44

9.7. Durations coordinate specified in a non-recognized time scale asstiraes

alue of the axis pixels or the column cells, optionally nfiedi

There is an extensive collection of header keywords that in%y applicable scaling ariar reference value keywords; see also
cate time durations, such as exposure times, but there arg M&action 9.2.1 '

pitfalls and subtleties that make this seemingly simplecept
treacherous. Because of their crucial role and common eye, k
words are defined below to record exposure and elapsed timed.8.2. Restrictions on alternate descriptions

XPOSURE — [floating-point] The value field of this keyword An image will have at most one time axis as identified by hav-

shall contain the value for theffective exposure duration foriNd the CTYPE value of TIME or one of the values listed in

the data, corrected for dead time and lost time in the unit&Ple 30. Consequently, as long as the axis is identifiedigiro

of TIMEUNIT. If the HDU contains multiple time slices, this¢TYPEI, there is no need to have axis number identification

valueshall be the total accumulated exposure time over g the global time-related keywords. It is expressly praad

slices. to specify more than one time reference position on this axis

. . , . for alternate time coordinate frames, since this would gise

TELAPSE — [floating-point] The value field of this keyword o complicated model-dependent non-linear relations eetw

shall contain the value for the amount of time elapsed, ihase frames. Hence, time scaf®® andTCB (Or ET, 10 its pre-

the units of TTMEUNIT, between the start and the end of thejsion) may be specified in the same image, but cannot be com-

observation or data siream. bined with any of the first nine time scales in Table 30; thas fi

. . ine can be expressed as linear transformations of each othe
Durationsmust notbe expressed in 1SO-8601 format, buFoo, provided the reference position remains unchangexe Ti
only as actual durations (i.e., numerical values) in thdésuof

e . scaleLOCAL is by itself, intended for simulations, and should
the specified time unit.

. not be mixed with any of the others.
Good-Time-Interval (GTI) tables are common for exposures Y

with gaps in them, particularly photon-event files, as theken
it possible to distinguish time intervals with “no signatéeted” 9.8.3. Image time axes

from “no data taken.” GTI tables in BINTABLE extensions : . : :
mustcontain two mandatory columnSTART and STOP, and Section 8.2 requires keyword®VALia to be numeric and they

maycontain one optional columMEIGHT. The first two define ¢@NNOtbe expressed in ISO-8601 format. Thereforeégsired

the interval, the third, with a value between 0 and 1, theityual that CR_VALia co_ntain the ela_psed 'gime_in unit_s .MMEUNIT or
of the intervali.e., a weight of 0 indicates Bad-Time-Interval. CUNITia, even if the zero point of time is specified DYTEREF.

WEIGHT has a default value of 1. Any time interval not coverel] the image does not use a matrix for scaling, rotation and
in the table shall be considered to have a weight of zero. shear (Greisen & Ca_llabr_etta 200Z]ELTia provides _the nu-
meric value for the time interval. If theC form of scaling, ro-

tation and shear (Greisen & Calabretta 2002) is uSBHL.Tia

9.8. Recommended best practices provides the numeric value for the time interval, ®4d j, where
. S . . i = j = the index of the time axis (in the typical case of an im-
The following guidelines should be helpful in creating dattad- age cube with axis 3 being time,= | = 3) would take the

ucts with a complete and correct time rCPIGGEEERLIoN. exact value 1, the default (Greisen & Calabretta 2002). When

the CDi_j form of mapping is used;Di_j provides the numeric
: value for the time interval. If one of the axes is time and the
recommendeh all HDUs. matrix form is used, then the treatment of #@&_ja (or CDi_ja)

— One or more of the informational keywor@sTE-xxxx T . .
andor MID-xxxx shouldbe present in all HDUs whenever aTmatrlces involves at least a Minkowsky metric and Lorerdns-

meaningful value can be determined. This also applies, e_8_rmat|ons (as contrasted with Euclidean and Galilean).
to catalogs derived from data collected over a well-defined
time range.
— The global keyword IMESYS is strongly recommended
— The global keyword¥JDREF or JDREF or DATEREF arerec- Minimizing data volume is important in may contexts, partic
ommended larly for publishers of large astronomical data collectiofihe
— The remaining informational and global keywost®uldbe following sections describe compressed representatibdata
present whenever applicable. in FITS images and BINTABLES that preserve metadata and
— All context-specific keywordshall be present as needed andillow for full or partial extraction of the original data asces-
required by the context of the data. sary. The resulting FITS file structure is independent ofsihe-
cific data compression algorithm employed. The impleménat
details for some compression algorithms that are widehduse
in astronomy are defined in Sect. 10.4, but other compression
For reference to the keywords that are discussed here, bée Téechniques could also be supported. See the FITS convétion
22. The globally applicable keywords listed in section Blaf t White et al. (2013) for details of the compression technsbat
table serve as default values for the correspondingndTC* beware that the specifications in this Standsindll supersede
keywords in that same section, but only when axis and colurtimse in the registered convention.
specifications (including alternate coordinate defingjonse a Compression of FITS files can be beneficial for sites that
time scale listed in Table 30 or when the correspondififPE store or distribute large quantities of data; the presectiage
or TTYPE keywords are set to the valU&IME’. Any alternate provides a standard framework that addresses such neeids- As

— The presence of the informatiorTTE keyword isstrongly

10. Representations of compressed data

9.8.1. Global keywords and overrides

44

45

plementation of compressifitecompression codes can be quite value of the correspondingAXISn keywords (i.e., the size

complex, not all FITS reading and writing software is neaeess
ily expected to support these capabilities. Externaltigdiare
available to compress and uncompress FITS!iles

of axisn) in the uncompressed FITS image.

The comment fields for th8ITPIX, NAXIS, and NAXISn

keywords in the uncompressed imagfgouldbe copied to the

10.1. Tiled Image Compression

The following describes the process for
n—-dimensional FITS images and storing the resulting by
stream in a variable-length column in a FITS binary table an

corresponding fields in th@BITPIX, ZNAXIS, and ZNAXISn
keywords.

compressing
%%.1.2. Other Reserved Keywords

for preserving the image header keywords in the table headitie compressed image tilesustbe stored in the binary table
The general principle is to first divide tme-dimensional image in the same order that the first pixel in each tile appearseén th
into a rectangular grid of subimages or “tiles.” Each tiléhien FITS image; the tile containing the first pixel in the imagast
compressed as a block of data, and the resulting compresapdear in the first row of the table, and the tile containing th
byte stream is stored in a row of a variable length column last pixel in the imagenustappear in the last row of the binary

a FITS binary table (see Section 7.3). By dividing the imagable. The following keywords are reserved for use in déscri
into tiles it is possible to extract and uncompress subsesti ing compressed images stored in BINTABLE extensions; they
of the image without having to uncompress the whole imageaybe present in the header, and their values depend upon the
The default tiling pattern treats each row of a 2-dimendiontype of image compression employed.

image (or higher dimensional cube) as a tile, such that each

tile containsNAXIS1 pixels. This default may not be optimal zTILEn — [integer; indexed; default: 1 far > 1] The value

for some applications or compression algorithms, so angroth

field of these keywords (whereis a positive integer index

rectangular tiling pattern may be defined using keywords tha that ranges from 1 tBNAXIS) shall contain a positive integer

are defined below. In the case of relatively small images i ma

representing the number of pixels along axief the com-

sufice to compress the entire image as a single tile, resulting pressed tiles. Each tile of pixetsustbe compressed sepa-

in an output binary table with a single row. In the case of

rately and stored in a row of a variable-length vector column

3-dimensional data cubes, it may be advantageous to treatin the binary table. The size of each image dimension (given

each plane of the cube as a separate tile if application aoftw
typically needs to access the cube on a plane-by-plane basis

10.1.1. Required Keywords
In addition to the mandatory keywords for BINTABLE exten-

by ZNAXISn) need not be an integer multiple BTILEn, and

if it is not, then the last tile along that dimension of the im-
age will contain fewer image pixels than the other tileshé t
ZTILEn keywords are not present then the default “row-by-
row” tiling will be assumed, i.e.ZTILE1 = ZNAXIS1, and
the value of all the otheZTILEn keywordsmustequal 1.

sions (see Sect. 7.3.1) the following keywords are reseiwed zyaMEi — [string; indexed; default: none] The value field of

use in the header of a FITS binary table extension to desttrébe
structure of a valid compressed FITS image. All are mangator

ZIMAGE - [logical; value’T’] The value field of this keyword
shall contain the logical valuéT’ to indicate that the FITS

these keywords (whereis a positive integer index start-
ing with 1) shall supply the names of up to 999 algorithm-
specific parameters that are needed to compress or uncom-
press the image. The order of the compression parameters
maybe significant, anthaybe defined as part of the descrip-

binary table extension contains a compressed image, and tha tion of the specific decompression algorithm.
logically this extensiorshouldbe interpreted as an image zyaj — [string; indexed; default: none] The value field of these

rather than a table.
ZCMPTYPE — [string; default: none] The value field of this key-

keywords (where is a positive integer index starting with
1) shallcontain the values of up to 999 algorithm-specific

word shall contain a character string giving the name of the parameters with the same indexThe value ofZVALi may
algorithm that was used to compress the image. Only the val- have any valid FITS data type.

ues given in Table 36 are permitted; the corresponding alggyaskcyp — [string; default: none] The value field of this key-
rithms are described in Sect. 10.4. Other algorithms may be \yord shall contain the name of the image compression al-

added in the future.

ZBITPIX — [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
BITPIX keyword in the uncompressed FITS image.

ZNAXIS — [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
NAXIS keyword (i.e., the number of axes) in the uncom-
pressed FITS image.

ZNAXISn — [integer; indexed; default: none) The value field of
these keywordshall contain a positive integer that gives the

14 e.g. fpack/funpack, seehttps://heasarc.gsfc.nasa.gov/
fitsio/fpack/

gorithm that was used to compress the optional null-pixel
data mask. This keyword may be omitted if no null-pixel data
masks appear in the table. See Sect. 10.2.2 for details.

ZQUANTIZ — [string; default’ NO_DITHER’] The value field of

this keywordshall contain the name of the algorithm that
was used to quantize floating-point image pixels into inte-
ger values, which were then passed to the compression al-
gorithm as discussed further in Sect. 10.2. If this keyword
is not present, the default is to assume that no dithering was
applied during quantization.

ZDITHERGO — [integer; default: none] The value field of this key-

word shall contain a positive integer (that may range from 1
to 10000 inclusive) that gives the seed value for the random

45

46

dithering pattern that was used when quantizing the floatinble is not significant. One of the table columns descrilges o
point pixel values. This keywomhaybe absent if no dither- tional content; but when this column appeamniistbe used as

ing was applied. See Sect. 10.2 for further discussion.

The following keywords are reserved to preserve a verbat
copy of thevalue and comment fieldsr keywords in the origi-

defined in this section. The column names (given byItiEPEN
keyword) are reserved; they are shown here in upper caseslett
{0t case is not significant.

nal uncompressed FITS image that were used to describe-its stoMPRESSED_DATA — [required; variable-length] Each row of

ructure. These optional keywords, when presehéll be used
when reconstructing an identical copy of the original FITSU
of the uncompressed image. The&hould noappear in the com-

this columnmustcontain the byte stream that is generated
as a result of compressing the corresponding image tile. The
data type of the column (as given by thEORMNn keyword)

pressed image header unless the corresponding keyworés wer mystbe one of 1PB’, *1PI’, or’1PJ’ (or the equivalent

present in the uncompressed image.

ZSIMPLE — [logical; value’T’] The value field of this keyword
mustcontain the value of the origin&IMPLE keyword in the
uncompressed image.

ZEXTEND — [string] The value field of this keyworthustcon-

"1QB’, ’1QI’, or’1QJ’), depending on whether the com-
pression algorithm generates an output stream of 8-bisbyte
or integers of 16-, or 32-bits.

When using the quantization method to compress floating-

point images that is described in Sect. 10.2, it sometimegs ma

tain the value of the origin@XTEND keyword in the uncom- not be possible to quantize some of the tiles (e.g., if thgead

pressed image.
ZBLOCKED — [logical] The value field of this keywonshustcon-

pixels values is too large or if most of the pixels have theesam
value and hence the calculated RMS noise level in the tile is

tain the value of the originaBLOCKED keyword in the un- close to zero). There also may be other rare cases wherertie no

compressed image.

ZTENSION — [string] The value field of this keywonshustcon-
tain the originalXTENSION keyword in the uncompressed
image.

ZPCOUNT - [integer] The value field of this keywordustcon-
tain the originalPCOUNT keyword in the uncompressed im-
age.

ZGCOUNT - [integer] The value field of this keywordustcon-
tain the originalGCOUNT keyword in the uncompressed im-
age.

ZHECKSUM — [string] The value field of this keywonshustcon-
tain the originalCHECKSUM keyword (see Sect. 4.4.2.7) in the
uncompressed image.

ZDATASUM — [string] The value field of this keywonshustcon-

inal compression algorithm cannot be applied to certa@stiln
these cases, an alternate techniauzgrbe used in which the raw
pixel values are losslessly compressed with the GZIP alyuri

GZIP_COMPRESSED_DATA [optional; variable-length] If the raw

pixel values in an image tile are losslessly compressed with
the GZIP algorithm, the resulting byte streamistbe stored

in this column (with a’ 1PB’ or ' 1QB’ variable-length ar-
ray column format). The correspondi@QMPRESSED DATA
column for these tilesnustcontain a null pointer (i.e., the
pair of integers that constitute the descriptor for the goiu
mustboth have the value zero: see Sect. 7.3.5).

The compressed data columns described abmsguse ei-

therthe’ 1P’ or ’ 1Q’ variable-length array FITS column format
if the size of the heap in the compressed FITS file B1 GB. If

tain the originaDATASUM keyword (see Sect. 4.4.2.7) in thehe the heap is larger than 2.1 GB, then thq’ format (which

uncompressed image.

uses 64-bit pointerghustbe used.

When using the optional quantization method described in

The ZSIMPLE, ZEXTEND, andZBLOCKED keywordsmust not Sect. 10.2 to compress floating-point images, the following
be used unless the original uncompressed image was camhtaig@lumns areequired

in the primary array of a FITS file. ThRETENSION, ZPCOUNT,

andZGCOUNT keywordsmust notbe used unless the original un- ZSCALE — [floating-point; optional] This columshallbe used

compressed image was contained in an IMAGE extension.
The FITS header of the compressed imaggy contain other

keywords. If a FITS primary array or IMAGE extension is com-

pressed using the procedure described heresitasgly recom-

mendedhat all the keywords (including comment fields) in the

header of the original image, except for the mandatory kege/o

to contain linear scale factors that, along WAIZERO, trans-
form the floating-point pixel values in each tile to integers
via,

Fi — ZZERO
li = round('i)

12
ZSCALE (12)

mentioned above, be copied verbatim and in the same order int wherel; andF; are the integer and (original) floating-point

the header of the binary table extension that contains the co

values of the image pixels, respectively andtband func-

pressed image. All these keywords will have the same mean- tion rounds the result to the nearest integer value.

ing and interpretation as they did in the original image newe
cases where the keyword is not normally expected to occhein t
header of a binary table extension (e.g., BSEALE andBZERO

keywords, or the World Coordinate System keywords such as

CTYPEN, CRPIXn andCRVALN).

ZZERO — [floating-point; optional] This columshall be used to

contain zero point fisets that are used to scale the floating-
point pixel values in each tile to integers via Eq. 12.

Do not confuse th&SCALE and ZZERO columns with the

BSCALE andBZERO keywords (defined in Sect. 4.4.2) which may

10.1.3. Table Columns

be present in integer FITS images. Any such integer images

should normally be compressed without any further scaking,
Two columns in the FITS binary table are defined below to cotheBSCALE andBZERO keywordsshouldbe copied verbatim into
tain the compressed image tiles; the order of the columrtsein the header of the binary table containing the compressegdma

46

47

Some images contain undefined pixel values; in uncomiven bylog,(Q) + 1.792. Q results directly related to the com-
pressed floating-point images these pixels have an IEEE Nphessed file size: decreasing Q by a factor of 2 will decrease
value. However, these pixel values will be altered whengisitthe file size by about 1 Bjtixel. In order to achieve the great-
the quantization method described in Sect. 10.2 to comprest amount of compression, one should use the smallest value
floating-point images. The value of the undefined pixeég/be of Q that still preserves the required amount of photomeimnit
preserved in the following way. astrometric precision in the image. Image quality will réma

comparable regardless of the noise level.

ZBLANK — [integer; optional] When present, this column A potential problem when applying this scaling method to
shallbe used to store the integer value that represents wstronomical images, in particular, is that it can lead tpshesn-
defined pixels in the scaled integer array. Teeommended atic bias in the measured intensities in faint parts of thagen
value forZBLANK is —2147483648, the largest negative 32As the image is quantized more coarsely, the measured itytens
bit integer. If the same null value is used in every tile of thef the background regions of the sky will tend to be biased to-
image, therZBLANK maybe given in a header keyword in-wards the nearest quantize level. One vefgaive technique
stead of a table column; if both a keyword and a table colunfior minimizing this potential bias is tditherthe quantized pixel
namedZBLANK are present, the values in the table columwalues by introducing random noise during the quantizgiron
mustbe used. If there are no undefined pixels in the imagess. So instead of simply scaling every pixel value in tmeesa
thenZBLANK is not requiredto be present either as a tablavay using Eqg. 12, the quantized levels are randomized byusin

column or a keyword. this slightly modified equation:
If the uncompressed image has an integer data type round(Fi — ZZERO +R - 0.5) (13)
(ZBITPIX > 0) then the value of undefined pixels is given by the ZSCALE

BLANK keyword (see Sect. 5.3), whighouldbe used instead \yhereR, is a random number between 0.0 and 1.0, and 0.5 is

of ZBLANK. When using some compression techniques that dpiracted so that the mean quantity equals 0. Then regtien
not exactly preserve integer pixel values, it may be necg$sa fiqating-point value, the sam@ is used with the inverse for-
store the location of the undefined pixels prior to cOmpreEssi 1 yia:

the image. The locatiomeaybe stored in an image mask, which
mustitself be compressed and stored in a table column with tif¢ = ((I; — R + 0.5) * ZSCALE) + ZZERO (24)
following definition. See Sect. 10.2.2 for more details. . o) o
This “subtractive dithering” technique has théeet of dithering
NULL_PIXEL MASK — [integer array; optional] When presentthe zero-point of the quantization grid on a pixel by pixesisa
this columnshallbe used to store, in compressed form, aithout adding any actual noise to the image. The fietoe of
image mask with the same original dimensions as the uiis is that the mean (and median) pixel value in faint region
compressed image, that records the location of the undefidghe image more closely approximate the value in the origi-
pixels. The process defined in Sect. 10.gh2llbe used to hal unquantized image than if all the pixels are scaled witho
construct the compressed pixel mask. dithering.
The key requirement when using this subtractive dithering
Additional columnsmaybe present in the table to supplytechnique is thathe exact same random number sequemast
other parameters that relate to each image tile. Howevesgethbe used when quantizing the pixel values to integers, anchwhe

parametershould notbe recorded in the image HDU when thdestoring them to floating point values. While most computer
uncompressed image is restored. languages supply a function for generating random numbers,

these functions are not guaranteed to generate the sanensequ
o) 4 of numbers every time. An algorithm for generating a repaata
10.2. Quantization of Floating-Point Data sequence of pseudo random numbers is given in Appendisl; thi

While floating-point format images may be losslessly condlgorithmmustbe used when applying a subtractive dither.

pressed, noisy images often do not compress very well. Highe

compression can only be achieved by removing some of thig 2 1. Dithering Algorithms

noise without losing the useful information content. Oneneo)

monly used technique for reducing the noise is to scale th&€ ZQUANTIZ keyword, if presentmusthave one of the fol-

floating-point values into quantized integers using Eq.aif 0wing values to indicate the type of quantization, if arhatt

using theZSCALE and ZZERO columns to record the two scal-Was applied to the floating-point image for compression:

ing codficients that are used for each tile. Note that the absence L i i

of these two columns in a tile-compressed floating-poingiena NO-DITHER — No dithering was performed; the floating-point

is an indication that the image was not scaled and was insteadPxelS were simply quantized using Eq. 12. This option

losslessly compressed. shallbe assumed if th2QUANTIZ key_word is not present in
An effective scaling algorithm for preserving a speci- the header of the compressed floating-point image.

fied amount of noise in each pixel value is described bySUBTRACTIVE DITHER 1 - The basic subtractive dithering was

White & Greenfield (1999) and by Pence et al. (2009). With this performed, the algorithm for which is described below. Note

method, the ZSCALE value (which is numerically equal to the that an image quantized using this technique can still be un-

spacing between adjacent quantization levels) is cakedikatbe quantized using the simple linear scaling function given by

some fraction, Q, of the RMS noise as measured in background Eq. 12, at the cost of introducing slightly more noise in the

regions of the image. Pence et al. (2009) shows that the numbe image than if the full subtractive dithering algorithm were

of binary bits of noise that are preserved in each pixel vidue applied.

47

48

SUBTRACTIVE DITHER 2 — This dithering algorithm is identi- 7. Write the = compressed bytestream into the

pointimage is the following:

1.

48

cal to that forSUBTRACTIVE DITHER.1, except that any pix- COMPRESSED DATA column in the appropriate row of
els in the floating-point image that are exactly equal to 0.0 the binary table corresponding to that tile.

are represented by the reserved vah2147483647 in the 8. Write the linear scaling and zero point values that weeglus
quantized integer array. When the image is subsequently un-in Eq. 13 for that tile into th&SCALE andZZERO columns,
compressed and unscaled, these pixelst berestored to respectively, in the same row of the binary table.

their original value of 0.0. This dithering option is useful 9. Repeat Steps 4 through 8 for each tile of the image.

the zero-valued pixels have special significance to the data

ggfﬂﬁﬁ:rzgﬂware, so that the value of these pi tnot 10.2.2. Preserving undefined pixels with lossy compression

nThe undefined pixels in integer images are flagged by a regerve
BLANK value and will be preserved if a lossless compression al-
) o N gorithm is used.ZBLANK is used for undefined pixels in floating-
Generate a sequence of 10000 single-precision floati§-p pointimages.) If the image is compressed with a lossy algor;
random numbers, RN, with a value between 0.0 and 1en some other technique must be used to identify the uretkfin
Since it could be computationally expensive to generatepiels in the image. In this case it iscommendethat the un-

unique random number for every pixel of large images, Sifgefined pixels be recorded with the following procedure:
ply cycle through this look-up table of random numbers.

The process for generating a subtractive dither for a flgati

. Choose an integer in the range 1 to 10000 to serve as &nCreate an integer data mask with the same dimensions as the

initial seed value for creating a unique sequence of random image tile

numbers from the array that was calculated in the previods For each undefined pixel in the image, set the correspgndin
step. The purpose of this is to reduce the chances of apply- mask pixels to 1 and all the other pixels to 0.

ing the same dithering pattern to two images that are suB: Compress the mask array using a lossless algorithm such as
sequently subtracted from each other (or co-added), becaus PLIO or GZIP, and record the name of that algorithm with
the benefits of randomized dithering are lost if all the mxel the keywordZMASKCMP.

are dithered in phase with each other. The exact method fér Store the compressed byte stream in a variable-lengily arr
computing this seed integer is not important as long as the column called’ NULL_PIXEL MASK’ in the table row corre-
value is chosen more or less randomly. sponding to that image tile.

. Write the integer seed value that was selected in thegursvi

step as the value of tHBDITHER® keyword in the header of ~ The data mask array pixeshouldhave the shortest integer
the compressed image. This value is required to recomp@gia type that is supported by the compression algorithen (i.
the same dithering pattern when uncompressing the imagésually 8-bit bytes). When uncompressing the image tile, th

. Before quantizing each tile of the floating point imagd; casoftwaremustcheck if the corresponding compressed data mask

culate an initial value for two fiset parameterdp andl,, €Xists with a length greater than 0, and if so, uncompress the
with the following formulae: mask and set the corresponding undefined pixels in the image

array to the value given by tIBLANK keyword.
lo = modNije — 1 + ZDITHER®, 10000) @as) Y gven by yw

I1 = INT(RN(lp) = 500) (16)) .
)])) 10.3. Tiled Table Compression
whereN;e is the row number in the binary table that is used)) .)
to store the compressed bytes for that BT THERO is that The following section describes the process_f_or comprgssin
value of that keyword, and RIN{) is the value of thég‘ ran- the content of BINTABLE columns. Some additional details of
dom number in the sequence that was computed in the fildNTABLE compression may be found in Pence et al. (2013),
step. Note thaty has a value in the range 0 to 9999 dnd but the_ specifications in this Standashall supersede those in
has a value in the range 0 to 499. This method for computititg registered convention. The uncompressed table mayhbe su
lo andl; was chosen so that affirent sequence of randomdivided into tiles, each containing a subset of rows, theshea
numbers is used to compress successive tiles in the imag@lumn of data within each tile is extracted, compressed, an

and so that the sequence lgfvalues has a length of orderstored as a variable-length array of bytes in the output com-
100 million elements before repeating. pressed table. The header keywords from the uncompressed ta

. Now quantize each floating-point pixel in the tile usingle, with only a few limited exceptionshallbe copied verba-

Eq. 13 and using random number RN(for the first pixel. tim to the header of the compressed table. The compressed tab

Increment the value of; for each subsequent pixel in themustitself be a valid FITS binary table (albeit one where the

tile. If I, reaches the upper limit of 500, then increment theontents cannot be interpreted without uncompressingdhe c
value ofly and recomputé; from Eq. 16. Ifl also reaches tents) that contains the same number and order of columns as

the upper limit of 10000, then reskitto 0. in the uncompressed table, and that contains one row for each
If the floating-point pixel has an IEEE NaN value, then it i$ile of rows in the uncompressed table. Only the compression

not quantized or dithered but instead is set to the resen@gorithms specified in Sect. 10.3.5 are permitted.

integer value specified by tt#BLANK keyword. For consis-

tency, the value of; should also be incremented in this cas

%0.3.1. Required K
even though it is not used. 03 equired Keywords

. Compress the array of quantized integers using the kssslévith only a few exceptions noted below, all the keywords and

algorithm that is specified by theCMPTYPE keyword (use corresponding comment fields from the uncompressed table
RICE_1 by default). mustbe copied verbatim, in order, into the header of the com-

49

pressed table. Note in particular that the values of thevede 10.3.2. Procedure for Table Compression
column descriptor keyword& YPEn, TUNITN, TSCALN, TZERON,
TNULLn, TDISPn, andTDIMn, as well as all the column-specific
WCS keywords defined in the FITS standandust have the
same values and data types in both the original and in the com- pivide table into tiles (optional)

pressed table, with the understanding that these keywpmig a | order to limit the amount of data that must be managed
to the uncompressed data values. at one time, large FITS tablesaybe divided into tiles, each

The only keywords thamust notbe copied verbatim from containing the same number of rows (except for the last tile
the uncompressed table header to the compressed tabler head&vhichmaycontain fewer rows). Each tile of the table is com-
are the mandatoryAXIS1, NAXIS2, PCOUNT, andTFORMN key- pressed in order and each is stored in a single row in the out-
words, and the option@HECKSUM, DATASUM (see Sect. 4.4.2.7), ~ putcompressed table. There is no fixed upper limit on the al-
andTHEAP keywords. These keywords must necessarily describe lowed tile size, but for practical purposes irecommended
the contents and structure of the compressed table itse¢f. T = that it notexceed 100 MB.
original values of these keywords in the uncompressed tab#e Decompose each tile into the component columns
mustbe stored in a new set of reserved keywords in the com- FITS binary tables are physically stored in row-by-row se-
pressed table header. Note that there is no need to preserve guential order, such that the data values for the first row in
copy of theGCOUNT keyword because the value is always equal each column are followed by the values in the second row,
to 1 for BINTABLES. The complete set of keywords thathave a and so on (see Sect. 7.3.3). Because adjacent columns in
reserved meaning within a tile-compressed binary tablgiges binary tables can contain very non-homogeneous types of
below: data, it can be challenging téheiently compress the native
stream of bytes in the FITS tables. For this reason, the table
is first decomposed into its component columns, and then
each column of data is compressed separately. This also al-

shallbe T’ to indicate that the FITS binary table extension lows one to choose the modtieient compression algorithm

contains a compressed BINTABLE, and that logically this Of €ach column.

extensionshouldbe interpreted as a tile-compressed binary. Compress each column of data
table. Each column of datanustbe compressed with one of the

lossless compression algorithms described in Sect. 10.4. |
the table is divided into tiles, then the same compression al
gorithm mustbe applied to a given column in every tile. In
the case of variable-length array columns (where the data
are stored in the table heap: see Sect. 7.3.5), each individu
variable length vectamustbe compressed separately.

Store the compressed bytes
The compressed stream of bytes for each colunustbe
written into the corresponding column in the output table.

The procedure for compressing a FITS binary table consfsts o
the following sequence of steps:

ZTABLE — [logical; value:’T’] The value field of this keyword

ZNAXIS1 — [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
NAXIS1 keyword in the original uncompressed FITS table
header. This represents the width in bytes of each row in the
uncompressed table.

ZNAXIS2 — [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the™
NAXIS2 keyword in the original uncompressed FITS table

header. This represents the number of rows in the uncom-
The compressed tablmust have exactly the same num-
pressed table. .
))) ber and order of columns as the input table, however the

ZPCOUNT — [mteger;_ defau_lt: none] The \(alue field of this key- yata type of the columns in the output table will all have a
word shallcontain an integer that gives the value of the variable-length byte data type, willfFORMn = ’1QB’.Each
PCOUNT keyword in the original uncompressed FITS table o in the compressed table corresponds to a tile of rows in
header. the uncompressed table.

ZFORMN — [string; indexed; default: none] The value field of In the case of variable-length array columns, the array of
these keywordshall contain the character string values of descriptors that point to each compressed variable-length
the correspondin@FORMN keywords that defines the data array, as well as the array of descriptors from the input
type of columm in the original uncompressed FITS table. uncompressed tablequstalso be compressed and written

ZCTYPn — [string; indexed; default: none] The value field into the corresponding column in the compressed table. See

of these keywordshallcontain the character string value ~ S€ct 10.3.6 for more details.
mnemonic hame of the algorithm that was used to compress
columnn of the table. The only permitted values are given inp.3.3. Compression Directive Keywords

Sect. 10.3.5, and the corresponding algorithms are destrib)) o))
in Sect 10.4. The following compression-directive keywords, if preserthe

) ' . header of the table to be compressed, are reserved to provide
ZTILELEN — [mteger;_defal_JIt: none] The Va'“e field of this idance to the compression soFf)tware on how the table slhmguld
keywordshall contain an integer representing the ”“mbe.r ompressed. The compression softwsineuldattempt to obey
rows of data from the original binary table that are contdingy, .o girectives, but if that is not possible the softwarg dis-
in each tile of the compressed table. The number of ro égard them and use an appropriate alternative. These kdgwo

In th_e last t|Ie_may be I_ess than in the previous t|Ie_s. No e optional, but must be used as specified below.
that if the entire table is compressed as a single tile, then

the compressed table will only contains a single row, and the FzTILELN — [integer] The value field of this keyword
ZTILELEN andZNAXIS2 keywords will have the same value. shallcontain an integer that specifies the requested number

49

50

of table rows in each tile which are to be compressed asla For each VLA in the column:

group. — Read the array from the input table and compress it using
— FZALGOR — [string] The value field of this keyword the. algorithm speciﬁed b¥CTYP for this VLA column.

shallcontain a character string giving the mnemonic name — Write the resulting bytestream to the heap of the com-

of the algorithm that is requested to be used by default to ~ Pressed table.

compress every column in the table. The permitted values — Storé (or append) the descriptors to the compressed
are given in Sect. 10.3.5. bytestream (whicimustbe 64-bit Q-type) in a temporary

— FZALGn — [string; indexed] The value fields of these key- 4 i
wordsshall contain a character string giving the mnemonic- APPeénd the VLA descriptors from the uncompressed table
name of the algorithm that is requested to compress column (Whichmaybe either Q-type or P-type) to the temporary ar-
n of the table. The current allowed values are the same as for @Y 0f VLA descriptors for the compressed table.
the FZALGOR keyword. TheFZALGn keyword takes prece- 3. Compress the combined array of descriptors uszitp_1,
dence oveFZALGOR in determining which algorithm to use - and write that byte stream into the corresponding VLA col-
for a particular column if both keywords are present. umn in the output table, so that the compressed array is ap-

pended to the heap.

10.3.4. Other Reserved Keywords When uncompressing a VLA column, two stages of uncom-
The following keywords are reserved to store a verbatim copyessionmustbe performed in order:

of the value and comment fields for specific keywords in th?[. . .
original uncompressed BINTABLE. These keywords, if présent: Uncompress the combined array of descriptors using the
shouldbe used to reconstruct an identical copy of the uncom- 921P algorithm.

pressed BINTABLE, anghould notappear in the compressed2. For each descriptor to a compressed array:

table header unless the corresponding keywords were jiiesen — Read the compressed VLA from the compressed ta-

the uncompressed BINTABLE. ble and uncompress it using the algorithm specified by
ZCTYP for this VLA column.

ZTHEAP — [integer; default: none] The value field of this key- — Write it to the correct location in the uncompressed table.

word shallcontain an integer that gives the value of the
THEAP keyword if present in the original uncompressed FIT
table header.

ZHECKSUM — [string; default: none] The value field of this key-
word shallcontain a character string that gives the value dfable 36: Valid mnemonic values for tZ€MPTYPE andZCTYPn
the CHECKSUM keyword (see Sect. 4.4.2.7) in the original unkeywords
compressed FITS HDU.

?0.4. Compression Algorithms

ZDATASUM — [string; default: none] The value field of this key-_Value Sect. Compression Type

word shallcontain a character that gives the value of the RICE-1’ 104.1 Ruceglgor_lthm ;orhlnteger datla h

DATASUM keyword (see Sect. 4.4.2.7) in the original uncom- ¢%1P-1 10.4.2 ;(c)ijlL?f?;ng goéineg LIZ;Z da i?]orgnr:

pressed FITS HDU. GZIP

'GZIP.2’ 10.4.2 Like *GZIP_1’, but with reshffled
. . pixel values

10.3.5. Supported Compression Algorithms for Tables 'PLIOL’ 1043 IRAF PLIO algorithm for integer data
The permitted algorithms for compressing BINTABLE columns 'HCOMPRESS_1* 10.4.4 H-compress algorithm for 2-D images
are RICE_1, GZIP_1, and GZIP-2 (plus NOCOMPRESS), which _NOCOMPRESS The HDU remains uncompressed

are lossless and are described in Sect. 10.4. Lossy corigpress

could be allowed in the future once a process is defined to pre- The name of the permitted algorithms for compressing FITS
serve the details of the compression. HDUs, as recorded in th@CMPTYPE keyword, are listed in
Table 36; if other types are later supported, theyst be
registered with the IAUFWG to reserve the keyword values.
Keywords for the parameters of supported compression algo-

Compression of BINTABLE tiles that contain variable-lemgt- fithms have also been reserved, and are described with each
ray (VLA) columns requires special consideration becahse talgorithm in the subsections below. If alternative comgies
array values in these columns are not stored directly inahiet algorithms require keywords beyond those defined below, the
but are instead stored in a data heap which follows the mhia tamustalso be registered with the IAUFWG to reserve the associ-
(see Sect. 7.3.5). The VLA column in the original, uncompeels ated keyword names.

table only contains descriptors, which are composed of two i
tegers that give the size and location of the arrays in the.he
When uncompressing, these descriptor values will be neiede
write the uncompressed VLAs back into the same locationen thVhen ZCMPTYPE = ’RICE_1’ the Rice algorithm (Rice et al.
heap as in the original uncompressed table. Thus, the fiitpw 1993) shallbe used for data (de)compression. When selected,
processmustbe followed, in order, when compressing a VLAthe keywords in Table 3Zhouldalso appear in the header with
column within a tile: one of the values indicated. If these keywords are absesr, th

10.3.6. Compressing Variable-Length Array Columns

0.4.1. Rice compression

50

51

their default valuesnustbe used. The Rice algorithm is loss-12 bits; thereforé PLIO_1’ mustonly be used for integer image
less, but can only be applied to integer-valued arraysffére types with values between 0 antf2
a significant performance advantage over the other conmipress The compressed line lists are stored as variable lengthisarra
techniques (see White et al. 2013). of type short integer (16 bits per list element), regardidshe
mask depth. A line list consists of a series of simple instons
Table 37: Keyword parameters for Rice compression ~ Which are executed in sequence to reconstruct a line of tise.ma
Each 16 bit instruction consists of the sign bit (not usedhyee

Values bit opcode, and twelve bits of data, i.e.:
Keyword Permitted Default Meaning y . R .
ZNAME1 ’BLOCKSIZE’ - Size of block in pixels 116]15 13112 X
ZVAL1 16, 32 32 No. of pixels in a block
ZNAME2 'BYTEPIX’ — Size of pixel value in bytes totommmm - Fom e +
ZVAL2 1,2,4,8 4 No. 8-bit bytes per original I | opcode | data I
pixel value FRE - +

The significance of the data depends upon the instruction.
In order to reconstruct a mask line, the application exaguti
these instructions is required to keep track of two valules, t
WhenZCMPTYPE = ’GZIP_1’ the gzip algorithnshallbe used current high value and the current position in the outpug.lin
for data (de)compression. There are no algorithm paras)etdrhe detailed operation of each instruction is given in Tage
so the keyword€NAMEn and ZVALn should notappear in the
header. The gzip algorithm is used in the free GNU software Table 38: PLIO Instructions
compression utility of the same name. It was created by J.-
L. Gailly and M. Adler, based on the DEFLATE algorithm Tnsir. Opcode Meaning

10.4.2. GZIP compression

(Deutsch 1996), which is a combination of LZ77 (Ziv & Lempel ~zx 00 Zero the next N output pixels.

1977) and Hfman coding. The unigzip program accepts an HN 04 Set the next N output pixels to the current
integer parameter that provides a trade between optiroiz&tr high value.

speed (1) and compression ratio (9), which does fiecathe =~ PN 05 Zero the next N-1 output pixels, and set pixel
format of the resultant data stream. The selection of this pa N to the current high value. _
rameter is an implementation detail that is not covered ks th 05 Set the high value (absolute rather than in-

cremental), taking the high 15 bits from the

Standard. next word in the instruction stream, and the
WhenZCMPTYPE = ’GZIP 2’ the gzip2 algorithnshall be low 12 bits from the current data value.

used for data (de)compression. The gzip2 algorithm is @vari 1y py 92,03 Increment (IH) or decrement (DH) the cur-

tion onGZIP_1. There are no algorithm parameters, so the key- rent high value by the data value. The cur-

words ZNAMENn and ZVALn should notappear in the header. In rent position is not fiected.

this case the bytes in the array of data values aréigliso that ~ 1IS,DS 06,87 Increment (IS) or decrement (DS) the cur-

they are arranged in order of decreasing significance békre rent high value by the data value, and step,

ing compressed. For example, a 5-element contiguous afray o i.e., output one high value.

2-byte (16-bit) integer values, with an original big-endiayte

order of: The high valuemustbe set to 1 at the beginning of a line,
A1A2B1B,C,C,D1D2E1 B hence thaH,DHandIS, DS instructions are not normally needed

will have the following byte order after skiing: for Boolean masks.

A1B1C1D1E1 A2BCoD2E, 10.4.4. H-Compress algorithm

whereA,, By, C1, D1, andE; are the most significant bytes fromYWhenZCMPTYPE = *HCOMPRESS_1’ the H-compress algorithm
each of the integer values. Byte shing shallonly be per- Shallbe used for data (de)compression. The algorithm was de-
formed for integer or floating-point numeric data typesjdag Scribed by White (1992), and can be applied only to images wit

bit, and character typesust notoe shifled. two dimensions. Briefly, the compression method is to apply,
’ order:
10.4.3. IRAF/PLIO compression 1. a wavelet transform called the H-transform (a Haar trans-

_ form generalized to two dimensions), followed by
When ZCMPTYPE = "PLIO.1" the IRAF_PLIO algonthm_ 2. a quantization that discards noise in the image whilérreta
shallbe used for data (de)compression. There are no algorithm ing the signal on all scales, followed by
parameters, so the keyword8AMEn andZVALn should notap- . T _
pear in the header. The PLIO algorithm was developed to stose & quadiree coding of the quantized Giméents.

integer-valued image masks in a compressed form. The com- The H-transform is a two-dimensional generalization of the

pression algorithm used is based on run-length encoding, Wiyaar transform. The H-transform is calculated for an imaige o
the ability to dynamically follow level changes in the imagegjze 2N x 2N a5 follows:

in principle allowing a 16-bit encoding to be used regarsiiefs
the image depth. However, this algorithm has only been impld. Divide the image up into blocks 022 pixels. Call the four
mented in a way that supports image depths of no more than pixel values in a bloclago, a;0, 801, anday;.

51

52

2. For each block compute four d@eients:
ho = (a11 + 10 + @01 + A00)/(SCALE * o)
hx = (a11 + a10 — @1 — A00)/(SCALE * o)
hy = (a11 — @10 + ap1 — 8o0)/(SCALE * o)
he = (11 — @10 — @1 + Aoo)/(SCALE *)
whereSCALE is an algorithm parameter defined below, and
o characterizes the RMS noise in the uncompressed image.

3. Construct a ¥ x 2N~ image from theh, values for each
2x 2 block. Divide that image up intox22 blocks and repeat
the above calculation. Repeat this proclgimes, reducing
the image in size by a factor of 2 at each step, until only one
hg value remains.

This calculation can be easily inverted to recover the nagim-
age from its transform. The transform is exactly reverdiisiag
integer arithmetic. Consequently, the program can be used f
either lossy or lossless compression, with no special @mbro
needed for the lossless case.

Noise in the original image is still present in the H-tramsfp
however. To compress noisy images, eachfiogient can be di-
vided bySCALE = o, whereSCALE ~ 1 is chosen according to
how much loss is acceptable. This reduces the noise in the-tra
form to O5/SCALE, so that large portions of the transform are
zero (or nearly zero) and the transform is highly compréssib

There is one user-defined parameter associated with the H-
Compress algorithm: a scale factor to the RMS noise in the
image that determines the amount of compression that can be
achieved. It is not necessary to know what scale factor wad us
when compressing the image in order to uncompress it, but it
is still useful to record it. The keywords in Table 3Bouldbe
recorded in the header for this purpose.

Table 39: Keyword parameters for H-compression

Values
Keyword Permitted Default Meaning
ZNAME1 ’SCALE’ - Scale factor

ZVAL1 O.0orlarger 0.0 Scaling of the RMS noise; 0.0
yields lossless compression

Scale Factor— The floating-point scale parameter determines
the amount of compression; higher values result in higher
compression but with greater loss of informatiSGALE =
0.0 is a special case that yields lossless compressiothé.e.
decompressed image has exactly the same pixel values as
the original imageSCALE > 0.0 leads to lossy compression,
whereSCALE determines how much of the noise is discarded.

52

