
D
R

A
FT

8

4. Headers

The first two sections of this chapter define the structure andcon-
tent of header keyword records. This is followed in Sect. 4.3with
recommendations on how physical units should be expressed.
The final section defines the mandatory and reserved keywords
for primary arrays and conforming extensions.

4.1. Keyword records

4.1.1. Syntax

Each 80-character header keyword recordshallconsist of a key-
word name, a value indicator (only required if a value is present),
anoptionalvalue, and anoptionalcomment. Keywordsmayap-
pear in any order except where specifically stated otherwisein
this standard. It isrecommendedthat the order of the keywords
in FITS files be preserved during data processing operations
because the designers of theFITS file may have used conven-
tions that attach particular significance to the order of certain
keywords (e.g., by grouping sequences ofCOMMENT keywords
at specific locations in the header, or appendingHISTORY key-
words in chronological order of the data processing steps,or us-
ing CONTINUE keywords to generate long string keyword val-
ues).

A formal syntax, giving a complete definition of the syntax
of FITSkeyword records, is given in Appendix A. It is intended
as an aid in interpreting the text defining the standard.

In earlier version of this standard aFITSkeyword, assumed
as an item whose value is to be looked up by name (and pre-
sumably assigned to a variable) by a FITS reading program, was
associated one to one to an header keyword record. With the in-
troduction of continued string keywords (see 4.2.1.2), such FITS
keywords may span more header keyword records, and the value
be created by concatenation as explained in 4.2.1.2.

In earlier version of this standard aFITSkeyword name was
limited to theshort form described in 4.1.2. MandatoryFITS
keywordsshalluse the short form. ReservedFITSkeywords de-
fined in this standardshall use the short form unless they are
explicitly defined in the new longer form.

4.1.2. Components

4.1.2.1.a. Short keyword name (bytes 1 through 8)

The keyword nameshall be a left justified, 8-character,
space-filled, ASCII string with no embedded spaces. All digits
0 through 9 (decimal ASCII codes 48 to 57, or hexadecimal 30
to 39) and upper case Latin alphabetic characters‘A’ through
‘Z’ (decimal 65 to 90 or hexadecimal 41 to 5A) are permitted;
lower case charactersshall notbe used. The underscore (‘ ’,
decimal 95 or hexadecimal 5F) and hyphen (‘-’, decimal 45
or hexadecimal 2D) are also permitted. No other characters
are permitted.1 For indexed keyword names that have a single
positive integer index counter appended to the root name,
the countershall not have leading zeroes (e.g.,NAXIS1, not
NAXIS001). Note that keyword names that begin with (or
consist solely of) any combination of hyphens, underscores, and
digits are legal.

1 This requirement differs from the wording in the originalFITSpa-
pers. See Appendix H.

4.1.2.1.b. Long Keyword name (bytes 1 through n)

The long keyword nameshall be a left justified, n-character,
ASCII string. Single embedded spaces are allowed. Leading and
trailing spacesare not allowedand if presentshall be ignored.
Multiple consecutive embedded spacesare not allowedand
if present shall be collapsed into a single blank. All digits0
through 9 (decimal ASCII codes 48 to 57, or hexadecimal 30
to 39), upper case Latin alphabetic characters‘A’ through‘Z’
(decimal 65 to 90 or hexadecimal 41 to 5A) as well as their
lower case equivalent‘a’ through‘z’ (decimal 97 to 122 or
hexadecimal 61 to 7A) are permitted; lower case characters shall
be considered equivalent to upper case ones (i.e. keyword names
arecase insensitive) and are used only to improve legibility. The
underscore (‘ ’, decimal 95 or hexadecimal 5F), hyphen (‘-’,
decimal 45 or hexadecimal 2D), dollar sign (‘$’, decimal 36 or
hexadecimal 24), dot (‘.’, decimal 46 or hexadecimal 2E), and
colon (‘:’, decimal 58 or hexadecimal 3A) are also permitted.
No other characters are permitted. For indexed keyword names
see previous section on short names.

OPTIONAL TBD The presence of long keyword names
in a headershallbe signalled by a keyword IfLONGKYWD= ’1.0’
(or is it LONGKYWD = 1.0 ?).

4.1.2.2. Value indicator

If the two ASCII characters‘= ’ (decimal 61 followed
by decimal 32) are present in bytes 9 and 10 of the keyword
record this indicates that the keywordhas a short keyword
name andhas a value field associated with it, unless it is one
of the commentary keywords defined in Sect. 4.4.2 (i.e., a
HISTORY, COMMENT, or completely blank keyword name) which
by definition have no value.

If the the two ASCII characters‘= ’ are present in a position
n starting from byte 10 to byte 76TBC this indicates that the
keyword has also a value field associated with it, unless it isone
of the commentary keywords defined in Sect. 4.4.2.

4.1.2.3. Value/comment

In short namekeyword records that contain the value indi-
cator in bytes 9 and 10, the remaining bytes 11 through 80 of the
recordshall contain the value, if any, of the keyword, followed
by optionalcomments.

In long name keyword records that contain the value indica-
tor beyond bytes 9 and 10, the remaining bytesn + 2 through
80 of the recordshall contain the value, if any, of the keyword,
followed byoptionalcomments.DETAILS TBD . The above
gives a maximum length for a keyword name of 75 TBC charac-
ters if the value is continued in the next keyword record as de-
scribed in 4.2.1.2. If one wants to limit the keyword name length
to accomodate a 16-bit integer number (formatted in 6 charac-
ters) one has to put the value indicator not beyond bytes 73-74
i.e. a name length of 72 characters. If one wants to limit the
keyword name length to accomodate a double precision float-
ing point value (formatted in 23 characters) one has to put the
value indicator not beyond bytes 56-57 i.e. a name length of 55
characters.

In keyword records without a value indicator, bytes 9
through 80shouldbe interpreted as commentary text, however,

8

D
R

A
FT

9

this does not preclude conventions that interpret the content of
these bytes in other ways.

The value field, when present,shall contain the ASCII text
representation of a literal string constant, a logical constant, or
a numerical constant, in the format specified in Sect. 4.2. The
value fieldmay be a null field; i.e., itmay consist entirely of
spaces, in which case the value associated with the keyword is
undefined.

The mandatoryFITSkeywords defined in this standardmust
not appear more than once within a header. All other keywords
that have a valueshould notappear more than once. If a keyword
does appear multiple times with different values, then the value
is indeterminate.

If a comment follows the value field, itmustbe preceded
by a slash (‘/’, decimal 47 or hexadecimal 2F).1 A space be-
tween the value and the slash is stronglyrecommended. The
commentmay contain any of the restricted set of ASCII text
characters, decimal 32 through 126 (hexadecimal 20 through
7E). The ASCII control characters with decimal values less than
32 (including the null, tab, carriage return, and line feed charac-
ters), and the delete character (decimal 127 or hexadecimal7F)
must notappear anywhere within a keyword record.

4.2. Value

The structure of the value field depends on the data type of the
value. The value field represents a single value and not an array
of values.1 The value fieldmustbe in one of two formats: fixed
or free. The fixed-format is required for values of mandatory
keywords and isrecommendedfor values of all other keywords.

4.2.1. Character string

4.2.1.1 Single keywords

A character string valueshallbe composed only of the set of
restricted ASCII text characters, decimal 32 through 126 (hex-
adecimal 20 through 7E) enclosed by single quote characters
(“’”, decimal 39, hexadecimal 27). A single quote is represented
within a string as two successive single quotes, e.g., O’HARA =
’O’’HARA’. Leading spaces are significant; trailing spaces are
not. This standard imposes no requirements on the case sensi-
tivity of character string values unless explicitly statedin the
definition of specific keywords.

If the value is a fixed-format character string, the starting
single quote charactermustbe in byte 11 of the keyword record
and the closing single quotemustoccur in or before byte 80.
Earlier versions of this standard alsorequiredthat fixed-format
characters stringsmustbe padded with space characters to at
least a length of eight characters so that the closing quote char-
acter does not occur before byte 20. This minimum character
string length is no longer required, except for the value of the
XTENSION keyword (e.g.,’IMAGE ’ and ’TABLE ’; see
Sect. 7) whichmustbe padded to a length of eight characters for
backward compatibility with previous usage.

Free-format character strings follow the same rules as fixed-
format character strings except that the starting single quote
charactermayoccur after byte 11. Any bytes preceding the start-
ing quote character and after byte 10mustcontain the space char-
acter.

Note that there is a subtle distinction between the following
three keywords:

KEYWORD1= ’’ / null string keyword

KEYWORD2= ’ ’ / empty string keyword

KEYWORD3= / undefined keyword

The value ofKEYWORD1 is a null, or zero length string whereas
the value of theKEYWORD2 is an empty string (nominally a single
space character because the first space in the string is significant,
but trailing spaces are not). The value ofKEYWORD3 is undefined
and has an indeterminate data type as well, except in cases where
the data type of the specified keyword is explicitly defined inthis
standard.

The maximum length of a string value that can be repre-
sented on a single keyword record is 68 characters, with the
opening and closing quote characters in bytes 11 and 80, re-
spectively. In general, no length limit less than 68 is implied for
character-valued keywords.

4.2.1.2 Continued string keywords

Earlier versions of this Standard only defined single stringkey-
words as described in the previous section. The Standard now
incorporates a convention (originally developed for use inFITS
files from high energy astrophysics missions) for continuing ar-
bitrarily long string values over multiple consecutive keyword
records. This convention is mainly intended for use with new
user-defined keywords; itmust notbe used with theXTENSION,
TFORMn, EXTNAME, TTYPEn, TDISPn, and TNULLn keywords,
and it isnot recommendedfor use with any other string-valued
keywords that are defined in this Standard.

Long keyword string values can be represented inFITShead-
ers by continuing the string over multiple keyword records using
the following procedure:

1. Divide the long string value into a sequence of smaller sub-
strings, each of which is no longer than 67 characters in
length. (Note that if the string contains any literal single
quote characters, then these must be represented as a pair
of single quote characters in theFITS keyword value, and
these 2 characters must both be contained within a single
substring).

2. Append an ampersand character (‘&’) to the end of each sub-
string, except for the last substring. This character serves as
a flag toFITS reading software that this string valuemaybe
continued on the following keyword in the header.

3. Enclose each substring with single quote characters. Non-
significant space characters may occur between the amper-
sand character and the closing quote character.

4. Write the first substring as the value of the specified key-
word.

5. Write each subsequent substring, in order, to a series of key-
words that all have the nameCONTINUE in bytes 1 through 8
and have space characters in bytes 9 and 10 of the keyword
record. The substring may be located anywhere in bytes 11
through 80 of the keyword record and may be preceded by
non-significant space characters starting in byte 11. A com-
ment string may follow the substring; if present, the com-

9

D
R

A
FT

10

ment string must be separated from the substring by at least
1 space character followed by a forward slash character (‘/’).

The following keyword records illustrate a string value that
is continued over multiple keyword records. (Note: the length of
the substrings have been reduced to fit within the page layout):

WEATHER = ’Partly cloudy during the evening f&’

CONTINUE ’ollowed by cloudy skies overnight.&’

CONTINUE ’ Low 21C. Winds NNE at 5 to 10 mph.’

FITS reading software can reconstruct the long string value
by following an inverse procedure of checking if the string value
ends with the ‘&’ character and is immediately followed by a
conformingCONTINUE keyword record. If both conditions are
true, then concatenate the substring from theCONTINUE record
onto the previous substring after first deleting the trailing ‘&’
character. Repeat these steps until all subsequentCONTINUE

records have been processed.
Note that if a string value ends with the ‘&’ character, but is

not immediately followed by a conformingCONTINUE keyword,
then the ‘&’ character should be interpreted as the literal last
character in the string. Also, any ‘orphaned’CONTINUE keyword
records should be interpreted as containing commentary text in
bytes 9 – 80 (similar to aCOMMENT keyword).

10

