
D
R

A
FT

8

4. Headers

The first two sections of this chapter define the structure andcon-
tent of header keyword records. This is followed in Sect. 4.3with
recommendations on how physical units should be expressed.
The final section defines the mandatory and reserved keywords
for primary arrays and conforming extensions.

4.1. Keyword records

4.1.1. Syntax

Each 80-character header keyword recordshallconsist of a key-
word name, a value indicator (only required if a value is present),
anoptionalvalue, and anoptionalcomment. Keywordsmayap-
pear in any order except where specifically stated otherwisein
this standard. It isrecommendedthat the order of the keywords
in FITS files be preserved during data processing operations
because the designers of theFITS file may have used conven-
tions that attach particular significance to the order of certain
keywords (e.g., by grouping sequences ofCOMMENT keywords
at specific locations in the header, or appendingHISTORY key-
words in chronological order of the data processing steps)or
usingCONTINUE keywords to generate long-string keyword val-
ues.

A formal syntax, giving a complete definition of the syntax
of FITSkeyword records, is given in Appendix A. It is intended
as an aid in interpreting the text defining the standard.

In earlier versions of this standard a FITS keyword, assumed
as an item whose value is to be looked up by name (and presum-
ably assigned to a variable) by a FITS reading program, was as-
sociated one to one to a single header keyword record. With the
introduction of(continued) long-stringkeywords (see 4.2.1.2),
such FITS keywords may span more than one header keyword
record, and the valueshall be created by concatenation as ex-
plained in 4.2.1.2.

4.1.2. Components

4.1.2.1. Keyword name (bytes 1 through 8)

The keyword nameshall be a left justified, 8-character,
space-filled, ASCII string with no embedded spaces. All digits
0 through 9 (decimal ASCII codes 48 to 57, or hexadecimal 30
to 39) and upper case Latin alphabetic characters‘A’ through
‘Z’ (decimal 65 to 90 or hexadecimal 41 to 5A) are permitted;
lower case charactersshall notbe used. The underscore (‘ ’,
decimal 95 or hexadecimal 5F) and hyphen (‘-’, decimal 45
or hexadecimal 2D) are also permitted. No other characters
are permitted.1 For indexed keyword names that have a single
positive integer index counter appended to the root name,
the countershall not have leading zeroes (e.g.,NAXIS1, not
NAXIS001). Note that keyword names that begin with (or
consist solely of) any combination of hyphens, underscores, and
digits are legal.

4.1.2.2. Value indicator (bytes 9 and 10)

If the two ASCII characters'= ' (decimal 61 followed

1 This requirement differs from the wording in the originalFITSpa-
pers. See Appendix H.

by decimal 32) are present in bytes 9 and 10 of the keyword
record this indicates that the keyword has a value field asso-
ciated with it, unless it is one of the commentary keywords
defined in Sect. 4.4.2 (i.e., aHISTORY, COMMENT, or completely
blank keyword name) which by definition have no value.

4.1.2.3. Value/comment (bytes 11 through 80)

In keyword records that contain the value indicator in bytes9
and 10, the remaining bytes 11 through 80 of the recordshall
contain the value, if any, of the keyword, followed byoptional
comments. In keyword records without a value indicator, bytes 9
through 80shouldbe interpreted as commentary text, however,
this does not preclude conventions that interpret the content of
these bytes in other ways.

The value field, when present,shall contain the ASCII text
representation of a literal string constant, a logical constant, or
a numerical constant, in the format specified in Sect. 4.2. The
value fieldmay be a null field; i.e., itmay consist entirely of
spaces, in which case the value associated with the keyword is
undefined.

The mandatoryFITSkeywords defined in this standardmust
not appear more than once within a header. All other keywords
that have a valueshould notappear more than once. If a keyword
does appear multiple times with different values, then the value
is indeterminate.

If a comment follows the value field, itmustbe preceded
by a slash (‘/’, decimal 47 or hexadecimal 2F).1 A space be-
tween the value and the slash is stronglyrecommended. The
commentmay contain any of the restricted set of ASCII text
characters, decimal 32 through 126 (hexadecimal 20 through
7E). The ASCII control characters with decimal values less than
32 (including the null, tab, carriage return, and line feed charac-
ters), and the delete character (decimal 127 or hexadecimal7F)
must notappear anywhere within a keyword record.

4.2. Value

The structure of the value field depends on the data type of the
value. The value field represents a single value and not an array
of values.1 The value fieldmustbe in one of two formats: fixed
or free. The fixed-format is required for values of mandatory
keywords and isrecommendedfor values of all other keywords.

4.2.1. Character string

4.2.1.1 Single record string keywords

A character string valueshallbe composed only of the set of
restricted ASCII text characters, decimal 32 through 126 (hex-
adecimal 20 through 7E) enclosed by single quote characters
(“'”, decimal 39, hexadecimal 27). A single quote is represented
within a string as two successive single quotes, e.g., O’HARA =
'O''HARA'. Leading spaces are significant; trailing spaces are
not. This standard imposes no requirements on the case sensi-
tivity of character string values unless explicitly statedin the
definition of specific keywords.

If the value is a fixed-format character string, the starting
single quote charactermustbe in byte 11 of the keyword record
and the closing single quotemustoccur in or before byte 80.

8

D
R

A
FT

9

Earlier versions of this standard alsorequiredthat fixed-format
characters stringsmustbe padded with space characters to at
least a length of eight characters so that the closing quote char-
acter does not occur before byte 20. This minimum character
string length is no longer required, except for the value of the
XTENSION keyword (e.g.,'IMAGE ' and 'TABLE '; see
Sect. 7) whichmustbe padded to a length of eight characters for
backward compatibility with previous usage.

Free-format character strings follow the same rules as fixed-
format character strings except that the starting single quote
charactermayoccur after byte 11. Any bytes preceding the start-
ing quote character and after byte 10mustcontain the space char-
acter.

Note that there is a subtle distinction between the following
three keywords:

KEYWORD1= '' / null string keyword

KEYWORD2= ' ' / empty string keyword

KEYWORD3= / undefined keyword

The value ofKEYWORD1 is a null, or zero length string whereas
the value of theKEYWORD2 is an empty string (nominally a single
space character because the first space in the string is significant,
but trailing spaces are not). The value ofKEYWORD3 is undefined
and has an indeterminate data type as well, except in cases where
the data type of the specified keyword is explicitly defined inthis
standard.

The maximum length of a string valuethat can be repre-
sented on a single keyword recordis 68 characters, with the
opening and closing quote characters in bytes 11 and 80, re-
spectively. In general, no length limit less than 68 is implied for
character-valued keywords.

Whenever a keyword value is declared ’string’ or said to
’contain a character string’, the length limits in this section ap-
ply. The next section 4.2.1.2 applies when the value is declared
’long-string’.

4.2.1.2 Continued string (long-string) keywords

Earlier versions of this Standard only defined single record
string keywords as described in the previous section. The
Standard now incorporates a convention (originally developed
for use inFITSfiles from high energy astrophysics missions) for
continuing arbitrarily long string values overa potentially un-
limited sequence ofmultiple consecutive keyword records using
the following procedure:

1. Divide the long string value into a sequence of smaller sub-
strings, each of which is no longer than 67 characters in
length. (Note that if the string contains any literal single
quote characters, then these must be represented as a pair
of single quote characters in theFITS keyword value, and
these 2 characters must both be contained within a single
substring).

2. Append an ampersand character (‘&’) to the end of each sub-
string, except for the last substring. This character serves as
a flag toFITS reading software that this string valuemaybe
continued on the following keyword in the header.

3. Enclose each substring with single quote characters. Non-
significant space characters may occur between the amper-
sand character and the closing quote character.

4. Write the first substring as the value of the specified key-
word.

5. Write each subsequent substring, in order, to a series of key-
words that all have the reserved keyword nameCONTINUE

(see 4.4.2) in bytes 1 through 8 and have space characters
in bytes 9 and 10 of the keyword record. The substring may
be located anywhere in bytes 11 through 80 of the keyword
record and may be preceded by non-significant space char-
acters starting in byte 11. A comment string may follow the
substring; if present, the comment string must be separated
from the substring by a forward slash character (‘/’). Also, it
is strongly recommendedthat the slash character be preceded
by a space character.

The CONTINUE keyword must not be used with of any of
the mandatory or reserved keywords defined in this standard un-
less explicitly declared of type long-string.

The following keyword records illustrate a string value that
is continued over multiple keyword records. (Note: the length of
the substrings have been reduced to fit within the page layout):

WEATHER = 'Partly cloudy during the evening f&'

CONTINUE 'ollowed by cloudy skies overnight.&'

CONTINUE ' Low 21C. Winds NNE at 5 to 10 mph.'

If needed, additional space for the keyword comment field
can be generated by continuing the string value with one or more
null strings, as illustrated schematically below:

STRKEY = 'This keyword value is continued &'

CONTINUE ' over multiple keyword records.&'

CONTINUE '&' / The comment field for this

CONTINUE '&' / keyword is also continued

CONTINUE '' / over multiple records.

FITS reading software can reconstruct the long string value
by following an inverse procedure of checking if the string value
ends with the ‘&’ character and is immediately followed by a
conformingCONTINUE keyword record. If both conditions are
true, then concatenate the substring from theCONTINUE record
onto the previous substring after first deleting the trailing ‘&’
character. Repeat these steps until all subsequentCONTINUE

records have been processed.
Note that if a string value ends with the ‘&’ character, but

is not immediately followed by aCONTINUE keyword that con-
forms to all the previously described requirements, then the ‘&’
character should be interpreted as the literal last character in the
string. Also, any ‘orphaned’CONTINUE keyword records (for-
mally not invalidating the FITS file, although likely representing
an error with respect to what the author of the file meant) should
be interpreted as containing commentary text in bytes 9 – 80
(similar to aCOMMENT keyword).

4.2.2. Logical

If the value is a fixed-format logical constant, itshall appear as
an uppercaseT or F in byte 30. A logical value is represented in
free-format by a single character consisting of an uppercaseT or
F as the first non-space character in bytes 11 through 80.

9

D
R

A
FT

16

4.4.2.4. Commentary keywords

These keywords provide commentary information about the
contents or history of theFITSfile andmayoccur any number of
times in a header. These keywordsshallhave no associated value
even if the value indicator characters`= ' appear in bytes 9 and
10 (hence it isrecommendedthat these keywords not contain
the value indicator). Bytes 9 through 80maycontain any of the
restricted set of ASCII text characters, decimal 32 through126
(hexadecimal 20 through 7E).

In earlier versions of this standard continued string keywords
(see 4.2.1.2) could be handled as commentary keywords if the
relevant convention was not supported. NowCONTINUE key-
wordsshallbe honoured as specified in Section 4.2.1.2.

COMMENT keyword. This keywordmay be used to supply any
comments regarding theFITSfile.

HISTORY keyword. This keywordshouldbe used to describe
the history of steps and procedures associated with the process-
ing of the associated data.

Keyword field is blank. This keywordmaybe used to supply
any comments regarding theFITS file. It is frequently used for
aesthetic purposes to provide a break between groups of related
keywords in the header.

16

D
R

A
FT

66

– The last paragraph of Sect. 4.1.2.3 was corrected to state
that the ASCII text characters have hexadecimal values
20 through 7E, not 41 through 7E.

H.3. List of modifications to the latest FITS standard

1. The representation of time coordinates has been incorpo-
rated by reference from Rots et al. (2015) and is summa-
rized in Sect. 9. Cross-references have been inserted in pre-
existing sections of the Standard (namely in Sect. 4.2.7,
4.3, 4.4.2.1, 4.4.2.2 and 5.4, as well as in various places
of Sect. 8, like 8.3 and 8.4.1). New keywords are listed
in a rearranged Table 22. Contextually an erratum was ap-
plied in Sect. 8.4.1: keywordsOBSGEO-[XYZ] were incor-
rectly marked asOBSGEO-[XYZ]a; the TAI-UTC difference
in Table 30 was updated with respect to Rots et al. (2015)
taking into account the latest leap second; the possibilityof
introducing more sources for the solar system ephemerides
was re-worded (at the end of Sect.9.2.5 and in Table 31).

2. The continued string keywords described in Sect. 4.2.1.2
were originally introduced as aFITSconvention since 1994,
and registered in 2007. The text of the original convention
is reported athttp://fits.gsfc.nasa.gov/registry/
continue_keyword.html. The differences with this stan-
dard concern:
– In the convention, theLONGSTRN keyword was used to

signal the possible presence of long strings in the HDU.
The use of this keyword is no longer required or recom-
mended.

– Usage of the convention wasnot recommendedfor re-
served or mandatory keywords. Nowis explicilty forbid-
ded unless keywords are explicitly declared long-string.

– To avoid ambiguities in the application of the previous
clause, the declaration of string keywords in sections 8,
9 and 10 has been reset from the generic ’character’ to
’string’.

– The description of continued comment field is new.

66

D
R

A
FT

35

Table 21: WCS and celestial coordinates notation.

Variable(s) Meaning Related FITS keywords
i Index variable for world coordinates
j Index variable for pixel coordinates
a Alternative WCS version code
pj Pixel coordinates
r j Reference pixel coordinates CRPIXja
mi j Linear transformation matrix CDi ja or PCi ja
si Coordinate scales CDELTia
(x, y) Projection plane coordinates
(φ, θ) Native longitude and latitude
(α, δ) Celestial longitude and latitude
(φ0, θ0) Native longitude and latitude of the fiducial point PVi 1a† , PVi 2a†

(α0, δ0) Celestial longitude and latitude of the fiducial pointCRVALia
(αp, δp) Celestial longitude and latitude of the native pole
(φp, θp) Native longitude and latitude of the celestial pole LONPOLEa (=PVi 3a†),

LATPOLEa (=PVi 4a†)

Notes. † Associated withlongitudeaxis i.

in theCRPIXi keywords, and the world coordinates at the refer-
ence point are encoded in theCRVALi keywords. For additional
details, see Greisen & Calabretta (2002).

The third step of the process, computing the final world co-
ordinates, depends on the type of coordinate system, which is
indicated with the value of theCTYPEi keyword. For some sim-
ple, linear cases an appropriate choice of normalization for the
scale factors allows the world coordinates to be taken directly (or
by applying a constant offset) from thexi (e.g., some spectra).
In other cases it is more complicated, and may require the ap-
plication of some non-linear algorithm (e.g., a projection, as for
celestial coordinates), which may require the specification of ad-
ditional parameters. Where necessary, numeric parameter values
for non-linear algorithmsmustbe specified viaPVi m keywords
and character-valued parameters will be specified viaPSi mkey-
words, wherem is the parameter number.

The application of these formalisms to coordinate systems of
interest is discussed in the following sub-sections: Sect.8.2 de-
scribes general WCS representations (see Greisen & Calabretta
2002), Sect. 8.3 describes celestial coordinate systems (see
Calabretta & Greisen 2002)), Sect. 8.4 describes spectral coor-
dinate systems (see Greisen et al. 2006), and Sect. 9 describes
the representation of time coordinates (see Rots et al. 2015).

8.2. World coordinate system representations

A variety of keywords have been reserved for computing the
coordinate values that are to be associated with any pixel lo-
cation within an array. The full set is given in Table 22; those in
most common usage are defined in detail below for convenience.
Coordinate system specifications may appear in HDUs that con-
tain simple images in the primary array or in an image extension.
Images may also be stored in a multi-dimensional vector cellof
a binary table, or as a tabulated list of pixel locations (andop-
tionally, the pixel value) in a table. In these last two typesof im-
age representations, the WCS keywords have a different naming
convention which reflects the needs of the tabular data structure
and the 8-character limit for keyword lengths, but otherwise fol-
low exactly the same rules for type, usage, and default values.
See reference Calabretta & Greisen (2002) for example usageof
these keywords. All forms of these reserved keywordsmustbe
used only as specified in this Standard.

In the case of the binary table vector representation, all the
images contained in a given column of the table may not neces-
sarily have the same coordinate transformation values. Forex-
ample, the pixel location of the reference point may be different
for each image/row in the table, in which case a single1CRPn
keyword in the header is not sufficient to record the individual
value required for each image. In such cases, the keyword must
be replaced by a column with the same name (i.e.TTYPEm =

’1CRPn’) which can then be used to store the pixel location of
the reference point appropriate for each row of the table. This
convention for expanding a keyword into a table column (or
conversely, collapsing a column of identical values into a sin-
gle header keyword) is commonly known as part of the ”Green
Bank Convention”9 for FITSkeywords. This usage is illustrated
in the example header shown in Table 9 of Calabretta & Greisen
(2002),

The keywords given below constitute a complete set of fun-
damental attributes for a WCS description. Although their inclu-
sion in an HDU is optional,FITSwritersshouldinclude a com-
plete set of keywords when describing a WCS. In the event that
some keywords are missing, default valuesmustbe assumed, as
specified below.

WCSAXES – [integer; default:NAXIS, or larger of WCS indexesi
or j]. Number of axes in the WCS description. This keyword,
if present,mustprecede all WCS keywords exceptNAXIS in
the HDU. The value ofWCSAXES mayexceed the number of
pixel axes for the HDU.

CTYPEi – [string; indexed; default:' ' (i.e. a linear, undefined
axis)]. Type for the intermediate coordinate axisi. Any co-
ordinate type that is not covered by this standard or an offi-
cially recognizedFITSconventionshallbe taken to be linear.
All non-linear coordinate system namesmustbe expressed
in ‘4–3’ form: the first four characters specify the coordinate
type, the fifth character is a hyphen (‘-’), and the remain-
ing three characters specify an algorithm code for comput-
ing the world coordinate value. Coordinate types with names
of less than four characters are padded on the right with
hyphens, and algorithm codes with less than three charac-

9 Named after a meeting held in Green Bank, West Virginia, USA
in 1989 to develop standards for the interchange of single dish radio
astronomy data.

35

D
R

A
FT

37

Table 22 (continued)

Notes.The indexesj andi are pixel and intermediate world coordinate axis numbers, respectively. Within a table, the indexn refers to a column
number, andm refers to a coordinate parameter number. The indexk also refers to a column number. The indicatora is either blank (for the primary
coordinate description) or a characterA throughZ that specifies the coordinate version. See text.
(1) CROTAi form is deprecated but still in use. Itmust notbe used withPC i j, PV i m, andPS i m. (2) PCi j andCDi j forms of the transformation
matrix are mutually exclusive, andmust notappear together in the same HDU.(3) EPOCH is deprecated. UseEQUINOX instead.(4) These 8-character
keywords are deprecated; the 7-character forms, which can include an alternate version code letter at the end,shouldbe used instead.(5) For
the purpose of time reference position, geodetic latitude/longitude/elevationOBSGEO-B, OBSGEO-L, OBSGEO-H or an orbital ephemeris keyword
OBSORBIT can be also used (see Sect. 9.2.3).(6) [M]JDREF can be split in integer and fractional values[M]JDREFI and[M]JDREFF as explained
in Sect. 9.2.2.

ters are padded on the right with blanks10. Algorithm codes
shouldbe three characters.

CUNITi – [string; indexed; default:' ' (i.e., undefined)].
Physical units ofCRVAL andCDELT for axisi. Note that units
shouldalways be specified (see Sect. 4.3). Units for celestial
coordinate systems defined in this Standardmustbe degrees.

CRPIXj – [floating point; indexed; default: 0.0]. Location of the
reference point in the image for axisj corresponding tor j in
Eq. (9). Note that the reference pointmaylie outside the im-
age and that the first pixel in the image has pixel coordinates
(1.0, 1.0, . . .).

CRVALi – [floating point; indexed; default: 0.0]. World
Coordinate value at the reference point of axisi.

CDELTi – [floating point; indexed; default: 1.0]. Increment of
the world coordinate at the reference point for axisi. The
valuemust notbe zero.

CROTAi – [floating point; indexed; default: 0.0]. The amount
of rotation from the standard coordinate system to a different
coordinate system. Further use of this of this keyword is dep-
recated, in favor of the newer formalisms that use theCDi j
or PCi j keywords to define the rotation.

PCi j – [floating point; defaults: 1.0 wheni = j, 0.0 otherwise].
Linear transformation matrix between pixel axesj and in-
termediate coordinate axesi. ThePCi j matrix must notbe
singular.

CDi j – [floating point; defaults: 0.0, but see below]. Linear
transformation matrix (with scale) between pixel axesj and
intermediate coordinate axesi. This nomenclature is equiv-
alent toPCi j whenCDELTi is unity. TheCDi j matrix must
notbe singular. Note that theCDi j formalism is an exclusive
alternative toPCi j, and theCDi j andPCi j keywordsmust
notappear together within an HDU.

In addition to the restrictions noted above, if anyCDi j keywords
are present in the HDU, all other unspecifiedCDi j keywords
shall default to zero. If noCDi j keywords are present then the
headershallbe interpreted as being inPCi j form whether or not
anyPCi j keywords are actually present in the HDU.

Some non-linear algorithms that describe the transformation
between pixel and intermediate coordinate axes require param-
eter values. A few non-linear algorithms also require character-
valued parameters, e.g., table lookups require the names ofthe
table extension and the columns to be used. Where necessary
parameter valuesmustbe specified via the following keywords:

PVi m – [floating point]. Numeric parameter values for inter-
mediate world coordinate axisi, wherem is the parameter
number. Leading zerosmust notbe used, andm may have

10 Example:‘RA---UV ’.

only values in the range 0 through 99, and that are defined
for the particular non-linear algorithm.

PSi m – [string]. Character-valued parameters for intermediate
world coordinate axisi, wherem is the parameter number.
Leading zerosmust notbe used, andm may have only val-
ues in the range 0 through 99, and that are defined for the
particular non-linear algorithm.

The following keywords, while not essential for a complete
specification of an image WCS, can be extremely useful for read-
ers to interpret the accuracy of the WCS representation of the
image.

CRDERi – [floating point; default: 0.0]. Random error in coordi-
natei, whichmustbe non-negative.

CSYERi – [floating point; default: 0.0]. Systematic error in co-
ordinatei, whichmustbe non-negative.

These valuesshouldgive a representative average value of the
error over the range of the coordinate in the HDU. The total error
in the coordinates would be given by summing the individual
errors in quadrature.

8.2.1. Alternative WCS axis descriptions

In some cases it is useful to describe an image with more than
one coordinate type11. Alternative WCS descriptionsmay be
added to the header by adding the appropriate sets of WCS key-
words, and appending to all keywords in each set an alphabetic
code in the rangeA throughZ. Keywords that may be used in
this way to specify a coordinate system version are indicated in
Table 22 with the suffix a. All implied keywords with this encod-
ing arereserved keywords, andmustonly be used inFITSHDUs
as specified in this Standard. The axis numbersmustlie in the
range 1 through 99, and the coordinate parameterm mustlie in
the range 0 through 99, both with no leading zeros.

Theprimaryversion of the WCS description is that specified
with a as the blank character12. Alternative axis descriptions are
optional, butmust notbe specified unless the primary WCS de-
scription is also specified. If an alternative WCS description is
specified, all coordinate keywords for that versionmustbe given
even if the values do not differ from those of the primary version.
Rules for the default values of alternative coordinate descriptions

11 Examples include the frequency, velocity, and wavelength along a
spectral axis (only one of which, of course, could be linear), or the po-
sition along an imaging detector in both meters and degrees on the sky.

12 There are a number of keywords (e.g.ijPCna) where thea could be
pushed off the 8-char keyword name for plausible values ofi, j, k, n, and
m. In such casesa is still said to be ‘blank’ although it is not the blank
character.

37

D
R

A
FT

38

Table 23: Reserved celestial coordinate algorithm codes.

Default
Code φ0 θ0 Properties1 Projection name

Zenithal (azimuthal) projections
AZP 0◦ 90◦ Sect. 5.1.1 Zenithal perspective
SZP 0◦ 90◦ Sect. 5.1.2 Slant zenithal perspective
TAN 0◦ 90◦ Sect. 5.1.3 Gnomonic
STG 0◦ 90◦ Sect. 5.1.4 Stereographic
SIN 0◦ 90◦ Sect. 5.1.5 Slant orthographic
ARC 0◦ 90◦ Sect. 5.1.6 Zenithal equidistant
ZPN 0◦ 90◦ Sect. 5.1.7 Zenithal polynomial
ZEA 0◦ 90◦ Sect. 5.1.8 Zenithal equal-area
AIR 0◦ 90◦ Sect. 5.1.9 Airy

Cylindrical projections
CYP 0◦ 0◦ Sect. 5.2.1. Cylindrical perspective
CEA 0◦ 0◦ Sect. 5.2.2 Cylindrical equal area
CAR 0◦ 0◦ Sect. 5.2.3 Plate carrée
MER 0◦ 0◦ Sect. 5.2.4 Mercator

Pseudo-cylindrical and related projections
SFL 0◦ 0◦ Sect. 5.3.1 Samson-Flamsteed
PAR 0◦ 0◦ Sect. 5.3.2 Parabolic
MOL 0◦ 0◦ Sect. 5.3.3 Mollweide
AIT 0◦ 0◦ Sect. 5.3.4 Hammer-Aitoff

Conic projections
COP 0◦ θa Sect. 5.4.1 Conic perspective
COE 0◦ θa Sect. 5.4.2 Conic equal-area
COD 0◦ θa Sect. 5.4.3 Conic equidistant
COO 0◦ θa Sect. 5.4.4 Conic orthomorphic

Polyconic and pseudoconic projections
BON 0◦ 0◦ Sect. 5.5.1 Bonne’s equal area
PCO 0◦ 0◦ Sect. 5.5.2 Polyconic

Quad-cube projections
TSC 0◦ 0◦ Sect. 5.6.1 Tangential spherical cube
CSC 0◦ 0◦ Sect. 5.6.2 COBE quadrilateralized spherical cube
QSC 0◦ 0◦ Sect. 5.6.3 Quadrilateralized spherical cube

HEALPix grid projection
HPX 0◦ 0◦ Sect. 62 HEALPix grid

(1) Refer to the indicated section in Calabretta & Greisen (2002) for a detailed description.(2) This projection is defined in Calabretta & Roukema
(2007).

are the same as those for the primary description. The alterna-
tive descriptions are computed in the same fashion as the pri-
mary coordinates. The type of coordinate depends on the value
of CTYPEia, and may be linear in one of the alternative descrip-
tions and non-linear in another.

The alternative version codes are selected by theFITSwriter;
there is no requirement that the codes be used in alphabetic se-
quence, nor that one coordinate version differ in its parameter
values from another. An optional keywordWCSNAMEa is also de-
fined to name, and otherwise document, the various versions of
WCS descriptions:

WCSNAMEa – [string; default fora: ' ' (i.e., blank, for the pri-
mary WCS, else a characterA throughZ that specifies the
coordinate version]. Name of the world coordinate system
represented by the WCS keywords with the suffix a. Its pri-
mary function is to provide a means by which to specify a
particular WCS if multiple versions are defined in the HDU.

8.3. Celestial coordinate system representations

The conversion from intermediate world coordinates (x, y) in the
plane of projection to celestial coordinates involves two steps: a

spherical projection to native longitude and latitude (φ, θ), de-
fined in terms of a convenient coordinate system (i.e.,native
spherical coordinates), followed by a spherical rotation of these
native coordinates to the required celestial coordinate system
(α, δ). The algorithm to be used to define the spherical projec-
tion mustbe encoded in theCTYPEi keyword as the three-letter
algorithm code, the allowed values for which are specified in
Table 23 and defined in references Calabretta & Greisen (2002)
and Calabretta & Roukema (2007). The target celestial coordi-
nate system is also encoded into the left-most portion of the
CTYPEi keyword as the coordinate type.

For the final step, the parameterLONPOLEamust be specified,
which is the native longitude of the celestial pole,φp. For certain
projections (such as cylindricals and conics, which are less com-
monly used in astronomy), the additional keywordLATPOLEa
must be used to specify the native latitude of the celestial pole.
See Calabretta & Greisen (2002) for the transformation equa-
tions and other details.

The accepted celestial coordinate systems are: the standard
equatorial (RA-- andDEC-), and others of the formxLON and
xLAT for longitude-latitude pairs, wherex is G for Galactic,E for
ecliptic, H for helioecliptic andS for supergalactic coordinates.
Since the representation of planetary, lunar, and solar coordinate

38

D
R

A
FT

39

systems could exceed the 26 possibilities afforded by the single
characterx, pairs of the formyzLN andyzLT maybe used as well.

RADESYSa – [string; default:FK4, FK5, or ICRS: see below].
Name of the reference frame of equatorial or ecliptic co-
ordinates, whose valuemust be one of those specified in
Table 24. The default value isFK4 if the value ofEQUINOXa
< 1984.0,FK5 if EQUINOXa≥ 1984.0, orICRS if EQUINOXa
is not given.

EQUINOXa – [floating point; default: see below]. Epoch of the
mean equator and equinox in years, whose valuemustbe
non-negative. The interpretation of epoch depends upon the
value ofRADESYSa if present:Besselianif the value isFK4
or FK4-NO-E, Julian if the value isFK5; not applicableif the
value isICRS or GAPPT.

EPOCH – [floating point]. This keyword is deprecated and
should notbe used in newFITSfiles. It is reserved primarily
to prevent its use with other meanings. TheEQUINOX key-
word shall be used instead. The value field of this keyword
was previously defined to contain a floating-point number
giving the equinox in years for the celestial coordinate sys-
tem in which positions are expressed.

DATE-OBS – [floating point]. This reserved keyword is defined
in Sect. 4.4.2.

MJD-OBS – [floating point; default:DATE-OBS if given, other-
wise no default]. Modified Julian Date (JD – 2,400,000.5) of
the observation, whose value corresponds (by default) to the
start of the observation, unless another interpretation is ex-
plained in the comment field. No specific time system (e.g.
UTC, TAI, etc.) is defined for this or any of the other time-
related keywords. It isrecommendedthat theTIMESYS key-
word, as defined in Sect. 9.2.1 be used to specify the time
system. See also Sect. 9.5.

LONPOLEa – [floating point; default:φ0 if δ0 ≥ θ0, φ0 + 180◦

otherwise]. Longitude in the native coordinate system of the
celestial system’s north pole. Normally,φ0 is zero unless a
non-zero value has been set forPVi 1a, which is associated
with the longitudeaxis. This default applies for all values of
θ0, includingθ0 = 90◦, although the use of non-zero values
of θ0 are discouraged in that case.

LATPOLEa – [floating point; default: 90◦, or no default if
(θ0, δ0, φp − φ0) = (0, 0,±90◦)]. Latitude in the native coor-
dinate system of the celestial system’s north pole, or equiva-
lently, the latitude in the celestial coordinate system of the
native system’s north pole. May be ignored or omitted in
cases whereLONPOLEa completely specifies the rotation to
the target celestial system.

8.4. Spectral coordinate system representations

This section discusses the conversion of intermediate world co-
ordinates to spectral coordinates with common axes such as fre-
quency, wavelength, and apparent radial velocity (represented
here with the coordinate variablesν, λ, or v). The key point for
constructing spectral WCS inFITS is that one of these coordi-
natesmustbe sampled linearly in the dispersion axis; the others
are derived from prescribed, usually non-linear transformations.
Frequency and wavelength axesmayalso be sampled linearly in
their logarithm.

Following the convention for theCTYPEia keyword, wheni is
the spectral axis the first four charactersmustspecify a code for
the coordinate type; for non-linear algorithms the fifth character

Table 24: Allowed values ofRADESYSa.

Value Definition
ICRS International Celestial Reference System
FK5 Mean place, new (IAU 1984) system
FK41 Mean place, old (Bessel-Newcomb) system
FK4-NO-E1 Mean place: but without eccentricity terms
GAPPT Geocentric apparent place, IAU 1984 system

(1) New FITS files should avoid using these older reference systems.

mustbe a hyphen, and the next three charactersmustspecify a
predefined algorithm for computing the world coordinates from
the intermediate physical coordinates. The coordinate type must
be one of those specified in Table 25. When the algorithm is lin-
ear, the remainder of theCTYPEia keywordmustbe blank. When
the algorithm is non-linear, the 3-letter algorithm codemustbe
one of those specified in Table 26. The relationships between
the basic physical quantitiesν, λ, andv, as well as the relation-
ships between various derived quantities are given in reference
Greisen et al. (2006).

The generality of the algorithm for specifying the spectral
coordinate system and its representation suggests that some ad-
ditional description of the coordinate may be helpful beyond
what can be encoded in the first four characters of theCTYPEia
keyword;CNAMEia is reserved for this purpose. Note that this
keyword provides a name for an axis in a particular WCS, while
the WCSNAMEa keyword names the particular WCS as a whole.
In order to convert between some form of radial velocity and
either frequency or wavelength, the keywordsRESTFRQa and
RESTWAVa, respectively, are reserved.

CNAMEia – [string; default: default:' ' (i.e. a linear, undefined
axis)]. Spectral coordinate description whichmust notex-
ceed 68 characters in length.

RESTFRQa – [floating point; default: none]. Rest frequency of
the of the spectral feature of interest. The physical unitmust
be Hz.

RESTWAVa – [floating point; default: none]. Vacuum rest wave-
length of the of the spectral feature of interest. The physical
unit mustbe m.

One or the other ofRESTFRQa or RESTWAVa shouldbe given
when it is meaningful to do so.

8.4.1. Spectral coordinate reference frames

Frequencies, wavelengths, and apparent radial velocitiesare al-
ways referred to some selected standard of rest (i.e., reference
frame). While the spectra are obtained they are, of necessity, in
the observer’s rest frame. The velocity correction from topocen-
tric (the frame in which the measurements are usually made) to
standard reference frames (whichmustbe one of those given in
Table 27) are dependent on the dot product with time-variable
velocity vectors. That is, the velocity with respect to a standard
reference frame depends upon direction, and the velocity (and
frequency and wavelength) with respect to the local standard
of rest is a function of the celestial coordinate within the im-
age. The keywordsSPECSYSa andSSYSOBSa are reserved and,
if used,mustdescribe the reference frame in use for the spectral
axis coordinate(s) and the spectral reference frame that was held
constant during the observation, respectively. In order tocom-
pute the velocities it is necessary to have the date and time of the

39

D
R

A
FT

40

Table 25: Reserved spectral coordinate type codes.

Code1 Type Symbol Assoc. variable Default units
FREQ Frequency ν ν Hz
ENER Energy E ν J
WAVN Wavenumber κ ν m−1

VRAD Radio velocity2 V ν m s−1

WAVE Vacuum wavelength λ λ m
VOPT Optical velocity2 Z λ m s−1

ZOPT Redshift z λ ...
AWAV Air wavelength λa λa m
VELO Apparent radial velocity v v m s−1

BETA Beta factor (v/c) β v ...

(1) Characters 1 through 4 of the value of the keywordCTYPEia. (2) By convention, the ‘radio’ velocity is given byc(ν0 − ν)/ν0 and the ‘optical’
velocity is given byc(λ − λ0)/λ0.

observation; the keywordsDATE-AVG andMJD-AVG are reserved
for this purpose. See also Sect. 9.5.

DATE-AVG – [string; default: none]. Calendar date of the mid-
point of the observation, expressed in the same way as the
DATE-OBS keyword.

MJD-AVG – [floating point; default: none]. Modified Julian Date
(JD – 2,400,000.5) of the mid-point of the observation.

SPECSYSa – [string; default: none]. The reference frame in use
for the spectral axis coordinate(s). Valid values are givenin
Table 27.

SSYSOBSa – [string; default: TOPOCENT]. The spectral refer-
ence frame that is constant over the range of the non-spectral
world coordinates. Valid values are given in Table 27.

The transformation from the rest frame of the observer to a
standard reference frame requires a specification of the location
on Earth13 of the instrument used for the observation in order to
calculate the diurnal Doppler correction due to the Earth’srota-
tion. The location, if specified,shallbe represented as a geocen-
tric Cartesian triple with respect to a standard ellipsoidal geoid
at the time of the observation. While the position can often be
specified with an accuracy of a meter or better, for most pur-
poses positional errors of several kilometers will have negligible
impact on the computed velocity correction. For details, see ref-
erence Greisen et al. (2006).

OBSGEO-X – [floating point; default: none].X−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinatemustbe
valid at the epochMJD-AVG or DATE-AVG.

OBSGEO-Y – [floating point; default: none].Y−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinatemustbe
valid at the epochMJD-AVG or DATE-AVG.

OBSGEO-Z – [floating point; default: none].Z−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinatemustbe
valid at the epochMJD-AVG or DATE-AVG.

13 The specification of location for an instrument on a spacecraft in
flight requires an ephemeris; keywords that might be required in this
circumstance are not defined here.

Table 26: Non-linear spectral algorithm codes.

Code1 Regularly sampled in Expressed as
F2W Frequency Wavelength
F2V Apparent radial velocity
F2A Air wavelength
W2F Wavelength Frequency
W2V Apparent radial velocity
W2A Air wavelength
V2F Apparent radial vel. Frequency
V2W Wavelength
V2A Air wavelength
A2F Air wavelength Frequency
A2W Wavelength
A2V Apparent radial velocity
LOG Logarithm Any four-letter type code
GRI Detector Any type code from Table 25
GRA Detector Any type code from Table 25
TAB Not regular Any four-letter type code
(1) Characters 6 through 8 of the value of the keywordCTYPEia.

Information on the relative radial velocity between the ob-
server and the selected standard of rest in the direction of the
celestial reference coordinatemaybe provided, and if soshall
be given by theVELOSYSa keyword. The frame of rest defined
with respect to the emitting source may be represented inFITS;
for this reference frame it is necessary to define the velocity with
respect to some other frame of rest. The keywordsSPECSYSaand
ZSOURCEa are used to document the choice of reference frame
and the value of the systemic velocity of the source, respectively.

SSYSSRCa – [string; default: none]. Reference frame for the
value expressed in theZSOURCEa keyword to document the
systemic velocity of the observed source. Valuemustbe one
of those given in Table 27exceptfor SOURCE.

VELOSYSa – [floating point; default: none]. Relative radial ve-
locity between the observer and the selected standard of rest
in the direction of the celestial reference coordinate. Units
mustbe m s−1. The CUNITia keyword is not used for this
purpose since the WCS versiona might not be expressed in
velocity units.

ZSOURCEa – [floating point; default: none]. Radial velocity
with respect to an alternative frame of rest, expressed as a
unitless redshift (i.e., velocity as a fraction of the speedof
light in vacuum). Used in conjunction withSSYSSRCa to
document the systemic velocity of the observed source.

40

D
R

A
FT

42

All of the time partmaybe omitted (just leaving the date) or
the decimal secondsmaybe omitted. Leading zeroesmust not
be omitted and timezone designators arenot allowed. This def-
inition is extended to allow five-digit years with amandatory
sign, in accordance with ISO-8601. That is, oneshalluse either
theunsignedfour-digit year format or thesignedfive-digit year
format:

[±C]CCYY-MM-DD[Thh:mm:ss[.s...]]

Note the following:

– In counting years, ISO-8601 follows the convention of in-
cluding year zero. Consequently, for negative year numbers
there is an offset of one from BCE dates which do not recog-
nize a year zero. Thus year 1 corresponds to 1 CE, year 0 to
1 BCE, year−1 to 2 BCE, and so on.

– The earliest date that may be represented in the four-digit
year format is0000-01-01T00:00:00 (in the year 1 BCE);
the latest date is9999-12-31T23:59:59. This representa-
tion of time is tied to the Gregorian calendar. In conformance
with the present ISO-8601:2004(E) standard (ISO 2004b)
dates prior to 1582mustbe interpreted according to the pro-
leptic application of the rules of Gregorius XIII. For dates
not covered by that range the use of Modified Julian Date
(MJD) or Julian Date (JD) numbers or the use of the signed
five-digit year format isrecommended.

– In the five-digit year format the earliest and latest dates are
-99999-01-01T00:00:00 (i.e.,−100 000 BCE) and
+99999-12-31T23:59:59.

– The origin of JD can be written as:
-04713-11-24T12:00:00.

– In time scale UTC the integer part of the seconds field runs
from 00 to 60 (in order to accommodate leap seconds); in all
other time scales the range is 00 to 59.

– The ISO-8601datetimedata type isnot allowedin image
axis descriptions sinceCRVAL is required to be a floating
point value.

– ISO-8601datetimedoes not imply the use of any particular
time scale (see Section 9.2.1).

– As specified by Bunclark & Rots (1997), time zones are ex-
plicitly not supported in FITS and, consequently, appending
the letter‘Z’ to a FITS ISO-8601 string isnot allowed. The
rationale for this rule is that its role in the ISO standard is
that of a time zone indicator, not a time scale indicator. As
the concept of a time zone is not supported in FITS, the use
of time zone indicator is inappropriate.

9.1.2. Julian and Besselian epochs

In a variety of contextsepochsare provided with astronomical
data. Until 1976 these were commonly based on the Besselian
year (see Sect. 9.3), with standard epochs B1900.0 and B1950.0.
After 1976 the transition was made to Julian epochs based on
the Julian year of 365.25 days, with the standard epoch J2000.0.
They are tied to time scales ET and TDB, respectively. Note
that the Besselian epochs are scaled by the variable length of the
Besselian year (see Sect. 9.3 and its cautionary note, whichalso
applies to this context). The Julian epochs are easier to calculate,
as long as one keeps track of leap days.

9.2. Time coordinate frame

9.2.1. Time scale

Thetime scaledefines the temporal reference frame, and is spec-
ified in the header in one of a few ways, depending upon the con-
text. When recorded as a global keyword, the time scaleshallbe
specified by:

TIMESYS – [string; default:’UTC’]. The value field of this key-
word shallcontain a character string code for the time scale
of the time-related keywords. Therecommendedvalues for
this keyword in Table 30 have well defined meanings, but
other valuesmaybe used. If this keyword is absent,’UTC’
mustbe assumed.

In relevant contexts (e.g., time axes in image arrays, table
columns, or random groups)TIMESYS maybe overridden by a
time scale recorded inCTYPEia, its binary table equivalents, or
PTYPEi (see Table 22).

The keywordsTIMESYS, CTYPEia, TCTYPn, andTCTYna or
binary table equivalentmayassume the values listed in Table
30. In addition, for backward compatibility, all exceptTIMESYS

andPTYPEi mayalso assume the valueTIME (case-insensitive),
whereupon the time scaleshallbe that recorded inTIMESYS or,
in its absence, its default value,UTC. As noted above, local time
scales other than those listed in Table 30maybe used, but their
useshouldbe restricted to alternate coordinates in order that the
primary coordinates will always refer to a properly recognized
time scale.

See Rots et al. (2015), Appendix A, for a detailed discussion
of the various time scales. In cases where high-precision tim-
ing is important one may append a specific realization, in paren-
theses, to the values in the table; e.g.,TT(TAI), TT(BIPM08),
UTC(NIST). Note that linearity is not preserved across all time
scales. Specifically, if the reference position remains unchanged
(see Section 9.2.3), the first ten, with the exception ofUT1, are
linear transformations of each other (excepting leap seconds), as
areTDB andTCB. On averageTCB runs faster thanTCG by approx-
imately 1.6×10−8, but the transformation fromTT orTCG (which
are linearly related) is to be achieved through a time ephemeris
as provided by Irwin & Fukushima (1999).

The relations between coordinate time scales and their dy-
namical equivalents have been defined as:

T(TCG)= T(TT) + LG × 86400× (JD(TT) − JD0)
T(TDB) = T(TCB)−LB×86400×(JD(TCB)−JD0)+T DB0

where:
T is in seconds
LG = 6.969290134× 10−10

LB = 1.550519768× 10−8

JD0 = 2443144.5003725
T DB0 = −6.55× 10−5 s

Linearity is virtually guaranteed since images and individual ta-
ble columns do not allow more than one reference position to
be associated with them, and since there is no overlap between
reference positions that are meaningful for the first nine time
scales on the one hand, and for the barycentric ones on the other.
All use of the time scale GMT in FITS filesshallbe taken to
have its zero point at midnight, conformant with UT, including
dates prior to 1925. For high-precision timing prior to 1972, see
Rots et al. (2015), Appendix A.

Some time scales in use are not listed in Table 30 because
they are intrinsically unreliable or ill-defined. When used, they

42

D
R

A
FT

44

TREFPOS – [string; default:TOPOCENTER]. The value field of
this keywordshallcontain a character string code for the
spatial location at which the observation time is valid. The
valueshouldbe one of those given in Table 31. This key-
wordshallapply to time coordinate axes in images as well.

In binary tables different columnsmayrepresent completely
different Time Coordinate Frames. However, each column can
have only one time reference position, thus guaranteeing linear-
ity (see Section 9.2.1).

TRPOSn – [string; default:TOPOCENTER] The value field of this
keywordshallcontain a character string code for the spatial
location at which the observation time is valid. This table
keywordshalloverrideTREFPOS.

The reference position valuemaybe a standard location
(such asGEOCENTER or TOPOCENTER) or a point in space de-
fined by specific coordinates. In the latter case one should be
aware that a (3-D) spatial coordinate frame needs to be defined
that is likely to be different from the frame(s) that the data are
associated with. Note thatTOPOCENTER is only moderately infor-
mative if no observatory location is provided or indicated.The
commonly allowed standard values are shown in Table 31. Note
that for the gaseous planets the barycenters of their planetary
systems, including satellites, are used for obvious reasons. While
it is preferable to spell the location names out in full, in order to
be consistent with the practice of Greisen et al. (2006) the val-
ues are allowed to be truncated to eight characters. Furthermore,
in order to allow for alternative spellings, only the first three
characters of all these valuesshallbe considered significant. The
value of the keywordshallbe case-sensitive.

Table 31: Standard Time Reference Position Values

Value1 Meaning
TOPOCENTER Topocenter: the location from where the ob-

servation was made (default)
GEOCENTER Geocenter
BARYCENTER Barycenter of the Solar System
RELOCATABLE Relocatable: to be used for simulation data

only
CUSTOM A position specified by coordinates that is

not the observatory location

Less common, but allowed standard values are:

HELIOCENTER Heliocenter
GALACTIC Galactic center

EMBARYCENTER Earth-Moon barycenter
MERCURY Center of Mercury
VENUS Center of Venus
MARS Center of Mars

JUPITER Barycenter of the Jupiter system
SATURN Barycenter of the Saturn system
URANUS Barycenter of the Uranus system
NEPTUNE Barycenter of the Neptune system

Notes.(1)Recognized values forTREFPOS, TRPOSn; only the first three
characters of the values are significant and solar system locations are as
specified in the ephemerides.

The reader is cautioned that time scales and reference posi-
tions cannot be combined arbitrarily if one wants a clock that

Table 32: Compatibility of Time Scales and Reference Positions

Reference Time scale1

Position TT, TDT TCG TDB TCB LOCAL
TAI, IAT

GPS
UTC, GMT

TOPOCENTER t ls
GEOCENTER ls c
BARYCENTER ls c
RELOCATABLE c
Other2 re re

Notes.(1)Legend (combination is not recommended if no entry);c: cor-
rect match; reference position coincides with the spatial origin of the
space-time coordinates;t: correct match on Earth’s surface, otherwise
usually linear scaling;ls: linear relativistic scaling;re: non-linear rela-
tivistic scaling.(2)All other locations in the solar system.

runs linearly atTREFPOS. Table 32 provides a summary of com-
patible combinations.BARYCENTER shouldonly be used in con-
junction with time scalesTDB andTCB andshouldbe the only
reference position used with these time scales. With propercare
GEOCENTER, TOPOCENTER, andEMBARYCENTER are appropriate
for the first ten time scales in Table 30. However, relativistic
effects introduce a (generally linear) scaling in certain combi-
nations; highly eccentric spacecraft orbits are the exceptions.
Problems will arise when using a reference position on another
solar system body (includingHELIOCENTER). Therefore it isrec-
ommendedto synchronize the local clock with one of the time
scales defined on the Earth’s surface,TT, TAI, GPS, or UTC (in
the last case: beware of leap seconds). This is common practice
for spacecraft clocks. Locally, such a clock will not appearto
run at a constant rate, because of variations in the gravitational
potential and in motions with respect to Earth, but the effects
can be calculated and are probably small compared with errors
introduced by the alternative: establishing a local time standard.

In order to provide a complete description,TOPOCENTER
requires the observatory’s coordinates to be specified. There
are three options:(a) the ITRS Cartesian coordinates defined
in Sect. 8.4.1 (OBSGEO-X, OBSGEO-Y, OBSGEO-Z), which are
strongly preferred; (b) a geodetic latitude/longitude/elevation
triplet (defined below); or(c) a reference to an orbit ephemeris
file. A set of geodetic coordinates is recognized:

OBSGEO-B – [floating-point] The value field of this keyword
shallcontain the latitude of the observation in deg, with
North positive.

OBSGEO-L – [floating-point] The value field of this keyword
shallcontain the longitude of the observation in deg, with
East positive.

OBSGEO-H – [floating-point] The value field of this keyword
shallcontain the altitude of the observation in meters.

An orbital ephemeris file can instead be specified:

OBSORBIT – [string] The value field of this keyword
shallcontain the character-string URI, URL, or the name of
an orbit ephemeris file.

Beware that only one set of coordinates is allowed in a given
HDU. Cartesian ITRS coordinates are the preferred coordinate

44

D
R

A
FT

45

system; however, when using these in an environment requir-
ing nanosecond accuracy, one should take care to distinguish
between meters consistent with TCG or with TT. If one uses
geodetic coordinates, the geodetic altitudeOBSGEO-H is mea-
sured with respect to the IAU 1976 ellipsoid which is defined
as having a semi-major axis of 6 378 140 m and an inverse flat-
tening of 298.2577.

A non-standard location indicated byCUSTOM mustbe spec-
ified in a manner similar to the specification of the observa-
tory location (indicated byTOPOCENTER). One should be care-
ful with the use of theCUSTOM value and not confuse it with
TOPOCENTER, as use of the latter imparts additional information
on the provenance of the data.

ITRS coordinates (X,Y,Z) may be derived from geodetic co-
ordinates (L,B,H) through:

X = (N(B) + H) cos(L) cos(B)

Y = (N(B) + H) sin(L) cos(B)

Z = (N(B)(1− e2) + H) sin(B)

where:

N(B) =
a

√

1− e2 sin2(B)

e2 = 2 f − f 2

a is the semi-major axis, andf is the inverse of the in-
verse flattening. Nanosecond precision in timing requires that
OBSGEO-[BLH] be expressed in a geodetic reference frame de-
fined after 1984 in order to be sufficiently accurate.

9.2.4. Time reference direction

If any pathlength corrections have been applied to the time
stamps (i.e., if the reference position is notTOPOCENTER for ob-
servational data), the reference direction that is used in calculat-
ing the pathlength delayshouldbe provided in order to maintain
a proper analysis trail of the data. However, this is useful only
if there is also information available on the location from where
the observation was made (the observatory location). The direc-
tion will usually be provided in a spatial coordinate frame that
is already being used for the spatial metadata, although it is con-
ceivable that multiple spatial frames are involved, e.g., spherical
ICRS coordinates for celestial positions, and Cartesian FK5 for
spacecraft ephemeris. The time reference direction does not by
itself provide sufficient information to perform a fully correct
transformation; however, within the context of a specific analy-
sis environment it should suffice.

The uncertainty in the reference direction affects the errors
in the time stamps. A typical example is provided by barycentric
corrections where the time error is related to the position error:

terr(ms)≤ 2.4poserr(arcsec)

The reference direction is indicated through a reference tospe-
cific keywords. These keywordsmayhold the reference direc-
tion explicitly or (for data in BINTABLEs) indicate columns
holding the coordinates. In event lists where the individual
photons are tagged with a spatial position, those coordinates
mayhave been used for the reference direction and the reference
will point to the columns containing these coordinate values. The
time reference directionshallbe specified by the keyword:

TREFDIR – [string] The value field of this keyword
shallcontain a character string composed of: the name of the
keyword containing the longitudinal coordinate, followed
by a comma, followed by the name of the keyword con-
taining the latitudinal coordinate. This reference direction
shallapply to time coordinate axes in images as well.

In binary tables different columnsmayrepresent completely
different Time Coordinate Frames. However, also in that situ-
ation the condition holds that each column can have only one
Time Reference Direction. Hence, the following keyword may
overrideTREFDIR:

TRDIRn – [string] The value field of this keywordshallcontain
a character string consisting of the name of the keyword or
column containing the longitudinal coordinate, followed by
a comma, followed by the name of the keyword or column
containing the latitudinal coordinate. This reference direc-
tion shall apply to time coordinate axes in images as well.

9.2.5. Solar System Ephemeris

If applicable, the Solar System ephemeris used for calculating
pathlength delaysshouldbe identified. This is particularly per-
tinent when the time scale isTCB or TDB. The ephemerides that
are currently most often used are those from JPL (2014a,b).

The Solar System ephemeris used for the data (if required)
shallbe indicated by the following keyword:

PLEPHEM – [string; default: ’DE405’] The value field
of this keyword shallcontain a character string that
shouldrepresent a recognized designation for the Solar
System ephemeris. Recognized designations for JPL Solar
System ephemerides that are often used are listed in
Table 33.

Table 33: Valid solar systemephemerides

Value Reference
’DE200’ Standish (1990); considered obsolete, but still in use
’DE405’ Standish (1998); default
’DE421’ Folkner, et al. (2009)
’DE430’ Folkner, et al. (2014)
’DE431’ Folkner, et al. (2014)
’DE432’ Folkner, et al. (2014)

Future ephemerides in this seriesshallbe accepted and rec-
ognized as they are released. Additional ephemerides designa-
tions may be recognized by the IAUFWG upon request.

9.3. Time unit

When recorded as a global keyword, the unit used to express
timeshall be specified by:

TIMEUNIT – [string; default:’s’] The value field of this key-
word shallcontain a character string that specifies the time
unit; the valueshouldbe one of those given in Table 34. This
time unitshall apply to all time instances and durations that
do not have an implied time unit (such as is the case for JD,
MJD, ISO-8601, J and B epochs). If this keyword is absent,
’s’ shallbe assumed.

45

D
R

A
FT

49

10.1. Tiled Image Compression

The following describes the process for compressing
n−dimensional FITS images and storing the resulting byte
stream in a variable-length column in a FITS binary table, and
for preserving the image header keywords in the table header.
The general principle is to first divide then−dimensional image
into a rectangular grid of subimages or “tiles.” Each tile isthen
compressed as a block of data, and the resulting compressed
byte stream is stored in a row of a variable length column in
a FITS binary table (see Section 7.3). By dividing the image
into tiles it is possible to extract and uncompress subsections
of the image without having to uncompress the whole image.
The default tiling pattern treats each row of a 2-dimensional
image (or higher dimensional cube) as a tile, such that each
tile containsNAXIS1 pixels. This default may not be optimal
for some applications or compression algorithms, so any other
rectangular tiling pattern may be defined using keywords that
are defined below. In the case of relatively small images it may
suffice to compress the entire image as a single tile, resulting
in an output binary table with a single row. In the case of
3-dimensional data cubes, it may be advantageous to treat
each plane of the cube as a separate tile if application software
typically needs to access the cube on a plane-by-plane basis.

10.1.1. Required Keywords

In addition to the mandatory keywords for BINTABLE exten-
sions (see Sect. 7.3.1) the following keywords are reservedfor
use in the header of a FITS binary table extension to describethe
structure of a valid compressed FITS image. All are mandatory.

ZIMAGE – [logical; value’T’] The value field of this keyword
shall contain the logical value’T’ to indicate that the FITS
binary table extension contains a compressed image, and that
logically this extensionshouldbe interpreted as an image
rather than a table.

ZCMPTYPE – [string; default: none] The value field of this key-
word shallcontain a character string giving the name of the
algorithm that was used to compress the image. Only the val-
ues given in Table 36 are permitted; the corresponding algo-
rithms are described in Sect. 10.4. Other algorithms may be
added in the future.

ZBITPIX – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
BITPIX keyword in the uncompressed FITS image.

ZNAXIS – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
NAXIS keyword (i.e., the number of axes) in the uncom-
pressed FITS image.

ZNAXISn – [integer; indexed; default: none) The value field of
these keywordsshall contain a positive integer that gives the
value of the correspondingNAXISn keywords (i.e., the size
of axisn) in the uncompressed FITS image.

The comment fields for theBITPIX, NAXIS, and NAXISn
keywords in the uncompressed imageshouldbe copied to the
corresponding fields in theZBITPIX, ZNAXIS, and ZNAXISn
keywords.

10.1.2. Other Reserved Keywords

The compressed image tilesmustbe stored in the binary table
in the same order that the first pixel in each tile appears in the
FITS image; the tile containing the first pixel in the imagemust
appear in the first row of the table, and the tile containing the
last pixel in the imagemustappear in the last row of the binary
table. The following keywords are reserved for use in describ-
ing compressed images stored in BINTABLE extensions; they
maybe present in the header, and their values depend upon the
type of image compression employed.

ZTILEn – [integer; indexed; default: 1 forn > 1] The value
field of these keywords (wheren is a positive integer index
that ranges from 1 toZNAXIS) shall contain a positive integer
representing the number of pixels along axisn of the com-
pressed tiles. Each tile of pixelsmustbe compressed sepa-
rately and stored in a row of a variable-length vector column
in the binary table. The size of each image dimension (given
byZNAXISn) need not be an integer multiple ofZTILEn, and
if it is not, then the last tile along that dimension of the im-
age will contain fewer image pixels than the other tiles. If the
ZTILEn keywords are not present then the default “row-by-
row” tiling will be assumed, i.e.,ZTILE1 = ZNAXIS1, and
the value of all the otherZTILEn keywordsmustequal 1.

ZNAMEi – [string; indexed; default: none] The value field of
these keywords (wherei is a positive integer index start-
ing with 1) shall supply the names of up to 999 algorithm-
specific parameters that are needed to compress or uncom-
press the image. The order of the compression parameters
maybe significant, andmaybe defined as part of the descrip-
tion of the specific decompression algorithm.

ZVALi – [string; indexed; default: none] The value field of these
keywords (wherei is a positive integer index starting with
1) shall contain the values of up to 999 algorithm-specific
parameters with the same indexi. The value ofZVALi may
have any valid FITS data type.

ZMASKCMP – [string; default: none] The value field of this key-
word shall contain the name of the image compression al-
gorithm that was used to compress the optional null-pixel
data mask. This keyword may be omitted if no null-pixel data
masks appear in the table. See Sect. 10.2.2 for details.

ZQUANTIZ – [string; default:’NO DITHER’] The value field of
this keywordshall contain the name of the algorithm that
was used to quantize floating-point image pixels into inte-
ger values, which were then passed to the compression al-
gorithm as discussed further in Sect. 10.2. If this keyword
is not present, the default is to assume that no dithering was
applied during quantization.

ZDITHER0 – [integer; default: none] The value field of this key-
wordshallcontain a positive integer (that may range from 1
to 10000 inclusive) that gives the seed value for the random
dithering pattern that was used when quantizing the floating-
point pixel values. This keywordmaybe absent if no dither-
ing was applied. See Sect. 10.2 for further discussion.

The following keywords are reserved to preserve a verbatim
copy of thevalue and comment fieldsfor keywords in the origi-
nal uncompressed FITS image that were used to describe its str-
ructure. These optional keywords, when present,shall be used
when reconstructing an identical copy of the original FITS HDU

49

D
R

A
FT

50

of the uncompressed image. Theyshould notappear in the com-
pressed image header unless the corresponding keywords were
present in the uncompressed image.

ZSIMPLE – [logical; value’T’] The value field of this keyword
mustcontain the value of the originalSIMPLE keyword in the
uncompressed image.

ZEXTEND – [string] The value field of this keywordmustcon-
tain the value of the originalEXTEND keyword in the uncom-
pressed image.

ZBLOCKED – [logical] The value field of this keywordmustcon-
tain the value of the originalBLOCKED keyword in the un-
compressed image.

ZTENSION – [string] The value field of this keywordmustcon-
tain the originalXTENSION keyword in the uncompressed
image.

ZPCOUNT – [integer] The value field of this keywordmustcon-
tain the originalPCOUNT keyword in the uncompressed im-
age.

ZGCOUNT – [integer] The value field of this keywordmustcon-
tain the originalGCOUNT keyword in the uncompressed im-
age.

ZHECKSUM – [string] The value field of this keywordmustcon-
tain the originalCHECKSUM keyword (see Sect. 4.4.2.7) in the
uncompressed image.

ZDATASUM – [string] The value field of this keywordmustcon-
tain the originalDATASUM keyword (see Sect. 4.4.2.7) in the
uncompressed image.

TheZSIMPLE, ZEXTEND, andZBLOCKED keywordsmust not
be used unless the original uncompressed image was contained
in the primary array of a FITS file. TheZTENSION, ZPCOUNT,
andZGCOUNT keywordsmust notbe used unless the original un-
compressed image was contained in an IMAGE extension.

The FITS header of the compressed imagemaycontain other
keywords. If a FITS primary array or IMAGE extension is com-
pressed using the procedure described here, it isstrongly recom-
mendedthat all the keywords (including comment fields) in the
header of the original image, except for the mandatory keywords
mentioned above, be copied verbatim and in the same order into
the header of the binary table extension that contains the com-
pressed image. All these keywords will have the same mean-
ing and interpretation as they did in the original image, even in
cases where the keyword is not normally expected to occur in the
header of a binary table extension (e.g., theBSCALE andBZERO
keywords, or the World Coordinate System keywords such as
CTYPEn, CRPIXn andCRVALn).

10.1.3. Table Columns

Two columns in the FITS binary table are defined below to con-
tain the compressed image tiles; the order of the columns in the
table is not significant. One of the table columns describes op-
tional content; but when this column appears itmustbe used as
defined in this section. The column names (given by theTTYPEn
keyword) are reserved; they are shown here in upper case letters,
but case is not significant.

COMPRESSED DATA – [required; variable-length] Each row of
this columnmustcontain the byte stream that is generated

as a result of compressing the corresponding image tile. The
data type of the column (as given by theTFORMn keyword)
mustbe one of’1PB’, ’1PI’, or ’1PJ’ (or the equivalent
’1QB’, ’1QI’, or ’1QJ’), depending on whether the com-
pression algorithm generates an output stream of 8-bit bytes,
or integers of 16-, or 32-bits.

When using the quantization method to compress floating-
point images that is described in Sect. 10.2, it sometimes may
not be possible to quantize some of the tiles (e.g., if the range of
pixels values is too large or if most of the pixels have the same
value and hence the calculated RMS noise level in the tile is
close to zero). There also may be other rare cases where the nom-
inal compression algorithm cannot be applied to certain tiles. In
these cases, an alternate techniquemaybe used in which the raw
pixel values are losslessly compressed with the GZIP algorithm.

GZIP COMPRESSED DATA [optional; variable-length] If the raw
pixel values in an image tile are losslessly compressed with
the GZIP algorithm, the resulting byte streammustbe stored
in this column (with a’1PB’ or ’1QB’ variable-length ar-
ray column format). The correspondingCOMPRESSED DATA

column for these tilesmustcontain a null pointer (i.e., the
pair of integers that constitute the descriptor for the column
mustboth have the value zero: see Sect. 7.3.5).

The compressed data columns described abovemayuse ei-
ther the’1P’ or’1Q’ variable-length array FITS column format
if the size of the heap in the compressed FITS file is< 2.1 GB. If
the the heap is larger than 2.1 GB, then the’1Q’ format (which
uses 64-bit pointers)mustbe used.

When using the optional quantization method described in
Sect. 10.2 to compress floating-point images, the following
columns arerequired.

ZSCALE – [floating-point; optional] This columnshallbe used
to contain linear scale factors that, along withZZERO, trans-
form the floating-point pixel values in each tile to integers
via,

I i = round
(Fi − ZZERO

ZSCALE

)

(12)

whereI i andFi are the integer and (original) floating-point
values of the image pixels, respectively and theround func-
tion rounds the result to the nearest integer value.

ZZERO – [floating-point; optional] This columnshallbe used to
contain zero point offsets that are used to scale the floating-
point pixel values in each tile to integers via Eq. 12.

Do not confuse theZSCALE and ZZERO columns with the
BSCALE andBZERO keywords (defined in Sect. 4.4.2) which may
be present in integer FITS images. Any such integer images
should normally be compressed without any further scaling,and
theBSCALE andBZERO keywordsshouldbe copied verbatim into
the header of the binary table containing the compressed image.

Some images contain undefined pixel values; in uncom-
pressed floating-point images these pixels have an IEEE NaN
value. However, these pixel values will be altered when using
the quantization method described in Sect. 10.2 to compress
floating-point images. The value of the undefined pixelsmaybe
preserved in the following way.

50

D
R

A
FT

53

are the mandatoryNAXIS1, NAXIS2, PCOUNT, andTFORMn key-
words, and the optionalCHECKSUM, DATASUM (see Sect. 4.4.2.7),
andTHEAP keywords. These keywords must necessarily describe
the contents and structure of the compressed table itself. The
original values of these keywords in the uncompressed table
mustbe stored in a new set of reserved keywords in the com-
pressed table header. Note that there is no need to preserve a
copy of theGCOUNT keyword because the value is always equal
to 1 for BINTABLES. The complete set of keywords that have a
reserved meaning within a tile-compressed binary table aregiven
below:

ZTABLE – [logical; value:’T’] The value field of this keyword
shall be’T’ to indicate that the FITS binary table extension
contains a compressed BINTABLE, and that logically this
extensionshouldbe interpreted as a tile-compressed binary
table.

ZNAXIS1 – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
NAXIS1 keyword in the original uncompressed FITS table
header. This represents the width in bytes of each row in the
uncompressed table.

ZNAXIS2 – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
NAXIS2 keyword in the original uncompressed FITS table
header. This represents the number of rows in the uncom-
pressed table.

ZPCOUNT – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
PCOUNT keyword in the original uncompressed FITS table
header.

ZFORMn – [string; indexed; default: none] The value field of
these keywordsshallcontain thestringstring values of the
correspondingTFORMn keywords that defines the data type
of columnn in the original uncompressed FITS table.

ZCTYPn – [string; indexed; default: none] The value field
of these keywordsshallcontain the character string value
mnemonic name of the algorithm that was used to compress
columnn of the table. The only permitted values are given in
Sect. 10.3.5, and the corresponding algorithms are described
in Sect 10.4.

ZTILELEN – [integer; default: none] The value field of this
keywordshall contain an integer representing the number of
rows of data from the original binary table that are contained
in each tile of the compressed table. The number of rows
in the last tile may be less than in the previous tiles. Note
that if the entire table is compressed as a single tile, then
the compressed table will only contains a single row, and the
ZTILELEN andZNAXIS2 keywords will have the same value.

10.3.2. Procedure for Table Compression

The procedure for compressing a FITS binary table consists of
the following sequence of steps:

1. Divide table into tiles (optional)
In order to limit the amount of data that must be managed
at one time, large FITS tablesmaybe divided into tiles, each
containing the same number of rows (except for the last tile
whichmaycontain fewer rows). Each tile of the table is com-

pressed in order and each is stored in a single row in the out-
put compressed table. There is no fixed upper limit on the al-
lowed tile size, but for practical purposes it isrecommended
that it not exceed 100 MB.

2. Decompose each tile into the component columns
FITS binary tables are physically stored in row-by-row se-
quential order, such that the data values for the first row in
each column are followed by the values in the second row,
and so on (see Sect. 7.3.3). Because adjacent columns in
binary tables can contain very non-homogeneous types of
data, it can be challenging to efficiently compress the native
stream of bytes in the FITS tables. For this reason, the table
is first decomposed into its component columns, and then
each column of data is compressed separately. This also al-
lows one to choose the most efficient compression algorithm
for each column.

3. Compress each column of data
Each column of datamustbe compressed with one of the
lossless compression algorithms described in Sect. 10.4. If
the table is divided into tiles, then the same compression al-
gorithmmustbe applied to a given column in every tile. In
the case of variable-length array columns (where the data
are stored in the table heap: see Sect. 7.3.5), each individual
variable length vectormustbe compressed separately.

4. Store the compressed bytes
The compressed stream of bytes for each columnmustbe
written into the corresponding column in the output table.
The compressed tablemust have exactly the same num-
ber and order of columns as the input table, however the
data type of the columns in the output table will all have a
variable-length byte data type, withTFORMn = ’1QB’. Each
row in the compressed table corresponds to a tile of rows in
the uncompressed table.
In the case of variable-length array columns, the array of
descriptors that point to each compressed variable-length
array, as well as the array of descriptors from the input
uncompressed table,mustalso be compressed and written
into the corresponding column in the compressed table. See
Sect. 10.3.6 for more details.

10.3.3. Compression Directive Keywords

The following compression-directive keywords, if presentin the
header of the table to be compressed, are reserved to provide
guidance to the compression software on how the table shouldbe
compressed. The compression softwareshouldattempt to obey
these directives, but if that is not possible the software may dis-
regard them and use an appropriate alternative. These keywords
are optional, but must be used as specified below.

– FZTILELN – [integer] The value field of this keyword
shallcontain an integer that specifies the requested number
of table rows in each tile which are to be compressed as a
group.

– FZALGOR – [string] The value field of this keyword
shallcontain a character string giving the mnemonic name
of the algorithm that is requested to be used by default to
compress every column in the table. The permitted values
are given in Sect. 10.3.5.

53

D
R

A
FT

54

– FZALGn – [string; indexed] The value fields of these key-
wordsshallcontain a character string giving the mnemonic
name of the algorithm that is requested to compress column
n of the table. The current allowed values are the same as for
the FZALGOR keyword. TheFZALGn keyword takes prece-
dence overFZALGOR in determining which algorithm to use
for a particular column if both keywords are present.

10.3.4. Other Reserved Keywords

The following keywords are reserved to store a verbatim copy
of the value and comment fields for specific keywords in the
original uncompressed BINTABLE. These keywords, if present,
shouldbe used to reconstruct an identical copy of the uncom-
pressed BINTABLE, andshould notappear in the compressed
table header unless the corresponding keywords were present in
the uncompressed BINTABLE.

ZTHEAP – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
THEAP keyword if present in the original uncompressed FITS
table header.

ZHECKSUM – [string; default: none] The value field of this key-
word shallcontain a character string that gives the value of
theCHECKSUM keyword (see Sect. 4.4.2.7) in the original un-
compressed FITS HDU.

ZDATASUM – [string; default: none] The value field of this key-
word shallcontain a character that gives the value of the
DATASUM keyword (see Sect. 4.4.2.7) in the original uncom-
pressed FITS HDU.

10.3.5. Supported Compression Algorithms for Tables

The permitted algorithms for compressing BINTABLE columns
are RICE 1, GZIP 1, and GZIP 2 (plus NOCOMPRESS), which
are lossless and are described in Sect. 10.4. Lossy compression
could be allowed in the future once a process is defined to pre-
serve the details of the compression.

10.3.6. Compressing Variable-Length Array Columns

Compression of BINTABLE tiles that contain variable-length ar-
ray (VLA) columns requires special consideration because the
array values in these columns are not stored directly in the table,
but are instead stored in a data heap which follows the main table
(see Sect. 7.3.5). The VLA column in the original, uncompressed
table only contains descriptors, which are composed of two in-
tegers that give the size and location of the arrays in the heap.
When uncompressing, these descriptor values will be neededto
write the uncompressed VLAs back into the same location in the
heap as in the original uncompressed table. Thus, the following
processmustbe followed, in order, when compressing a VLA
column within a tile:

1. For each VLA in the column:
– Read the array from the input table and compress it using

the algorithm specified byZCTYP for this VLA column.
– Write the resulting bytestream to the heap of the com-

pressed table.
– Store (or append) the descriptors to the compressed

bytestream (whichmustbe 64-bit Q-type) in a temporary
array.

2. Append the VLA descriptors from the uncompressed table
(whichmaybe either Q-type or P-type) to the temporary ar-
ray of VLA descriptors for the compressed table.

3. Compress the combined array of descriptors usingGZIP 1,
and write that byte stream into the corresponding VLA col-
umn in the output table, so that the compressed array is ap-
pended to the heap.

When uncompressing a VLA column, two stages of uncom-
pressionmustbe performed in order:

1. Uncompress the combined array of descriptors using the
gzip algorithm.

2. For each descriptor to a compressed array:
– Read the compressed VLA from the compressed ta-

ble and uncompress it using the algorithm specified by
ZCTYP for this VLA column.

– Write it to the correct location in the uncompressed table.

10.4. Compression Algorithms

Table 36: Valid mnemonic values for theZCMPTYPE andZCTYPn
keywords

Value Sect. Compression Type
’RICE 1’ 10.4.1 Rice algorithm for integer data
’GZIP 1’ 10.4.2 Combination of the LZ77 algorithm

and Huffman coding, used in Gnu
GZIP

’GZIP 2’ 10.4.2 Like ’GZIP 1’, but with reshuffled
pixel values

’PLIO 1’ 10.4.3 IRAF PLIO algorithm for integer data
’HCOMPRESS 1’ 10.4.4 H-compress algorithm for 2-D images
’NOCOMPRESS’ The HDU remains uncompressed

The name of the permitted algorithms for compressing FITS
HDUs, as recorded in theZCMPTYPE keyword, are listed in
Table 36; if other types are later supported, theymust be
registered with the IAUFWG to reserve the keyword values.
Keywords for the parameters of supported compression algo-
rithms have also been reserved, and are described with each
algorithm in the subsections below. If alternative compression
algorithms require keywords beyond those defined below, they
mustalso be registered with the IAUFWG to reserve the associ-
ated keyword names.

10.4.1. Rice compression

When ZCMPTYPE = ’RICE 1’ the Rice algorithm (Rice et al.
1993) shall be used for data (de)compression. When selected,
the keywords in Table 37shouldalso appear in the header with
one of the values indicated. If these keywords are absent, then
their default valuesmustbe used. The Rice algorithm is loss-
less, but can only be applied to integer-valued arrays. It offers
a significant performance advantage over the other compression
techniques (see White et al. 2013).

10.4.2. GZIP compression

WhenZCMPTYPE = ’GZIP 1’ the gzip algorithmshallbe used
for data (de)compression. There are no algorithm parameters,
so the keywordsZNAMEn andZVALn should notappear in the

54

