the different studies, we did
not apply any correction. The values are corrected to our cosmology.

procedure. The corresponding CLF parameters are presented in
the first row of Table 5. Within our magnitude range, we can see
that, as expected, the composite luminosity function is well fitted
by a single-component Schechter function.

Selecting all clusters with z < 0.67 includes very poor clus-
ters, and we tested whether this affects the CLF by applying
richness cuts at λ0.5 Mpc = 6 and λ0.5 Mpc = 10. These limits
correspond to the first and second richness bins discussed in
the following section. The resulting CLFs are shown in the
middle and bottom panels of Fig. 9 and their parameters are pre-
sented in Table 5. We can see that when the poorest clusters are
discarded, the faint end slope becomes shallower, the character-
istic magnitude fainter, and the amplitude higher (following the
degeneracy between the three parameters). The strong effect on
the CLF caused by the poor clusters is driven by the fact that
they are up-weighted by the Colless stacking method. Indeed, in
Eq. (6), the individual LFs are weighted by the inverse of their
normalisation: 1/φi0.

In Fig. 10, we compared our parameter values with those
found in the literature and presented in Table 2, after correct-
ing to our cosmology. Unfortunately, the φ∗ values are often not
mentioned or computed with different units and we thus lim-
ited our comparison to the values of M∗ and α, even though the
three parameters are degenerate. The M∗ values from the litera-
ture were obtained in different red bands (R from VLT/FORS2
for Martinet et al. 2015 and r from SDSS for the others), but we
checked that the differences in absolute magnitude were small
enough that they could be neglected.

We note that there is a disparity among the values of the
CLF parameters even when limited to the same galaxy popula-
tion. The origin of the diversity may come from the different
cluster samples and/or from the different methods used to con-
struct the CLF. We also have to keep in mind that the parameters
are positively correlated, which can explain the tendency to
have fainter M∗ with shallower α. We can see that our M∗
values are compatible within the errors with the values from
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Table 2. Schechter parameters M∗ and α of field LF and CLFs from the literature.

Reference Gal. type Radius Method Nclus Ssample z M∗ α

Blanton et al. (2001) All field spec SDSS z < 0.2 −21.6±0.03 −1.20±0.03
Goto et al. (2002) All 0.75 Mpc phot 204 SDSS CE 0.02 < z < 0.25 −22.21±0.05 −0.85±0.03
Goto et al. (2002) All 0.75 Mpc spec 75 SDSS CE 0.02 < z < 0.25 −22.31±0.13 −0.88±0.07

Popesso et al. (2006)a,b All r500 phot 69 RASS+SDSS 〈z〉 = 0.1 −20.84±0.13 −1.05±0.07
Popesso et al. (2006)a,c All r500 phot 69 RASS+SDSS 〈z〉 = 0.1 −21.16±0.26 −1.26±0.12
Rudnick et al. (2009) RS 0.75 Mpc colour 167 SDSS z < 0.06 −21.21±0.24 −0.78±0.08
Rudnick et al. (2009) RS 0.75 Mpc colour 16 EDisCS 0.4 < z < 0.8 −21.51+0.23

−0.14 −0.36+0.16
−0.08

Martinet et al. (2015) RS 1 Mpc photo-z+colour 16 DAFT/FADA 〈z〉 = 0.58 −22.4±0.2 −0.80±0.14
Martinet et al. (2015) BC 1 Mpc photo-z+colour 6 DAFT/FADA 〈z〉 = 0.62 −22.4±0.5 −1.32±0.36

Notes. (a)These values were obtained using h0 = 1; we converted them to our cosmology in Fig. 10, (b)These values correspond to the bright part of
a LF fitted using a double Schechter function (dS), (c) These values correspond to the bright part of a LF fitted using a Schechter plus an exponential
function (S+e).
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Fig. 11. Illustration of the CLF bin limits. Measurements for individual
clusters are represented by the grey error bars. Bin delimitations are
indicated by the red dashed lines. Top panel: richness in 0.5 Mpc as
a function of redshift, with a minimum richness of 6. The black dots
indicate the median values of the richness in each redshift bin. Bottom
panel: redshift as a function of the richness in 0.5 Mpc, with a maximum
redshift of 0.67. The black dots indicate the median redshift value in
each richness bin.

Martinet et al. (2015) and Goto et al. (2002), and partially with
the value from Popesso et al. (2006) when fitted with a Schechter
function plus an exponential function (S+e). Our faint end slope
values are compatible with the field value from Blanton et al.
(2001), the values from Popesso et al. (2006), and the value from
Martinet et al. (2015) found for blue cloud galaxies. We note
that our faint end slopes are steeper than those obtained with
red sequence galaxies. Finally, considering the large disparity in
the α and M∗ values reported in the literature, our values are
comparable to those found in previous studies.

5.2. Evolution of the galaxy luminosity distributions with
redshift and richness

5.2.1. Binning choice and parameter evolution fitting
procedure

We studied the evolution of the CLF and BCG distributions with
both redshift and richness by binning our cluster sample. Bins
in richness were chosen in order to contain roughly the same
number of objects, and bins in redshift were defined in order to
have the median redshift increasing by approximately the same

amount. The top panel of Fig. 11 shows the richness as a function
of redshift, with bin limits and median richness values in each
bin. The opposite is shown in the bottom panel. Further informa-
tion on the bins can be found in Table 5. We applied a redshift
cut at z = 0.67 when binning in richness, and a richness cut at
λ0.5 Mpc = 6 when binning in redshift in order to remove possible
contamination by ultra poor or misclassified clusters. However,
we found that our results are unchanged, albeit noisier, if we do
not apply the richness cut.

Composite luminosity functions in increasing redshift and
richness bins are shown respectively in the top and bottom panels
of Fig. 12. The black points represent the counts, whereas the
blue regions show the 68% c.i. around the median parametrised
composite luminosity function, indicated by the cyan line. The
red normalised histogram shows the distribution of the BCGs.
The grey points show the counts when there are fewer than 4.5
clusters contributing, and are not taken into account in the fitting
procedure. The corresponding CLF parameters are presented in
Table 5.

As we aim to investigate the evolution of the CLF and BCG
distribution parameters with redshift and richness separately, we
need to consider the steep selection function of our X-ray clus-
ter sample. As can be seen in Fig. 11, richness and redshift are
indeed linked: we tend to detect richer clusters at high redshift
and poorer ones at lower redshift because of biases affecting
X-ray flux limited samples arising from selection and volume
effects (see Giles et al. 2016, XXL Paper III, for details on selec-
tion bias in XXL). Therefore, to take into account the biases and
distinguish between redshift and richness effects, we fitted the
two dependences conjointly. For this purpose, we assumed the
evolution model

Y = a · log(1 + z̃) + b · log(̃λ0.5 Mpc) + c, (10)

where Y is a parameter of the CLF or BCG distribution computed
in a certain bin; z̃ and λ̃0.5 Mpc the median redshift and richness
of the same bin; and a, b, and c the evolution parameters. In this
way we hypothesised that the median redshift and richness of a
cluster subsample were the key parameters to describe the CLF
and BCGs distribution in that subsample.

In order to constrain the evolution parameters a, b, and c we
combined the values from the redshift and richness bins, and thus
fitted 10 data points. We symmetrised the error bars and assumed
∆log(φ∗) = ∆φ∗/(φ∗ · ln(10)), but we did not take into account
the bin widths. Finally, we fitted the model of Eq. (10) using
the Curve_fit function from the Scipy.optimize PYTHON
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Fig. 12. Composite cluster luminosity functions in increasing redshift bins, with a minimum richness of 6 (top panel) and increasing richness bins,
with a maximum redshift of 0.67 (bottom panel). The black points represent the counts, whereas the blue regions show the 68% c.i around the
median parametrised composite luminosity functions (cyan lines). The red normalised histograms show the magnitude distributions of the BCGs
of all clusters included in each bin. The grey points show the counts when there are fewer than 4.5 clusters contributing, and are not taken into
account in the fitting procedure.

library, which uses a Trust Region Reflective algorithm and
returns the best fit evolution parameters and their covariance
matrix, assuming Gaussian likelihood.

5.2.2. Evolution of the non-BCGs luminosity distribution with
redshift and richness

We studied the luminosity distribution of the non-BCG cluster
members through their composite luminosity functions, shown
by the black points and blue shaded regions in Fig. 12.

The Schechter fit parameters from the CLFs computed in
increasing bins of redshift (left) and richness (right) are shown
in Fig. 13, where we can see (from top to bottom) the evolution
of the amplitude φ∗, the faint end slope α, and the character-
istic magnitude M∗R. The blue points show the CLF parameters
obtained when the faint end slope is set free.

For each parameter we combined the two data sets and fitted
the model from Eq. (10). The resulting best fit evolution parame-
ters and their 1σ errors, along with the corresponding goodness
of fit parameters Q (probability of obtaining by random chance a
χ2 value equal to or greater than the one we obtained4) are listed
in Table 3. We represent these evolutionary models by the blue
shaded regions in Fig. 13 by fixing the richness or redshift at the
sample median values (z = 0.3 and λ0.5 Mpc = 13). These regions
thus show the evolution we would expect if the clusters were all
at redshift z = 0.3 but had different richness (left) or if the clus-
ters all had the same richness λ0.5 Mpc = 13 but were at different
redshifts (right).

4 Q is defined for a certain χ2 value as Q = 1 − 1
Γ(0.5 ndof ) ×∫ χ2

0
t0.5 ndof−1 e−tdt, with ndof the number of degrees of freedom and Γ

the gamma function.

Table 3. Constraints on the evolution of the CLF parameters (see model
of Eq. (10)) and associated goodness of fit parameters Q4

a b c Q

log(φ∗) −0.4 ± 1.9 0.8 ± 0.4 0.3 ± 0.4 0.85
α −1.3 ± 1.8 0.4 ± 0.3 −1.4 ± 0.2 0.87
M∗R −0.1 ± 4.9 −0.2 ± 1.2 −22 ± 1 0.98

We can see that the amplitude φ∗ increases with richness
(at 2σ) and a hint that the faint end slope α becomes shallower
with richness (at 1.3σ). Our data are compatible with no redshift
evolution for all the CLF parameters, and no richness evolution
for the characteristic magnitude M∗R.

Because the faint end slope values are compatible with no
redshift evolution and the richness evolution has a low signif-
icance, we can fix the value of α to see if we obtain better
constraints on the other two parameters, as is often done in the
literature. We thus fixed the faint end slope to a value of −1 and
repeated the same fitting procedure as before. The M∗ and φ∗
values we obtained are shown by the red data points and lines in
Fig. 13 and presented along with their associated goodness of fit
parameters in Table 5. We can see that the values obtained with
the faint end slopes fixed or free to vary are compatible in the
redshift bins but not in the richness bins. In the low richness bins
the amplitude is higher and the characteristic magnitude fainter
when the faint end slope is fixed. This is due to the richness evo-
lution of the faint end slope, which is steeper than −1 in these
bins. When the faint end slope is fixed, the other two parame-
ters thus evolve in order to conserve the integrated luminosity.
The errors on φ∗ and M∗R are reduced when α is fixed; how-
ever, the comparison of the goodness of fit parameters indicates
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Fig. 13. Parameters of the composite cluster luminosity functions computed in increasing bins of redshift (left panel) and richness (right panel).
From top to bottom, the plots show the normalisation φ∗, the faint end slope α, and the characteristic magnitude M∗

R. The vertical error bars indicate
the 68% c.i., whereas the horizontal ones reflect the bin size. The blue (red) points indicate the results when the faint end slope is free (fixed). The
shaded blue regions show the evolution models we constrained from Eq. (10) at fixed richness (λ0.5 Mpc = 13, left panel) and redshift (z = 0.3, right
panel). The dashed black line shows a fiducial model for the evolution of M∗; the black circles indicate the model values at the median redshifts of
the richness bins.

that setting α = −1 is not a good description of the CLF of poor
clusters.

We compared our results to the fiducial M∗ evolution model
used through this study. It is shown by the black dashed line and
the black open circles in Fig. 13. Although a scenario without
evolution is not excluded, we can see that the data are compat-
ible on average with the fiducial evolution model with an offset
of ∼0.5 mag (the measured values of M∗ being brighter). How-
ever, there is a mild tension at high redshift and at low richness
where our values of M∗ are respectively too faint and too bright
compared to the fiducial model. If statistically meaningful, this
would indicate that the characteristic luminosity of the overall
galaxy population in the high redshift and low richness clusters
in our sample are not very well represented by the passive evo-
lution of an elliptical galaxy with a burst of star formation at a
redshift of 3. We discuss this further in Sect. 7.3.

5.2.3. Evolution of the BCGs luminosity distribution with
redshift and richness

The brightest cluster galaxies and the central galaxies in general
are known to follow a different distribution compared to the other
galaxies and to be better represented by a Gaussian function (see
e.g. Hansen et al. 2005, 2009; De Filippis et al. 2011; Wen &
Han 2015).

Here, we investigate the BCG luminosity distribution in our
cluster sample and its evolution with richness and redshift. We
first tested the Gaussianity of the distributions and then studied
the evolution of their parameters with richness and redshift.

The distribution of the BCGs in each bin is represented
by the red histograms in Figs. 9 and 12. We can see that in
some cases the distributions seem quite irregular. We tested the
null hypothesis that they follow Gaussian distributions using
the D’Agostino and Pearson’s test, based on skew and kurtosis

information of the samples. According to this test, the distribu-
tion of the BCGs from all the clusters with a redshift z < 0.67
is very unlikely Gaussian (the p-value is 9 × 10−4). We found
the same conclusion for the poorest clusters: z < 0.67 & λ < 6
(p-value = 0.09). We concluded that a Gaussian function is not
always a good approximation for the BCG distributions in our
sample when poor clusters are included. Therefore, we chose to
use the median and the 16th and 84th percentiles to describe the
distributions rather than the mean and standard deviation.

The parameters of the BCGs distributions computed in
increasing bins of redshift (left) and richness (right) are shown
in Fig. 14. The median BCG magnitude is shown in the top pan-
els and the scatter of the BCG magnitude distributions is shown
in the bottom panels. In both cases, the vertical error bars indi-
cate the 68% c.i. and were computed using bootstrap, whereas
the horizontal error bars reflect the bin sizes.

To evaluate the evolution of the BCG magnitude distribu-
tions and take into account the selection function effects, we
again combined the two data sets and fitted the model from
Eq. (10). The resulting best fit evolution parameters and their 1σ
errors, along with their corresponding goodness of fit parameters
are listed in Table 4. We represented these evolutionary models
by the blue shaded regions in Fig. 14 by fixing the richness or
redshift at the sample median values (z = 0.3 and λ0.5 Mpc = 13).
These regions thus show the evolution we would expect if the
clusters were all at redshift z = 0.3 but had different richness
(left) or if the clusters all had the same richness λ0.5 Mpc = 13 but
were at different redshifts (right).

We can see that our data are compatible with the median
BCG magnitude getting brighter with both redshift and richness
(at respectively 4 and 3σ). There is also a hint that the scatter
of the distribution decreases with redshift (at 1.5σ) while being
compatible with staying constant with richness. These evolutions
are not consistent with a pure passive evolution model. The low
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Fig. 14. Parameters of the brightest cluster galaxy (BCG) magnitude
distributions, computed in increasing bins of redshift (left panel) and
richness (right panel). Top panel: median BCG magnitude. Bottom
panel: symmetrised scatter of the BCG distributions around the median
values. The shaded blue regions show the evolution models we con-
strained from Eq. (10), at fixed richness (λ0.5 Mpc =13, left panel) and
redshift (z = 0.3, right panel). The vertical error bars indicate the 68%
c.i. obtained from bootstrap, whereas the horizontal error bars reflect
the bin sizes.

Table 4. Constraints on the evolution of the BCGs distributions
(see model of Eq. (10)) and associated goodness of fit Q4.

a b c Q

M̃BCG −2.8 ± 0.7 −0.6 ± 0.2 −22.2 ± 0.1 0.04
log(σ(MBCG)) −0.9 ± 0.6 −0.2 ± 0.2 0.0 ± 0.2 0.52

and moderate values of the goodness of fit parameters may indi-
cate that the redshift and mass (through richness) are not the only
parameters describing the evolution of the BCGs luminosities.
This is consistent with the study of XXL Paper XV, based on
the XXL-100-GC sample, where the authors found that the rela-
tion between clusters and BCGs masses depends on the clusters’
dynamical state.

The scatter of the BCGs magnitude distributions σ(MBCG)
found is ∼ 0.6 mag for poor clusters and ∼ 0.4 mag for rich clus-
ters (equivalent to respectively σ(log LBCG) ∼ 0.25 and σ(log
LBCG) ∼ 0.15). Hansen et al. (2009) also studied the evolu-
tion with richness (and mass) of the BCGs median luminosity
and scatter in their low redshift cluster sample. They found that
the BCG luminosities increased with the richness (and mass),
while the scatter of the distribution decreased. Their scatter
values, σ(log LBCG) ∼ 0.23 for the poorest clusters and σ(log
LBCG) ∼ 0.17 for the richest clusters, are completely consistent
with our findings. Wen & Han (2015) found a BCG magnitude
scatter value of 0.36 mag in their study of a large sample of rich
SDSS clusters, which is again consistent with what we obtained
for our richest clusters.

We conclude that the BCG luminosities is an increasing
function of both the redshift and richness, and find a hint
that the diversity of BCG luminosity among clusters decreases
predominantly with cluster redshift.

6. Study of the systematics

As we have seen, the luminosity function parameters found in
the literature vary from one study to another. There are differ-
ent plausible explanations for this disparity, and in order to make

physical interpretations, we first need to identify, characterise,
and reduce possible systematics. In this section we analyse two
main sources of systematic effects affecting the luminosity func-
tion measurements, one related to the statistical choice used to
obtain discrete LF parameters values and the other related to the
way galaxies are selected. We discuss their implications further
in Sect. 7.1.

6.1. Effects induced by the statistical estimators

We investigated different statistical choices for extracting dis-
crete parameter values from the likelihood and tested their
stability. The statistical properties tested come from the full like-
lihood (the best fit and the value corresponding to the maximum
likelihood), from the PDFs (the mode, median, and mean), and
from the Schechter fit of the median luminosity profile. The best
fit value was obtained using the Curve_fit function from the
Scipy.optimize PYTHON library, which uses a Trust Region
Reflective algorithm, whereas the value corresponding to the
maximum likelihood was computed using φ∗ −α−M∗ 3D grids,
which is why those two values can differ.

Figure 15 illustrates the composite luminosity function fit-
ting procedure for a sample of 121 clusters (general sample
in Sect. 5). The 2D marginalised likelihoods of the Schechter
fit parameters and the associated luminosity profile are shown
in the four left panels, whereas the PDF of the Schechter fit
parameters after marginalisation are shown in the three right
panels. The different statistical values are indicated in the 2D
marginalised likelihoods (respectively PDFs) by the following
markers: black crosses (dotted black lines) for the best fit; black
dots (black lines) for the maximum likelihood; blue points, red
circles, and green plus signs (blue, red, and green lines) for the
PDF mean, median, and mode; and black circles (dashed lines)
for the Schechter fit of the median luminosity profile.

We can see that the shapes of the contours in the 2D like-
lihood plots can be roughly approximated by ellipses, while the
PDFs can be roughly approximated by Gaussian functions. For
this sample, the different statistical values are consistent with
each other and hardly distinguishable in the plots.

Figure 16 illustrates again the composite luminosity function
fitting procedure, but for a sample of 26 poor clusters (low-
est richness sample in Sect. 5). For this sample, the statistical
errors are larger and the magnitude range a bit smaller than for
the larger sample, as can be seen in the luminosity profile plot.
The ‘volume effect’ is more pronounced. This causes the con-
tours of the 2D marginalised likelihoods and the PDFs to be
much broader, and the approximation by ellipses and Gaussian
functions is no longer possible. For this sample, the different
statistical values give different values.

This section highlights that even with the same data it is pos-
sible to obtain very different parameter values, albeit compatible
considering the errors, depending on the statistical choice used
to obtain discrete values. This is true in particular in the case of
a low S/N sample or a sample with a narrow magnitude range
(e.g. at high redshift).

6.2. Effects induced by the different galaxy selections

6.2.1. Effects of photometric redshift selection methods

As we show in Sect. 3.2.1, the usual photometric redshift
selection methods lead to redshift and magnitude-dependent
completeness. However, the impact of these redshift and
magnitude-dependent completeness values on the LFs shapes
is not straightforward because we are not measuring absolute
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Table 5. Parameters of the composite luminosity functions for cluster selection as stated in the first column.

n z̃ λ̃ M̃500,scal φ∗ α M∗R Q φ∗αfixed M∗R,αfixed Qαfixed

z < 0.67 121 0.30 11.9 1.00 8+2
−2 −1.22+0.06

−0.06 −22.6+0.3
−0.4 0.99

z < 0.67 and λ > 6 95 0.32 13.5 1.14 11+2
−2 −1.13+0.05

−0.05 −22.4+0.2
−0.2 0.99

z < 0.67 and λ > 10 71 0.37 17.1 1.27 14+2
−2 −1.06+0.05

−0.06 −22.2+0.2
−0.2 0.97

λ > 6 and 0.00 < z < 0.25 26 0.14 9.9 0.75 10+4
−4 −0.98+0.14

−0.14 −22.1+0.4
−0.6 0.99 10.4+0.8

−0.8 −22.1+0.3
−0.2 0.99

λ > 6 and 0.25 < z < 0.35 28 0.30 13.5 1.15 15+3
−4 −1.05+0.07

−0.07 −22.1+0.3
−0.3 0.95 16+1.6

−0.8 −21.9+0.1
−0.2 0.97

λ > 6 and 0.35 < z < 0.47 24 0.43 18.1 1.37 13+4
−4 −1.05+0.14

−0.14 −22.3+0.3
−0.4 0.97 14.4+0.8

−1.6 −22.3+0.2
−0.2 0.98

λ > 6 and 0.47 < z < 0.67 17 0.55 15.5 1.14 14+9
−6 −0.91+0.28

−0.28 −22.3+0.6
−0.8 0.98 12.8+1.6

−1.6 −22.4+0.3
−0.3 0.99

λ > 6 and 0.67 < z 12 0.88 24.6 2.55 29+31
−16 −0.77+1.19

−0.91 −21.8+0.7
−0.8 0.36 27.2+22

−13 −22.1+0.6
−0.6 0.60

z < 0.67 and λ < 6 26 0.27 4.4 0.64 3+4
−2 −1.27+0.18

−0.12 −22.5+1.2
−2.2 0.92 9+2

−1 −21.2+0.5
−0.5 0.63

z < 0.67 and 6 < λ < 10 24 0.21 7.6 0.71 5+3
−3 −1.23+0.14

−0.09 −22.9+0.9
−2.1 0.98 10+1

−1 −21.7+0.2
−0.3 0.78

z < 0.67 and 10 < λ < 15 28 0.31 12.3 1.01 11+3
−3 −1.05+0.11

−0.08 −22.1+0.4
−0.4 0.86 12+0.8

−1 −22.0+0.2
−0.2 0.89

z < 0.67 and 15 < λ < 20 21 0.33 17.7 1.21 18+5
−4 −0.96+0.12

−0.09 −22.0+0.4
−0.3 0.96 16+1

−1 −22.1+0.2
−0.2 0.98

z < 0.67 and 20 < λ 22 0.43 25.4 2.09 18+3
−3 −1.06+0.08

−0.06 −22.3+0.3
−0.1 0.99 20+1

−1 −22.1+0.1
−0.1 0.99

Notes. The first block of columns indicates the bin information: number of objects, median redshift, richness, and mass M500,scal (in units of
1014 M�, see Sect. 2.2 for definition). The second block indicates the results of the fit of the composite luminosity function: amplitude φ∗ (in units
of Ngal ·mag−1 ·Mpc−2), faint end slope α, characteristic magnitude in the r′ band M∗

R, and goodness of fit parameter Q. The third block indicates
the results of the fit of the composite luminosity function when α is fixed to −1. The values are the median of the marginalised distribution and the
errors correspond to 68% c.i. around the median (see Sect. 4). The goodness of fit parameters4 are computed using the minimum χ2 value in the
grid (see Sect. 4).
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Fig. 15. Illustration of the composite luminosity function fitting procedure for a sample of 121 clusters (general sample in Sect. 5). Left panels:
2D marginalised likelihoods of the Schechter fit parameters, and associated luminosity profile. The contours show the 68, 95, and 99% levels,
and the different statistical values are indicated in the legend. Top left: (α,M∗) marginalised over φ∗. Top right: posterior CLF shape, the data
points are shown in grey and black, the median profile is drawn in cyan, and the blue shaded regions indicate the 68, 95, and 99% c.i. Bottom left:
(φ∗,M∗) marginalised on α. Bottom right: (φ∗, α) marginalised on M∗. Right panels: probability density functions of the Schechter fit parameters
after marginalisation. The lines show the different statistical values, as indicated in the legend. In this sample the different statistical estimators
give indistinguishable values.

counts, but an excess of galaxies with respect to a background
field. In this section we thus investigate the influence of the
different photometric redshift selection methods described in
Sect. 3.2.1 on the shape of the luminosity functions.

In order to enhance the signal we stacked the cluster LFs
(see Sect. 3.4.2) in different redshift bins, to explore possible
systematic effects induced by the photometric redshift selections.
In order to make a comparison, we only show redshift bins for
which each selection includes the same clusters.

Figure 17 shows the parameter evolution as a function of red-
shift for CLFs constructed using different photometric redshift
selection methods: PDZ errors (ZPDF); constant dispersions

corresponding to σ1/(1+z) = 0.04 for i′ < 22.5 and σ1/(1+z) = 0.08
for i′ > 22.5 (cte); a dispersion computed as a z function (zfct);
and a dispersion computed as a (z, i′mag) function (zmfct). All
the selections are made at the 1σ or 68% level. From top to
bottom, we can see the evolution of the amplitude φ∗, the faint
end slope α and the characteristic magnitude M∗R for the differ-
ent methods, as indicated in the legend. The vertical error bars
indicate 68% c.i., and the horizontal ones reflect the bin sizes.

We note that the CLF profiles and their associated parame-
ters generally agree, considering the error bars. However, as the
different selection methods are applied on the same data, the dif-
ferences we see between their CLFs are mainly due to systematic
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Fig. 16. Illustration of the composite luminosity function fitting procedure as in Fig. 15, but for a sample of 26 poor clusters (lowest richness
sample in Sect. 5). In this sample the different statistical estimators give distinguishable values.
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Fig. 17. Evolution of the composite cluster luminosity functions param-
eters with redshift, for different photometric redshift selection methods,
as indicated in the legend. The vertical error bars indicate 68% c.i.,
whereas the horizontal error bars reflect the bin sizes. The points have
been slightly shifted horizontally for clarity.

errors and not statistical ones. The relative fraction of the sys-
tematic error compared to the statistical error is non-negligible,
especially for φ∗ and α. In some cases, the systematic error is
even higher than the statistical error.

The differences between the methods are due to the differ-
ences in their completeness values as a function of magnitude
in each redshift bin. The mean completeness value biases the
amplitude φ∗, while the gradient as a function of magnitude
biases the faint end slope α. The effect is stronger for the zfct
method, which shows a higher amplitude, shallower faint end
slope, and fainter characteristic magnitude with respect to the
zmfct method. This is explained by the fact that the zfct method
shows the strongest incompleteness gradient between the bright
and faint magnitudes at each redshift, as can be seen in the
completeness maps of Fig. 4.

We conclude that the selection methods having redshift and
magnitude-dependent completeness can indeed bias the shape
of the luminosity function. In our case, the systematic errors
due to the selection methods are non-negligible compared to the
statistical errors.

6.2.2. Effects related to the selection width

We defined our selection using photometric redshift dispersions
at either 68 or 95% completeness. If we apply the same disper-
sion to both the cluster and the background fields, we expect
to obtain the same LF shape using one or the other definition,

except for the normalisation. Taking a higher dispersion value
ensures a higher signal, but may reduce the purity and introduce
interlopers. We checked this possible effect by comparing the
CLF computed using a dispersion at 68 or 95% in different rich-
ness bins. In order to make a comparison, we only show richness
bins for which each selection includes the same clusters.

Figure 18 shows the evolution of the CLF parameters with
richness for different photometric redshift selection widths: 68%
in red and 95% in blue. From top to bottom, we can see the evolu-
tion of the amplitude φ∗ normalised to 100%, the faint end slope
α, and the characteristic magnitude M∗R. The vertical error bars
indicate 68% c.i., whereas the horizontal error bars reflect the
bin sizes.

We note that when we rescale the amplitude values by the
level of completeness we used to compute them, we find that
they agree very well (φ∗100% ≡ (1/0.68) · φ∗68% ≡ (1/0.95) · φ∗95%),
for all the richness bins. The values of the faint end slope α and
characteristic magnitude M∗R obtained with the two selections are
in good agreement. We also note that the error bars on the param-
eters are generally larger when computed with the dispersion at
68%.

Finally, we conclude that the level of completeness ensured
by the photometric redshift selection does not affect consider-
ably the shapes of the derived CLFs, except for the amplitude,
which increases proportionally with the completeness. As the
statistical errors are lower with the largest dispersion, we used
the dispersion at 95% to compute the CLFs.

7. Discussions

7.1. Importance of the systematic effects

7.1.1. Summary of the systematics affecting the CLF
measurements

In Sect. 6, we identified three different origins of systematics
affecting the measurements of the luminosity function: the sta-
tistical estimators (Sect. 6.1), the photometric redshift selection
methods (Sects. 3.2.1 and 6.2.1), and the width of the pho-
tometric redshift slice (Sect. 6.2.2). We chose to analyse the
importance of the systematics by estimating the values of the
systematic errors and ratios of systematic to statistical error for
each origin. For the sake of conciseness, we only focused on the
measurement of the faint end slope α, and we present our values
in Table 6.

The systematic error coming from the different statistical
estimators i was estimated using the standard deviation σ(αi)
among the different values of the faint end slope α of the CLF
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Fig. 18. Evolution of the composite cluster luminosity functions param-
eters with richness for two different dispersion widths, as indicated in
the legend. The vertical error bars indicate 68% c.i., whereas the hori-
zontal ones reflect the bin sizes. The points have been slightly shifted in
richness for clarity.

Table 6. Summary of the systematics affecting the faint end slope
measurements.

Origin of the systematics Error sys. Error sys./Error stat.

Estimators stat.a σ(αi) σ(αi)/∆αref

0.07 0.47

photo-z selectionsb 〈αi − αre f 〉z 〈 |αi−αre f |
∆αre f

〉z
ZPDF method 0.06 0.68
cte method 0.07 0.61
zfct method 0.17 1.25

Selection widthc 〈α95% − α68%〉λ 〈 |α95%−α68% |
∆α68%

〉λ
−0.03 0.27

Notes. The systematics from different origins are estimated differently.
(a)See Sect. 6.1. (b)See Sects. 3.2.1 and 6.2.1. (c)See Sect. 6.2.2.

containing the poorest clusters. The ratio of systematic to statisti-
cal error was estimated by dividing the standard deviation by the
symmetrised statistical error of our reference value σ(αi)/∆αref ,
with αref coming from the median of the PDF. In this case the
systematic error value informs us about the spread among the
statistical estimators and the ratio of systematic to statistical error
tells us about the relative importance of this spread.

In the case of the systematics coming from the different
galaxy selections, the differences between the values is not
directly due to systematic errors: even if the methods are applied
on the same clusters, we do not select exactly the same galax-
ies (by definition). However, the values are highly correlated
and in the following analysis we make the assumption that the
differences between them are mainly due to systematics.

The systematic errors coming from the different photomet-
ric redshift selection methods were estimated using as reference
the α values obtained with our selection method (zmfct method)
and by averaging over the redshift bins the deviation between
the α values from each method i with respect to the refer-
ences: 〈αi − αref〉z. The ratios of systematic to statistical errors
were estimated by dividing each absolute deviation by the sym-
metrised statistical error of our reference value and averaging
over the redshift bins: 〈 |αi−αref |

∆αref
〉z. In this case we see that the

systematic error can be null if the values from one method are
varying around the reference values and positive or negative in
presence of bias, but the systematic error ratio will be null only

if there are no differences in the measurements of α induced by
one photometric redshift selection method.

Finally, the systematic errors coming from the width of the
photometric redshift slice were estimated using as reference the
α values obtained with the dispersion at 68% and averaging the
differences with the values obtained with the dispersion at 95%
over the richness bins: 〈α95% − α68%〉λ and 〈 |α95%−α68% |

∆α68%
〉λ.

From Table 6, we can conclude that the different statis-
tical estimators give results that have a standard deviation of
σ(αi) = 0.07, which represents 47% of the statistical errors in
the case of a CLF with a low S/N. The three photometric red-
shift selection methods lead to faint end slope values that are
biased high in average, in particular for the zmfct method. The
associated averaged systematic error ratios are higher than 60%
and reach 125% for the zmfct method. Finally, the average differ-
ence between the values obtained with the two dispersion widths
is low and corresponds to 27% of the statistical error.

7.1.2. Should we care about systematic effects?

In the previous section we quantified and summarised the sys-
tematic effects affecting the faint end slope measurements. We
found that the systematic error coming from the different sta-
tistical estimators was subdominant but non-negligible in the
case of a CLF with a low S/N. The systematic and statistical
error values are expected to decrease strongly with the S/N and
the number of data points. Therefore, the ratio of systematic to
statistical error depends on the rate at which these quantities
decrease.

The systematics induced by the different photometric red-
shift selection methods are biasing high the values of the faint
end slope and dominate the statistical errors in some cases.
They are related to the redshift and magnitude-dependent com-
pleteness studied at the 68% level in Sect. 3.2.1. If we increase
the width of the selection, e.g. at the 95% level, the complete-
ness values are closer to 100% and thus the variations are less
important. On the one hand, this means that selecting galax-
ies using a large enough photometric redshift slice will reduce
the systematics coming from the different selection methods
(although it introduces other complications, e.g. reducing the
purity). On the other hand, the variations of the completeness
will be more important when larger magnitude ranges will be
probed (e.g. with deeper photometry) and the systematics will
dominate the error budget when the statistical errors decrease
(e.g. with a richer or larger cluster sample). Therefore, the sys-
tematics induced by the different photometric redshift selection
methods need to be taken into account, in particular for studies
using deeper photometry and/or larger cluster sample.

The systematics related to the width of the photometric red-
shift window were already studied by Crawford et al. (2009),
who found that the faint end slope becomes steeper when the
window increases (and vice versa), and suggested that this was
either due to the photometric redshift errors being underes-
timated or due to a contamination from field galaxies. How-
ever, they used a fixed window and did not take into account
the magnitude dependence of the photometric redshift errors.
We thus stress that the effect they found is related to their
photometric redshift dispersion modelling more than its size and
that, as we have shown, the systematics are stronger when the
dispersion width is small.

Finally, if the systematics coming from the width of the
photometric redshift slice are negligible for our study, their pre-
cise origin has to be investigated in detail if they are no longer
subdominant.
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7.1.3. Photometric redshift limitations

So far we have discussed about the effects of the different pho-
tometric redshift selection methods on the shape of the LF.
However, these effects are important not only for LF determi-
nation, but also for all the studies that require homogeneous and
defined completeness in redshift and magnitude, such as cluster
detections, richness estimation, or density profiles construction.
When appropriate, we can think of checking the photometric
redshift quality not as a function of redshift and magnitude, but
as a function of other properties such as galaxy colour, type, or
environment.

In the future, larger spectroscopic samples are expected that
will allow us to investigate the photometric redshift quality using
higher dimensions (e.g. as a combined function of redshift, mag-
nitude, and galaxy type). However, all these analyses require
the spectroscopic sample to be representative of the photometric
data and thus limit the use of photometric redshift to the redshift-
luminosity range covered with spectroscopy. This point also
applies to machine learning-based photometric redshift algo-
rithms since the photometric redshift are only representative of
the training sample used to derive them.

In the case of the CFHTLS photometric redshift catalogue,
we demonstrated in Sect. 3.2.1 that, on average, spectroscopic
redshifts were included between the 16th and 84th percentiles of
the photometric redshift PDF in less than 68% of the cases. The
confidence intervals coming from the PDF are thus underesti-
mated. Moreover, the photometric redshift PDFs do not reflect
the presence of bias between the photometric and spectroscopic
redshifts. Therefore, the photometric redshift PDF approach –
although very promising because in principle it allows us to have
uncertainties reflecting the S/N, redshift, and SED of the source
and possible multiple peaks – has to be used with caution and
improved.

7.2. Evolution of the CLF parameters

7.2.1. Are the CLFs representative of the individual LFs?

Throughout this study, we have focused on the evolution of the
composite luminosity functions, because of our relatively low
mass (and thus low S/N) cluster sample. However, we show in
Sect. 5.1 that the stacking method we use (the Colless method)
weights poor clusters more. The CLF including all clusters with
z < 0.67 is thus strongly affected by those poor clusters whereas
they are not the more numerous. Therefore, we study to what
extent the CLFs are representative of the individual LFs, and thus
if we can generalise the findings of Sect. 5.2.2 to the behaviour
of individual clusters.

We computed the LF parameters for each cluster in our sam-
ple, using the best fit statistical estimators (because it is easier to
compute for low S/N LF, even though biased with respect to the
median of the PDF which was used for the CLFs). In each red-
shift and richness bin we compared the values of φ∗, α, and M∗R
coming from the CLF to the mean, median, and weighted mean
of the parameters from the individual LF in the same bins. We
used as weights the inverse of the squared parameter errors. We
computed the error bars using for the mean: the standard devia-
tion; for the median: 1.253 times the standard deviation; and for
the weighted mean: the weighted standard deviation.

We found that the mean, median, and weighted mean values
of the faint end slope are compatible with the value from the CLF
considering the errors, whereas only the mean and median were
compatible with the CLF values for φ∗ and M∗R. When studying

the LF and CLF with the faint end slope value fixed to −1, we
found that the mean, median, and weighted mean values of φ∗
and M∗R were compatible with the value from the CLF, consid-
ering the errors. In both cases, M∗R values were systematically
brighter (fainter) with respect to the CLF values when using
the mean (weighted mean). In general we found that the median
values were closer to the parameter values from the CLFs. We
conclude that CLFs are representative of the median of the indi-
vidual LFs and that the evolutions discussed in Sect. 5.2.2 can
be generalised to the median behaviour of the clusters LFs.

7.2.2. Comparison with previous studies

In this section, we compare our finding about the CLF parame-
ters to similar studies from the literature:

– Zhang et al. (2017) studied the evolution of the red sequence
LF parameters with mass and redshift in a sample of 100
X-ray-detected clusters using a hierarchical Bayesian
method. Their data are compatible with no mass evolution of
the faint end slope and characteristic magnitude, and show a
hint that the faint end slope becomes shallower with redshift
at a significance level of ≈ 1.9σ.

– Sarron et al. (2018) studied the CLF evolution with mass and
redshift in a large sample of mostly rich optically detected
clusters in the CFHTLS-W1 field.

– Guglielmo et al. (2018, XXL Paper XXII) studied the stel-
lar mass function in XXL-N clusters and in the field using
a spectrophotometric catalogue. They did not find any sig-
nificant difference between the shape of the galaxy stellar
mass function in the different environments and for galax-
ies located in clusters of different X-ray luminosities, above
their stellar mass completeness limit.

– Moretti et al. (2015) studied the individual LFs of 72 WINGS
of nearby clusters and found that the M∗ values (in the bright
part of the LF) showed no correlation with mass proxies
(using either X-ray luminosities or velocity dispersions).

– Lan et al. (2016) studied the CLF of a large sample of low
redshift SDSS clusters, spanning a wide mass range. They
found faint end slope values of approximately −1, and no
evolution of M∗ and α with mass inside R200.

– Hansen et al. (2009) studied the CLF of a large sample of
SDSS optically selected clusters (with detections based on
the red sequence) in the redshift range 0.1 < z < 0.3 and in a
mass range comparable to ours. They found that the CLF
computed in R200 showed a faint end slope going steeper
and a characteristic magnitude getting brighter with rich-
ness, while φ∗ (expressed in volume units) was decreasing.
The same tendencies were found when only the red galaxies
were selected.

– Alshino et al. (2010) studied the LF of 14 C1 clusters
from XMM–LSS (that are part of our sample), looking for
evolution with redshift and X-ray temperature. They found
that, after removing the effects of redshift (correcting for
the Malmquist effect), the temperature-stacked LFs did not
exhibit any strong evidence of trends with X-ray tempera-
ture, while the faint end slope was becoming shallower with
increasing redshift. They found faint end slope values much
steeper than in our study, but did not constrain the character-
istic magnitude of nearly a third of their systems and did not
mention the values of the amplitude.

Our data are consistent with no richness dependence of the char-
acteristic magnitude, which is consistent with the findings of
Moretti et al. (2015), Lan et al. (2016), and Alshino et al. (2010),
but in apparent opposition with Hansen et al. (2009). We found
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a hint (at 1.3σ) of a positive evolution of the faint end slope with
richness. Considering this low significance value, our values are
still compatible with the findings of Lan et al. (2016) and Alshino
et al. (2010), but again in opposition to Hansen et al. (2009). The
discrepancies between Hansen et al. (2009) and our study could
be explained by the fact that their CLFs are computed in vol-
ume units and that the three parameters are degenerated. Another
explanation for these differences may be attributed to the clus-
ter detection, optically red sequence based versus X-ray detected
clusters; the first method may select more evolved, red sequence
dominated systems.

A comparison of our study with Zhang et al. (2017) is
not possible directly since we are not using the same galaxy
population, but it would suggest that the mild faint end slope
dependence on richness we see in our data is driven by an excess
of faint blue cloud galaxies in poor clusters. Finally, our results
are also in agreement with the study of Guglielmo et al. (2018,
XXL Paper XXII) at least in the massive (bright) part they probe.

Our data are compatible with no redshift evolution of both
the characteristic magnitude and the faint end slope. They are
also compatible within the error bars with the values of Sarron
et al. (2018) in their lowest mass bin. Our findings are in tension
with those of Alshino et al. (2010); however, we stress that since
they did not constrain the characteristic magnitude of nearly a
third of their systems, and did not mention the values of φ∗,
the steep α values they found and their redshift evolution could
arise from the degeneracy between the LF parameters. Again, the
comparison with Zhang et al. (2017) would suggest that faint blue
cloud galaxies balance the increasing deficit of faint red galaxies
with redshift.

7.3. Implications of our results and perspectives

7.3.1. Implications for the use of clusters in cosmology

The luminosity function is an essential property of galaxies
within clusters, in particular in the context of cluster detection.
For instance, many cluster finder algorithms (in particular those
based on the matched filter technique) use the cluster radial pro-
file and luminosity function to construct their model (see e.g.
Postman et al. 1996; Olsen et al. 2007; Bellagamba et al. 2018).
A precise and unbiased determination of the luminosity function
is therefore mandatory to optimise the cluster detection. Infor-
mation about the cluster luminosity function can also be used
to make prediction about cluster selection functions in optical
surveys (see e.g. Sartoris et al. 2016, in the case of Euclid).
In the present paper we have parametrised the evolution of the
composite luminosity function parameters with both redshift and
richness, in a wide redshift range and for relatively low mass X-
ray selected clusters. We have also found that the CLF evolution
is a fair representation of the median behaviour of individual
cluster LFs. Our study can therefore be used as a reference for
analyses requiring knowledge of the optical cluster luminosity
function evolution.

The LF can also be used to derive optical mass proxies such
as the cluster richness or optical luminosity. This is done by
integrating the LF to obtain the galaxy number density or the
luminosity (as in e.g. Lin et al. 2003) and/or by providing a
characteristic galaxy luminosity used as a limit (as done in mul-
tiple studies, including the present one, using the values of Lin
et al. 2006). Our results indicate an increase in the characteristic
galaxy density with richness and no significant LF evolution with
redshift. This is compatible with the redshift invariant mass-
richness and mass-luminosity relations (at least below z ∼ 1)
found by e.g. Lin et al. (2006) and Andreon & Congdon (2014).

The strong increase in the BCG median luminosity with redshift
and richness compared to the CLF evolution may also indicate
that the BCG contributes more to the total luminosity budget of
the poorest clusters (as also found by e.g. XXL Paper X) and the
highest redshift clusters.

We released the catalogue containing the BCGs positions,
redshifts, and magnitudes for the 142 clusters in our sample. This
is precious information as the BCG usually resides at the centre
of the cluster potential well and is often used as a cluster centre
indicator. The location of the BCG with respect to, for instance,
the X-ray centroid can thus be used as a cluster dynamical state
proxy (as done in e.g. XXL Paper XV).

7.3.2. Implications for galaxy evolution

The CLF (BCG excluded) in our cluster sample does not sig-
nificantly evolve with redshift. The characteristic magnitude is
still compatible with the passive evolution of an elliptical galaxy
with a burst of star formation at a redshift of 3, at least up to
z ∼ 0.7. The fact that the measured characteristic magnitude at
high redshift is fainter than expected by the model may be due
to an enhancement of the star formation in the bright part of
the LF, which would make the assumption of passive evolution
inadequate. However, the tension is weak and may also be due
to the fact that absolute magnitudes are not well constrained by
the photometry at these redshifts (see Sect. 3.4.1). The lack of
evolution is compatible with a scenario where the bright part
of the LF inside r500 is already in place at z ∼ 1 and does not
significantly evolve afterwards. It is also consistent with the flat-
tening of the cluster red sequence galaxies LF faint end with
redshift (suggested by e.g. De Lucia et al. 2004, 2007; Stott et al.
2007; Gilbank et al. 2008; Lu et al. 2009; Rudnick et al. 2009),
which would be compensated by the increase of the faint blue
population. In this case, the number of faint galaxies would stay
constant while the ratio of red and blue galaxies changes.

In opposition to what is found for typical member galax-
ies, a clear evolution is seen in the median luminosity of the
BCGs. We compared the median BCG magnitude to the passive
evolution model and found an average offset of ∼1.3 mag. How-
ever, if the passive evolution model (after applying the offset)
fits the measured median BCG magnitudes relatively well, it is
excluded by the evolution models we constrained from Eq. (10).
This indicates that the agreement between the BCG luminos-
ity redshift evolution and pure passive evolution found in e.g.
XXL Paper XV is only apparent, and when the selection biases
are accounted for (when the richness dependence is fitted con-
jointly), the measured redshift evolution of the luminosity is
weaker. In XXL Paper XV, the authors found that the star for-
mation of the z < 0.5 BCGs in the XXL-100-GC sample was
comparable to that of similar mass, passive galaxies in the field.
Thus, the luminosity evolution weaker than passive that we see
in our sample could be due to star formation happening either at
z > 0.5 and/or in clusters that were not part of the XXL-100-GC
sample.

We found that the galaxy density at M∗ increases with cluster
richness, and a hint that the faint end slope is getting shallower.
Our results thus require a scenario that reduces the number of
faint galaxies while increasing the number of bright ones when
a cluster grows in mass (gets richer), since the redshift evolution
does not play a role. This could be explained by star formation
occurring in faint poor cluster galaxies that act to enhance their
luminosity. This would lead to a shallower faint end slope, if not
enough faint galaxies are accreted, and an increase in intermedi-
ate (∼M∗) galaxies. Another scenario that could be responsible
for these results is the accretion of substructures with bright
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galaxies dominated LFs. Since we do not see any evidence of
such objects in our sample, it indicates that if they exist such
substructures present X-ray emission below the XXL sensitivity.

Our results indicate that the BCG luminosity is increas-
ing with cluster richness, as also found by e.g. Hansen et al.
(2009). This is consistent with the hierarchical formation sce-
nario, according to which BCGs grow by accretion of smaller
galaxies and have masses that scale with the cluster total masses
(see e.g. XXL Paper XV, and reference therein).

7.3.3. Perspectives

Several analyses could be done to push this study forward.
Concerning cluster mass proxies, we are currently studying the
relation between richness and optical luminosities with X-ray
mass proxies in the XXL framework (Ricci et al., in prep.). The
BCGs detected in the present paper are used to determine the
clusters dynamical state and study how it affects the relations
between mass proxies. Another interesting analysis would be to
compute the CLF of optically selected clusters (for instance, with
the WAZP cluster finder) in the CFHTLS survey, using the exact
same methodology as in the present paper, to investigate the
difference in terms of galaxy population between optically and
X-ray selected clusters. The BCGs could also be used as cluster
centres to investigate the impact of X-ray versus optical centring
choice. These analyses will be preparatory to those that will be
performed in the near future with the large experiments to come
both at X-Ray and optical/NIR wavelengths (e.g. eRosita, Euclid,
or LSST).

Concerning galaxy evolution in clusters, a natural perspec-
tive is to investigate separately the LF of the red and blue galaxy
populations. This would give us great insight into the galaxy evo-
lution scenario in dense environments. The link between cluster
LF and dynamical state would also allow us to better under-
stand what happens to cluster galaxies during mergers. Finally,
as shown in Koulouridis et al. (2018, XXL Paper XXXV),
XXL clusters present an enhanced AGN fraction with respect
to more massive clusters. Thus, it would be very interesting to
study whether the presence of AGNs impact the cluster galaxy
luminosities and star formations.

8. Conclusions

In this paper, we have studied the optical LFs of a sample of
142 galaxy clusters detected in X-ray by the XXL Survey and
having spectroscopically confirmed redshifts. This unique sur-
vey has allowed us to study the LF of clusters spanning a wide
range of redshifts and X-ray luminosities (and thus masses).
We constructed LFs using a selection in photometric redshift
around the cluster spectroscopic redshift to reduce projection
effects (Sect. 3.2.1). The width of the photometric redshift selec-
tion has been carefully determined to avoid biasing the LF and
depends on both the cluster redshift and the galaxy magnitudes.
It was defined to obtain a homogeneous completeness in the
redshift-magnitude plane. The purity was then enhanced by
applying a precise background subtraction (Sects. 3.2.2 and
3.4.1). We identified BCGs and analysed completeness magni-
tudes to define the luminosity range for computing the cluster
LFs (Sect. 3.3). We then constructed composite luminosity func-
tions (CLFs; Sect. 3.4.2) and defined richnesses (Sect. 3.4.3).
We parametrised the LFs obtained by a Schechter function and
estimated the parameters using likelihood 3D grids in Sect. 4. In

Sect. 5.1, we presented the general CLF of our sample, investi-
gating the effects of poor clusters and comparing our values to
previous studies. We then studied in Sect. 5.2 the evolution of
the galaxy luminosity distributions with redshift and richness,
analysing separately the non-BCG and BCG members. We fitted
the dependences of the CLFs and BCG distributions parame-
ters with redshift and richness conjointly in order to distinguish
between these two effects. In Sects. 6 and 7.1, we identified,
quantified, and discussed the implications of two main sources
of systematic effects affecting the luminosity function measure-
ments. In Sect. 7.2, we discussed the representativeness of the
CLFs with respect to the individual cluster LFs, we compared
our results to previous studies, and discussed their impact on
cluster cosmology and galaxy evolution.

Our main findings are summarised here, in order of appear-
ance in the text.

– In Sect. 3.2.1, we found that the usual method of selecting
galaxies using photometric redshifts, defined by using exter-
nal calibration or by integrating the PDF, lead to redshift
and magnitude-dependent completeness. In Sect. 6.2.1, we
showed that these non-homogeneous completeness causes
the resulting LFs shapes, in particular their amplitudes and
faint end slopes, to be biased. Our selection in photometric
redshift was defined to obtained a homogeneous complete-
ness in the redshift–magnitude plane and allowed us to
construct unbiased LFs.

– In Sect. 5.1, we applied our method to construct CLFs on
our cluster sample (for clusters with z < 0.67) and found that
it was well fitted by a single-component Schechter function.
We studied the impact of poor clusters on this CLF and found
that they tend to steepen the faint end slope and brighten the
characteristic magnitude because they are up-weighted by
the stacking method we used (adapted from Colless 1989).
Considering the large scatter among the α and M∗ reported
in the literature, our values are comparable with those found
by previous studies.

– In Sect. 5.2.2, we studied the redshift and richness depen-
dences of the CLF inside r500. We found that the amplitude
φ∗ increases with richness (at 2σ), and that there was a hint
that the faint end slope αwas getting shallower with richness
(at 1.3σ). Our data are compatible with no redshift evolution
for all the CLF parameters, and no richness evolution for the
characteristic magnitude M∗R. We verified in Sect. 7.2.1 that
the CLFs were representative of the median of the individ-
ual LFs, and that our findings could be thus generalised to
the median behaviour of the cluster LFs. This indicates that
the bright part of the LF in the inner region of clusters does
not depend much on mass or redshift, except for its ampli-
tude, in the redshift-mass range we probe (about 0 < z < 1
and 1013M� < M500 < 5 · 1014M�). We also found a small
tension between our data and fiducial evolution model for
M∗, for the highest redshift and the poorest clusters.

– In Sect. 5.2.3, we studied the evolution of the BCG distri-
butions with redshift and richness. Our data are compatible
with the median BCG magnitude getting brighter with both
redshift and richness (at respectively 4 and 3σ) and the scat-
ter of the distribution decreasing with redshift (at 1.5σ),
while staying constant with richness. This means that BCGs
are brighter in richer clusters, and that their luminosities
decrease with cosmic time, while it seems that their diversity
increases. Those results are not consistent with a passive evo-
lution model for the BCG and favour hierarchical formation
scenario.
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– In Sects. 6.1 and 7.1, we showed that due to the special shape
of the Schechter parameter likelihood, we can obtain differ-
ent parameters values, and thus we introduced systematics
using different statistical estimators. This is true in particu-
lar when the S/N of the data is low or when the magnitude
range probed is small. This effect can be in part responsible
for the large variety of values found in the literature.

– In Sect. 7.1, we showed that the systematics introduced by the
usual galaxy selection methods using photometric redshifts
were expected to become even stronger when using deeper
photometry. Those systematics may not only affect the LF
determination, but also cluster detections, richness estima-
tions, or density profile construction, for example. We gave
some prescriptions about the correct way to use photometric
redshifts in Sect. 7.1.3.
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