
D
R

A
FT

49

10. Representations of compressed data

Minimizing data volume is important in may contexts, particu-
larly for publishers of large astronomical data collections. The
following sections describe compressed representations of data
in FITS imagesand BINTABLES that preserve metadata and
allow for full or partial extraction of the original data as neces-
sary. The resulting FITS file structure is independent of thespe-
cific data compression algorithm employed. The implementation
details for some compression algorithms that are widely used
in astronomy are defined in Sect. 10.4, but other compression
techniques could also be supported. See the FITS conventionby
White et al. (2013) for details of the compression techniques, but
beware that the specifications in this Standardshallsupersede
those in the registered convention.

10.1. Tiled Image Compression

The following describes the process for compressing
n−dimensional FITS images and storing the resulting byte
stream in a variable-length column in a FITS binary table, and
for preserving the image header keywords in the table header.
The general principle is to first divide then−dimensional image
into a rectangular grid of subimages or “tiles.” Each tile isthen
compressed as a block of data, and the resulting compressed
byte stream is stored in a row of a variable length column in
a FITS binary table (see Section 7.3). By dividing the image
into tiles it is possible to extract and uncompress subsections
of the image without having to uncompress the whole image.
The default tiling pattern treats each row of a 2-dimensional
image (or higher dimensional cube) as a tile, such that each
tile containsNAXIS1 pixels. This default may not be optimal
for some applications or compression algorithms, so any other
rectangular tiling pattern may be defined using keywords that
are defined below. In the case of relatively small images it may
suffice to compress the entire image as a single tile, resulting
in an output binary table with a single row. In the case of
3-dimensional data cubes, it may be advantageous to treat
each plane of the cube as a separate tile if application software
typically needs to access the cube on a plane-by-plane basis.

10.1.1. Required Keywords

In addition to the mandatory keywords for BINTABLE exten-
sions (see Sect. 7.3.1) the following keywords are reservedfor
use in the header of a FITS binary table extension to describethe
structure of a valid compressed FITS image. All are mandatory.

ZIMAGE – [logical; value’T’] The value field of this keyword
shall contain the logical value’T’ to indicate that the FITS
binary table extension contains a compressed image, and that
logically this extensionshouldbe interpreted as an image
rather than a table.

ZCMPTYPE – [character; default: none] The value field of this
keywordshall contain a character string giving the name of
the algorithm that was used to compress the image. Only the
values given in Table 36 are permitted; the corresponding
algorithms are described in Sect. 10.4. Other algorithms may
be added in the future.

ZBITPIX – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
BITPIX keyword in the uncompressed FITS image.

ZNAXIS – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
NAXIS keyword (i.e., the number of axes) in the uncom-
pressed FITS image.

ZNAXISn – [integer; indexed; default: none) The value field of
these keywordsshallcontain a positive integer that gives the
value of the correspondingNAXISn keywords (i.e., the size
of axisn) in the uncompressed FITS image.

The comment fields for theBITPIX, NAXIS, and NAXISn
keywords in the uncompressed imageshouldbe copied to the
corresponding fields in theZBITPIX, ZNAXIS, and ZNAXISn
keywords.

10.1.2. Other Reserved Keywords

The compressed image tilesmustbe stored in the binary table
in the same order that the first pixel in each tile appears in the
FITS image; the tile containing the first pixel in the imagemust
appear in the first row of the table, and the tile containing the
last pixel in the imagemustappear in the last row of the binary
table. The following keywords are reserved for use in describ-
ing compressed images stored in BINTABLE extensions; they
maybe present in the header, and their values depend upon the
type of image compression employed.

ZTILEn – [integer; indexed; default: 1 forn > 1] The value
field of these keywords (wheren is a positive integer index
that ranges from 1 toZNAXIS) shall contain a positive integer
representing the number of pixels along axisn of the com-
pressed tiles. Each tile of pixelsmustbe compressed sepa-
rately and stored in a row of a variable-length vector column
in the binary table. The size of each image dimension (given
byZNAXISn) need not be an integer multiple ofZTILEn, and
if it is not, then the last tile along that dimension of the im-
age will contain fewer image pixels than the other tiles. If the
ZTILEn keywords are not present then the default “row-by-
row” tiling will be assumed, i.e.,ZTILE1 = ZNAXIS1, and
the value of all the otherZTILEn keywordsmustequal 1.

ZNAMEi – [character; indexed; default: none] The value field
of these keywords (wherei is a positive integer index start-
ing with 1) shall supply the names of up to 999 algorithm-
specific parameters that are needed to compress or uncom-
press the image. The order of the compression parameters
maybe significant, andmaybe defined as part of the descrip-
tion of the specific decompression algorithm.

ZVALi – [character; indexed; default: none] The value field of
these keywords (wherei is a positive integer index start-
ing with 1) shallcontain the values of up to 999 algorithm-
specific parameters with the same indexi. The value of
ZVALi may have any valid FITS data type.

ZMASKCMP – [character; default: none] The value field of this
keywordshallcontain the name of the image compression
algorithm that was used to compress the optional null-pixel
data mask. This keyword may be omitted if no null-pixel data
masks appear in the table. See Sect. 10.2.2 for details.

ZQUANTIZ – [character; default:’NO DITHER’] The value field
of this keywordshallcontain the name of the algorithm that
was used to quantize floating-point image pixels into integer
values, which were then passed to the compression algorithm

49

D
R

A
FT

50

as discussed further in Sect. I. If this keyword is not present,
the default is to assume that no dithering was applied during
quantization.

ZDITHER0 – [integer; default: none] The value field of this key-
word shallcontain a positive integer (that may range from 1
to 10000 inclusive) that gives the seed value for the random
dithering pattern that was used when quantizing the floating-
point pixel values. This keywordmaybe absent if no dither-
ing was applied. See Sect. I for further discussion.

The following keywords are reserved to preserve a verbatim
copy of thevalue and comment fieldsfor keywords in the origi-
nal uncompressed FITS image that were used to describe its str-
ructure. These optional keywords, when present,shall be used
when reconstructing an identical copy of the original FITS HDU
of the uncompressed image. Theyshould notappear in the com-
pressed image header unless the corresponding keywords were
present in the uncompressed image.

ZSIMPLE – [logical; value’T’] The value field of this keyword
mustcontain the value of the originalSIMPLE keyword in the
uncompressed image.

ZEXTEND – [character] The value field of this keywordmust
contain the value of the originalEXTEND keyword in the un-
compressed image.

ZBLOCKED – [logical] The value field of this keywordmustcon-
tain the value of the originalBLOCKED keyword in the un-
compressed image.

ZTENSION – [character] The value field of this keywordmust
contain the originalXTENSION keyword in the uncompressed
image.

ZPCOUNT – [integer] The value field of this keywordmustcon-
tain the originalPCOUNT keyword in the uncompressed im-
age.

ZGCOUNT – [integer] The value field of this keywordmustcon-
tain the originalGCOUNT keyword in the uncompressed im-
age.

ZHECKSUM – [character] The value field of this keywordmust
contain the originalCHECKSUM keyword (see Sect. 4.4.2.7)
in the uncompressed image.

ZDATASUM – [character] The value field of this keywordmust
contain the originalDATASUM keyword (see Sect. 4.4.2.7) in
the uncompressed image.

TheZSIMPLE, ZEXTEND, andZBLOCKED keywordsmust not
be used unless the original uncompressed image was contained
in the primary array of a FITS file. TheZTENSION, ZPCOUNT,
andZGCOUNT keywordsmust notbe used unless the original un-
compressed image was contained in an IMAGE extension.

The FITS header of the compressed imagemaycontain other
keywords. If a FITS primary array or IMAGE extension is com-
pressed using the procedure described here, it isstrongly recom-
mendedthat all the keywords (including comment fields) in the
header of the original image, except for the mandatory keywords
mentioned above, be copied verbatim and in the same order into
the header of the binary table extension that contains the com-
pressed image. All these keywords will have the same mean-
ing and interpretation as they did in the original image, even in
cases where the keyword is not normally expected to occur in the
header of a binary table extension (e.g., theBSCALE andBZERO

keywords, or the World Coordinate System keywords such as
CTYPEn, CRPIXn andCRVALn).

10.1.3. Table Columns

Two columns in the FITS binary table are defined below to con-
tain the compressed image tiles; the order of the columns in the
table is not significant. One of the table columns describes op-
tional content; but when this column appears itmustbe used as
defined in this section. The column names (given by theTTYPEn
keyword) are reserved; they are shown here in upper case letters,
but case is not significant.

COMPRESSED DATA – [required; variable-length] Each row of
this columnmustcontain the byte stream that is generated
as a result of compressing the corresponding image tile. The
data type of the column (as given by theTFORMn keyword)
mustbe one of’1PB’, ’1PI’, or ’1PJ’ (or the equivalent
’1QB’, ’1QI’, or ’1QJ’), depending on whether the com-
pression algorithm generates an output stream of 8-bit bytes,
or integers of 16-, or 32-bits.

When using the quantization method to compress floating-
point images that is described in Sect. I, it sometimes may not be
possible to quantize some of the tiles (e.g., if the range of pixels
values is too large or if most of the pixels have the same value
and hence the calculated RMS noise level in the tile is close
to zero). There also may be other rare cases where the nominal
compression algorithm cannot be applied to certain tiles. In these
cases, an alternate techniquemaybe used in which the raw pixel
values are losslessly compressed with the GZIP algorithm.

GZIP COMPRESSED DATA [optional; variable-length] If the raw
pixel values in an image tile are losslessly compressed with
the GZIP algorithm, the resulting byte streammustbe stored
in this column (with a’1PB’ or ’1QB’ variable-length ar-
ray column format). The correspondingCOMPRESSED DATA

column for these tilesmustcontain a null pointer (i.e., the
pair of integers that constitute the descriptor for the column
mustboth have the value zero: see Sect. 7.3.5).

The compressed data columns described abovemayuse ei-
ther the’1P’ or’1Q’ variable-length array FITS column format
if the size of the heap in the compressed FITS file is< 2.1 GB. If
the the heap is larger than 2.1 GB, then the’1Q’ format (which
uses 64-bit pointers)mustbe used.

When using the optional quantization method described in
Sect. I to compress floating-point images, the following columns
arerequired.

ZSCALE – [floating-point; optional] This columnshallbe used
to contain linear scale factors that, along withZZERO, trans-
form the floating-point pixel values in each tile to integers
via,

I i = round
(Fi − ZZERO

ZSCALE

)

(12)

whereI i andFi are the integer and (original) floating-point
values of the image pixels, respectively and theround func-
tion rounds the result to the nearest integer value.

ZZERO – [floating-point; optional] This columnshallbe used to
contain zero point offsets that are used to scale the floating-
point pixel values in each tile to integers via Eq. 12.

50

D
R

A
FT

51

Do not confuse theZSCALE and ZZERO columns with the
BSCALE andBZERO keywords (defined in Sect. 4.4.2) which may
be present in integer FITS images. Any such integer images
should normally be compressed without any further scaling,and
theBSCALE andBZERO keywordsshouldbe copied verbatim into
the header of the binary table containing the compressed image.

Some images contain undefined pixel values; in uncom-
pressed floating-point images these pixels have an IEEE NaN
value. However, these pixel values will be altered when using the
quantization method described in Sect. I to compress floating-
point images. The value of the undefined pixelsmaybe pre-
served in the following way.

ZBLANK – [integer; optional] When present, this column
shall be used to store the integer value that represents un-
defined pixels in the scaled integer array. Therecommended
value forZBLANK is −2147483648, the largest negative 32-
bit integer. If the same null value is used in every tile of the
image, thenZBLANK maybe given in a header keyword in-
stead of a table column; if both a keyword and a table column
namedZBLANK are present, the values in the table column
mustbe used. If there are no undefined pixels in the image
thenZBLANK is not requiredto be present either as a table
column or a keyword.

If the uncompressed image has an integer data type
(ZBITPIX > 0) then the value of undefined pixels is given by the
BLANK keyword (see Sect. 5.3), whichshouldbe used instead of
ZBLANK. When using some compression techniques that do not
exactly preserve integer pixel values, it it may be necessary to
store the location of the undefined pixels prior to compressing
the image. The locationsmaybe stored in an image mask, which
mustitself be compressed and stored in a table column with the
following definition. See Sect. 10.2.2 for more details.

NULL PIXEL MASK – [integer array; optional] When present,
this columnshallbe used to store, in compressed form, an
image mask with the same original dimensions as the un-
compressed image, that records the location of the undefined
pixels. The process defined in Sect. 10.2.2shall be used to
construct the compressed pixel mask.

Additional columnsmaybe present in the table to supply
other parameters that relate to each image tile. However, these
parametersshould notbe recorded in the image HDU when the
uncompressed image is restored.

10.2. Quantization of Floating-Point Data

While floating-point format images may be losslessly com-
pressed, noisy images often do not compress very well. Higher
compression can only be achieved by removing some of this
noise without losing the useful information content. One com-
monly used technique for reducing the noise is to scale the
floating-point values into quantized integers using Eq. 12,and
using theZSCALE andZZERO columns to record the two scal-
ing coefficients that are used for each tile. Note that the absence
of these two columns in a tile-compressed floating-point image
is an indication that the image was not scaled and was instead
losslessly compressed.

An effective scaling algorithm for preserving a speci-
fied amount of noise in each pixel value is described by

White & Greenfield (1999) and by Pence et al. (2009). With this
method, the ZSCALE value (which is numerically equal to the
spacing between adjacent quantization levels) is calculated to be
some fraction, Q, of the RMS noise as measured in background
regions of the image. Pence et al. (2009) shows that the number
of binary bits of noise that are preserved in each pixel valueis
given bylog2(Q) + 1.792. Q results directly related to the com-
pressed file size: decreasing Q by a factor of 2 will decrease
the file size by about 1 bit/pixel. In order to achieve the great-
est amount of compression, one should use the smallest value
of Q that still preserves the required amount of photometricand
astrometric precision in the image. Image quality will remain
comparable regardless of the noise level.

A potential problem when applying this scaling method to
astronomical images, in particular, is that it can lead to a system-
atic bias in the measured intensities in faint parts of the image:
As the image is quantized more coarsely, the measured intensity
of the background regions of the sky will tend to be biased to-
wards the nearest quantize level. One very effective technique
for minimizing this potential bias is todither the quantized pixel
values by introducing random noise during the quantizationpro-
cess. So instead of simply scaling every pixel value in the same
way using Eq. 12, the quantized levels are randomized by using
this slightly modified equation:

I i = round
(Fi − ZZERO

ZSCALE
+ Ri − 0.5

)

(13)

whereRi is a random number between 0.0 and 1.0, and 0.5 is
subtracted so that the mean quantity equals 0. Then restoring the
floating-point value, the sameRi is used with the inverse for-
mula:

Fi = ((I i − Ri + 0.5) ∗ ZSCALE) + ZZERO (14)

This “subtractive dithering” technique has the effect of dithering
the zero-point of the quantization grid on a pixel by pixel basis
without adding any actual noise to the image. The net effect of
this is that the mean (and median) pixel value in faint regions
of the image more closely approximate the value in the origi-
nal unquantized image than if all the pixels are scaled without
dithering.

The key requirement when using this subtractive dithering
technique is thatthe exact same random number sequencemust
be used when quantizing the pixel values to integers, and when
restoring them to floating point values. While most computer
languages supply a function for generating random numbers,
these functions are not guaranteed to generate the same sequence
of numbers every time. An algorithm for generating a repeatable
sequence of pseudo random numbers is given in Appendix I; this
algorithmmustbe used when applying a subtractive dither.

10.2.1. Dithering Algorithms

The ZQUANTIZ keyword, if present,musthave one of the fol-
lowing values to indicate the type of quantization, if any, that
was applied to the floating-point image for compression:

NO DITHER – No dithering was performed; the floating-point
pixels were simply quantized using Eq. 12. This option
shallbe assumed if theZQUANTIZ keyword is not present in
the header of the compressed floating-point image.

51

D
R

A
FT

52

SUBTRACTIVE DITHER 1 – The basic subtractive dithering was
performed, the algorithm for which is described below. Note
that an image quantized using this technique can still be un-
quantized using the simple linear scaling function given by
Eq. 12, at the cost of introducing slightly more noise in the
image than if the full subtractive dithering algorithm were
applied.

SUBTRACTIVE DITHER 2 – This dithering algorithm is identi-
cal to that forSUBTRACTIVE DITHER 1, except that any pix-
els in the floating-point image that are exactly equal to 0.0
are represented by the reserved value−2147483647 in the
quantized integer array. When the image is subsequently un-
compressed and unscaled, these pixelsmust berestored to
their original value of 0.0. This dithering option is usefulif
the zero-valued pixels have special significance to the data
analysis software, so that the value of these pixelsmust not
be dithered.

The process for generating a subtractive dither for a floating-
point image is the following:

1. Generate a sequence of 10000 single-precision floating-point
random numbers, RN, with a value between 0.0 and 1.0.
Since it could be computationally expensive to generate a
unique random number for every pixel of large images, sim-
ply cycle through this look-up table of random numbers.

2. Choose an integer in the range 1 to 10000 to serve as an
initial seed value for creating a unique sequence of random
numbers from the array that was calculated in the previous
step. The purpose of this is to reduce the chances of apply-
ing the same dithering pattern to two images that are sub-
sequently subtracted from each other (or co-added), because
the benefits of randomized dithering are lost if all the pixels
are dithered in phase with each other. The exact method for
computing this seed integer is not important as long as the
value is chosen more or less randomly.

3. Write the integer seed value that was selected in the previous
step as the value of theZDITHER0 keyword in the header of
the compressed image. This value is required to recompute
the same dithering pattern when uncompressing the image.

4. Before quantizing each tile of the floating point image, cal-
culate an initial value for two offset parameters,I0 and I1,
with the following formulae:

I0 = mod(Ntile − 1+ ZDITHER0, 10000) (15)

I1 = INT(RN(I0) ∗ 500.) (16)

whereNtile is the row number in the binary table that is used
to store the compressed bytes for that tile,ZDITHER0 is that
value of that keyword, and RN(I0) is the value of theI th

0 ran-
dom number in the sequence that was computed in the first
step. Note thatI0 has a value in the range 0 to 9999 andI1
has a value in the range 0 to 499. This method for computing
I0 andI1 was chosen so that a different sequence of random
numbers is used to compress successive tiles in the image,
and so that the sequence ofI1 values has a length of order
100 million elements before repeating.

5. Now quantize each floating-point pixel in the tile using
Eq. 13 and using random number RN(I1) for the first pixel.
Increment the value ofI1 for each subsequent pixel in the
tile. If I1 reaches the upper limit of 10000, then increment the
value ofI0 and recomputeI1 from Eq. 16. IfI0 also reaches
the upper limit of 10000, then resetI0 to 0.

If the floating-point pixel has an IEEE NaN value, then it is
not quantized or dithered but instead is set to the reserved
integer value specified by theZBLANK keyword. For consis-
tency, the value ofI1 should also be incremented in this case
even though it is not used.

6. Compress the array of quantized integers using the lossless
algorithm that is specified by theZCMPTYPE keyword (use
RICE 1 by default).

7. Write the compressed bytestream into the
COMPRESSED DATA column in the appropriate row of
the binary table corresponding to that tile.

8. Write the linear scaling and zero point values that were used
in Eq. 13 for that tile into theZSCALE andZZERO columns,
respectively, in the same row of the binary table.

9. Repeat Steps 4 through 8 for each tile of the image.

10.2.2. Preserving undefined pixels with lossy compression

The undefined pixels in integer images are flagged by a reserved
BLANK value and will be preserved if a lossless compression al-
gorithm is used. (ZBLANK is used for undefined pixels in floating-
point images.) If the image is compressed with a lossy algorithm,
then some other technique must be used to identify the undefined
pixels in the image. In this case it isrecommendedthat the un-
defined pixels be recorded with the following procedure:

1. Create an integer data mask with the same dimensions as the
image tile

2. For each undefined pixel in the image, set the corresponding
mask pixels to 1 and all the other pixels to 0.

3. Compress the mask array using a lossless algorithm such as
PLIO or GZIP, and record the name of that algorithm with
the keywordZMASKCMP.

4. Store the compressed byte stream in a variable-length array
column called’NULL PIXEL MASK’ in the table row corre-
sponding to that image tile.

The data mask array pixelsshouldhave the shortest integer
data type that is supported by the compression algorithm (i.e.,
usually 8-bit bytes). When uncompressing the image tile, the
softwaremustcheck if the corresponding compressed data mask
exists with a length greater than 0, and if so, uncompress the
mask and set the corresponding undefined pixels in the image
array to the value given by theBLANK keyword.

10.3. Tiled Table Compression

The following section describes the process for compressing
the content of BINTABLE columns. Some additional details of
BINTABLE compression may be found in Pence et al. (2013),
but the specifications in this Standardshallsupersede those in
the registered convention. The uncompressed table may be sub-
divided into tiles, each containing a subset of rows, then each
column of data within each tile is extracted, compressed, and
stored as a variable-length array of bytes in the output com-
pressed table. The header keywords from the uncompressed ta-
ble, with only a few limited exceptions,shall be copied verba-
tim to the header of the compressed table. The compressed table
mustitself be a valid FITS binary table (albeit one where the
contents cannot be interpreted without uncompressing the con-
tents) that contains the same number and order of columns as
in the uncompressed table, and that contains one row for each

52

D
R

A
FT

53

tile of rows in the uncompressed table. Only the compression
algorithms specified in Sect. 10.3.5 are permitted.

10.3.1. Required Keywords

With only a few exceptions noted below, all the keywords and
corresponding comment fields from the uncompressed table
mustbe copied verbatim, in order, into the header of the com-
pressed table. Note in particular that the values of the reserved
column descriptor keywordsTTYPEn,TUNITn,TSCALn,TZEROn,
TNULLn, TDISPn, andTDIMn, as well as all the column-specific
WCS keywords defined in the FITS standard,must have the
same values and data types in both the original and in the com-
pressed table, with the understanding that these keywords apply
to the uncompressed data values.

The only keywords thatmust notbe copied verbatim from
the uncompressed table header to the compressed table header
are the mandatoryNAXIS1, NAXIS2, PCOUNT, andTFORMn key-
words, and the optionalCHECKSUM, DATASUM (see Sect. 4.4.2.7),
andTHEAP keywords. These keywords must necessarily describe
the contents and structure of the compressed table itself. The
original values of these keywords in the uncompressed table
mustbe stored in a new set of reserved keywords in the com-
pressed table header. Note that there is no need to preserve a
copy of theGCOUNT keyword because the value is always equal
to 1 for BINTABLES. The complete set of keywords that have a
reserved meaning within a tile-compressed binary table aregiven
below:

ZTABLE – [logical; value:’T’] The value field of this keyword
shall be’T’ to indicate that the FITS binary table extension
contains a compressed BINTABLE, and that logically this
extensionshouldbe interpreted as a tile-compressed binary
table.

ZNAXIS1 – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
NAXIS1 keyword in the original uncompressed FITS table
header. This represents the width in bytes of each row in the
uncompressed table.

ZNAXIS2 – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
NAXIS2 keyword in the original uncompressed FITS table
header. This represents the number of rows in the uncom-
pressed table.

ZPCOUNT – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
PCOUNT keyword in the original uncompressed FITS table
header.

ZFORMn – [character; indexed; default: none] The value field
of these keywordsshallcontain the character string values
of the correspondingTFORMn keywords that defines the data
type of columnn in the original uncompressed FITS table.

ZCTYPn – [character; indexed; default: none] The value field
of these keywordsshallcontain the character string value
mnemonic name of the algorithm that was used to compress
columnn of the table. The only permitted values are given in
Sect. 10.3.5, and the corresponding algorithms are described
in Sect 10.4.

ZTILELEN – [integer; default: none] The value field of this
keywordshall contain an integer representing the number of

rows of data from the original binary table that are contained
in each tile of the compressed table. The number of rows
in the last tile may be less than in the previous tiles. Note
that if the entire table is compressed as a single tile, then
the compressed table will only contains a single row, and the
ZTILELEN andZNAXIS2 keywords will have the same value.

10.3.2. Procedure for Table Compression

The procedure for compressing a FITS binary table consists of
the following sequence of steps:

1. Divide table into tiles (optional)
In order to limit the amount of data that must be managed
at one time, large FITS tablesmaybe divided into tiles, each
containing the same number of rows (except for the last tile
whichmaycontain fewer rows). Each tile of the table is com-
pressed in order and each is stored in a single row in the out-
put compressed table. There is no fixed upper limit on the al-
lowed tile size, but for practical purposes it isrecommended
that it not exceed 100 MB.

2. Decompose each tile into the component columns
FITS binary tables are physically stored in row-by-row se-
quential order, such that the data values for the first row in
each column are followed by the values in the second row,
and so on (see Sect. 7.3.3). Because adjacent columns in
binary tables can contain very non-homogeneous types of
data, it can be challenging to efficiently compress the native
stream of bytes in the FITS tables. For this reason, the table
is first decomposed into its component columns, and then
each column of data is compressed separately. This also al-
lows one to choose the most efficient compression algorithm
for each column.

3. Compress each column of data
Each column of datamustbe compressed with one of the
lossless compression algorithms described in Sect. 10.4. If
the table is divided into tiles, then the same compression al-
gorithmmustbe applied to a given column in every tile. In
the case of variable-length array columns (where the data
are stored in the table heap: see Sect. 7.3.5), each individual
variable length vectormustbe compressed separately.

4. Store the compressed bytes
The compressed stream of bytes for each columnmustbe
written into the corresponding column in the output table.
The compressed tablemust have exactly the same num-
ber and order of columns as the input table, however the
data type of the columns in the output table will all have a
variable-length byte data type, withTFORMn = ’1QB’. Each
row in the compressed table corresponds to a tile of rows in
the uncompressed table.
In the case of variable-length array columns, the array of
descriptors that point to each compressed variable-length
array, as well as the array of descriptors from the input
uncompressed table,mustalso be compressed and written
into the corresponding column in the compressed table. See
Sect. 10.3.6 for more details.

10.3.3. Compression Directive Keywords

The following compression-directive keywords, if presentin the
header of the table to be compressed, are reserved to provide

53

D
R

A
FT

54

guidance to the compression software on how the table shouldbe
compressed. The compression softwareshouldattempt to obey
these directives, but if that is not possible the software may dis-
regard them and use an appropriate alternative. These keywords
are optional, but must be used as specified below.

– FZTILELN – [integer] The value field of this keyword
shall contain an integer that specifies the requested number
of table rows in each tile which are to be compressed as a
group.

– FZALGOR – [character] The value field of this keyword
shall contain a character string giving the mnemonic name
of the algorithm that is requested to be used by default to
compress every column in the table. The permitted values
are given in Sect. 10.3.5.

– FZALGn – [character; indexed] The value fields of these key-
wordsshallcontain a character string giving the mnemonic
name of the algorithm that is requested to compress column
n of the table. The current allowed values are the same as for
the FZALGOR keyword. TheFZALGn keyword takes prece-
dence overFZALGOR in determining which algorithm to use
for a particular column if both keywords are present.

10.3.4. Other Reserved Keywords

The following keywords are reserved to store a verbatim copy
of the value and comment fields for specific keywords in the
original uncompressed BINTABLE. These keywords, if present,
shouldbe used to reconstruct an identical copy of the uncom-
pressed BINTABLE, andshould notappear in the compressed
table header unless the corresponding keywords were present in
the uncompressed BINTABLE.

ZTHEAP – [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
THEAP keyword if present in the original uncompressed FITS
table header.

ZHECKSUM – [character; default: none] The value field of this
keywordshallcontain an character string that gives the value
of theCHECKSUM keyword (see Sect. 4.4.2.7) in the original
uncompressed FITS HDU.

ZDATASUM – [character; default: none] The value field of this
keyword shallcontain an character that gives the value of
theDATASUM keyword (see Sect. 4.4.2.7) in the original un-
compressed FITS HDU.

10.3.5. Supported Compression Algorithms for Tables

The permitted algorithms for compressing BINTABLE columns
are RICE 1, GZIP 1, and GZIP 2 (plus NOCOMPRESS), which
are lossless and are described in Sect. 10.4. Lossy compression
could be allowed in the future once a process is defined to pre-
serve the details of the compression.

10.3.6. Compressing Variable-Length Array Columns

Compression of BINTABLE tiles that contain variable-length ar-
ray (VLA) columns requires special consideration because the
array values in these columns are not stored directly in the table,
but are instead stored in a data heap which follows the main table
(see Sect. 7.3.5). The VLA column in the original, uncompressed

table only contains descriptors, which are composed of two in-
tegers that give the size and location of the arrays in the heap.
When uncompressing, these descriptor values will be neededto
write the uncompressed VLAs back into the same location in the
heap as in the original uncompressed table. Thus, the following
processmustbe followed, in order, when compressing a VLA
column within a tile:

1. For each VLA in the column:
– Read the array from the input table and compress it using

the algorithm specified byZCTYP for this VLA column.
– Write the resulting bytestream to the heap of the com-

pressed table.
– Store (or append) the descriptors to the compressed

bytestream (whichmustbe 64-bit Q-type) in a temporary
array.

2. Append the VLA descriptors from the uncompressed table
(whichmaybe either Q-type or P-type) to the temporary ar-
ray of VLA descriptors for the compressed table.

3. Compress the combined array of descriptors usingGZIP 1,
and write that byte stream into the corresponding VLA col-
umn in the output table, so that the compressed array is ap-
pended to the heap.

When uncompressing a VLA column, two stages of uncom-
pressionmustbe performed in order:

1. Uncompress the combined array of descriptors using the
gzip algorithm.

2. For each descriptor to a compressed array:
– Read the compressed VLA from the compressed ta-

ble and uncompress it using the algorithm specified by
ZCTYP for this VLA column.

– Write it to the correct location in the uncompressed table.

10.4. Compression Algorithms

Table 36: Valid mnemonic values for theZCMPTYPE andZCTYPn
keywords

Value Sect. Compression Type
’RICE 1’ 10.4.1 Rice algorithm for integer data
’GZIP 1’ 10.4.2 Combination of the LZ77 algorithm

and Huffman coding, used in Gnu
GZIP

’GZIP 2’ 10.4.2 Like ’GZIP 1’, but with reshuffled
pixel values

’PLIO 1’ 10.4.3 IRAF PLIO algorithm for integer data
’HCOMPRESS 1’ 10.4.4 H-compress algorithm for 2-D images
’NOCOMPRESS’ the HDU remains uncompressed

The name of the permitted algorithms for compressing FITS
HDUs, as recorded in theZCMPTYPE keyword, are listed in
Table 36; if other types are later supported, theymust be
registered with the IAUFWG to reserve the keyword values.
Keywords for the parameters of supported compression algo-
rithms have also been reserved, and are described with each
algorithm in the subsections below. If alternative compression
algorithms require keywords beyond those defined below, they
mustalso be registered with the IAUFWG to reserve the associ-
ated keyword names.

54

D
R

A
FT

55

10.4.1. Rice compression

When ZCMPTYPE = ’RICE 1’ the Rice algorithm (Rice et al.
1993) shallbe used for data (de)compression. When selected,
the keywords in Table 37shouldalso appear in the header with
one of the values indicated. If these keywords are absent, then
their default valuesmustbe used. The Rice algorithm is loss-
less, but can only be applied to integer-valued arrays. It offers
a significant performance advantage over the other compression
techniques (see White et al. 2013).

Table 37: Keyword parameters for Rice compression

Values
Keyword Permitted Default Meaning
ZNAME1 ’BLOCKSIZE’ − Size of block in pixels
ZVAL1 16, 32 32 No. of pixels in a block
ZNAME2 ’BYTEPIX’ − Size of pixel value in bytes
ZVAL2 1, 2, 4, 8 4 No. 8-bit bytes per original

pixel value

10.4.2. GZIP compression

WhenZCMPTYPE = ’GZIP 1’ the gzip algorithmshallbe used
for data (de)compression. There are no algorithm parameters,
so the keywordsZNAMEn andZVALn should notappear in the
header. The gzip algorithm is used in the free GNU software
compression utility of the same name. It was created by J.-
L. Gailly and M. Adler, based on the DEFLATE algorithm
(Deutsch 1996), which is a combination of LZ77 (Ziv & Lempel
1977) and Huffman coding. The unixgzip program accepts an
integer parameter that provides a trade between optimization for
speed (1) and compression ratio (9), which does not affect the
format of the resultant data stream. The selection of this pa-
rameter is an implementation detail that is not covered by this
Standard.

WhenZCMPTYPE = ’GZIP 2’ the gzip2 algorithmshallbe
used for data (de)compression. The gzip2 algorithm is a varia-
tion onGZIP 1. There are no algorithm parameters, so the key-
wordsZNAMEn andZVALn should notappear in the header. In
this case the bytes in the array of data values are shuffled so that
they are arranged in order of decreasing significance beforebe-
ing compressed. For example, a 5-element contiguous array of
2-byte (16-bit) integer values, with an original big-endian byte
order of:

A1A2B1B2C1C2D1D2E1E2

will have the following byte order after shuffling:

A1B1C1D1E1A2B2C2D2E2

whereA1, B1,C1,D1, andE1 are the most significant bytes from
each of the integer values. Byte shuffling shallonly be per-
formed for integer or floating-point numeric data types; logical,
bit, and character typesmust notbe shuffled.

10.4.3. IRAF/PLIO compression

When ZCMPTYPE = ’PLIO 1’ the IRAF PLIO algorithm
shallbe used for data (de)compression. There are no algorithm
parameters, so the keywordsZNAMEn andZVALn should notap-
pear in the header. The PLIO algorithm was developed to store

integer-valued image masks in a compressed form. The com-
pression algorithm used is based on run-length encoding, with
the ability to dynamically follow level changes in the image,
in principle allowing a 16-bit encoding to be used regardless of
the image depth. However, this algorithm has only been imple-
mented in a way that supports image depths of no more than
12 bits; therefore’PLIO 1’ mustonly be used for integer image
types with values between 0 and 224.

The compressed line lists are stored as variable length arrays
of type short integer (16 bits per list element), regardlessof the
mask depth. A line list consists of a series of simple instructions
which are executed in sequence to reconstruct a line of the mask.
Each 16 bit instruction consists of the sign bit (not used), athree
bit opcode, and twelve bits of data, i.e.:

+--+--------+-------------------+

|16|15 13|12 1|

+--+--------+-------------------+

| | opcode | data |

+--+----------------------------+

The significance of the data depends upon the instruction.
In order to reconstruct a mask line, the application executing
these instructions is required to keep track of two values, the
current high value and the current position in the output line.
The detailed operation of each instruction is given in Table38.

Table 38: PLIO Instructions

Instr. Opcode Meaning
ZN 00 Zero the next N output pixels.
HN 04 Set the next N output pixels to the current

high value.
PN 05 Zero the next N-1 output pixels, and set pixel

N to the current high value.
SH 05 Set the high value (absolute rather than in-

cremental), taking the high 15 bits from the
next word in the instruction stream, and the
low 12 bits from the current data value.

IH,DH 02,03 Increment (IH) or decrement (DH) the cur-
rent high value by the data value. The cur-
rent position is not affected.

IS,DS 06,07 Increment (IS) or decrement (DS) the cur-
rent high value by the data value, and step,
i.e., output one high value.

The high valuemustbe set to 1 at the beginning of a line,
hence theIH,DH andIS,DS instructions are not normally needed
for Boolean masks.

10.4.4. H-Compress algorithm

WhenZCMPTYPE = ’HCOMPRESS 1’ the H-compress algorithm
shallbe used for data (de)compression. The algorithm was de-
scribed by White (1992), and can be applied only to images with
two dimensions. Briefly, the compression method is to apply,in
order:

1. a wavelet transform called the H-transform (a Haar trans-
form generalized to two dimensions), followed by

2. a quantization that discards noise in the image while retain-
ing the signal on all scales, followed by

3. a quadtree coding of the quantized coefficients.

55

D
R

A
FT

56

The H-transform is a two-dimensional generalization of the
Haar transform. The H-transform is calculated for an image of
size 2N × 2N as follows:

1. Divide the image up into blocks of 2× 2 pixels. Call the four
pixel values in a blocka00, a10, a01, anda11.

2. For each block compute 4 coefficients:
h0 = (a11+ a10+ a01+ a00)/(SCALE ∗ σ)
hx = (a11+ a10− a01− a00)/(SCALE ∗ σ)
hy = (a11− a10+ a01 − a00)/(SCALE ∗ σ)
hc = (a11− a10− a01 + a00)/(SCALE ∗ σ)
whereSCALE is an algorithm parameter defined below, and
σ characterizes the RMS noise in the uncompressed image.

3. Construct a 2N−1 × 2N−1 image from theh0 values for each
2×2 block. Divide that image up into 2×2 blocks and repeat
the above calculation. Repeat this processN times, reducing
the image in size by a factor of 2 at each step, until only one
h0 value remains.

This calculation can be easily inverted to recover the original im-
age from its transform. The transform is exactly reversibleusing
integer arithmetic. Consequently, the program can be used for
either lossy or lossless compression, with no special approach
needed for the lossless case.

Noise in the original image is still present in the H-transform,
however. To compress noisy images, each coefficient can be di-
vided bySCALE ∗ σ, whereSCALE ∼ 1 is chosen according to
how much loss is acceptable. This reduces the noise in the trans-
form to 0.5/SCALE, so that large portions of the transform are
zero (or nearly zero) and the transform is highly compressible.

There is one user-defined parameter associated with the H-
Compress algorithm: a scale factor to the RMS noise in the
image that determines the amount of compression that can be
achieved. It is not necessary to know what scale factor was used
when compressing the image in order to uncompress it, but it
is still useful to record it. The keywords in Table 39shouldbe
recorded in the header for this purpose.

Table 39: Keyword parameters for H-compression

Values
Keyword Permitted Default Meaning
ZNAME1 ’SCALE’ − Scale factor
ZVAL1 0.0 or larger 0.0 Scaling of the RMS noise; 0.0

yields lossless compression

Scale Factor– The floating-point scale parameter determines
the amount of compression; higher values result in higher
compression but with greater loss of information.SCALE =

0.0 is a special case that yields lossless compression, i.e.the
decompressed image has exactly the same pixel values as
the original image.SCALE > 0.0 leads to lossy compression,
whereSCALE determines how much of the noise is discarded.

56

D
R

A
FT

67

Appendix I: Random Number Generator

This Appendix is not part of theFITS standard, but is included
for informational purposes.

The portable random number generator algorithm below is
from Park & Miller (1988). This algorithm repeatedly evaluates
the function

seed= (a ∗ seed) modm

where the values ofa andm are shown below, but it is imple-
mented in a way to avoid integer overflow problems.

int random_generator(void) {

/* initialize an array of random numbers */

int ii;

double a = 16807.0;

double m = 2147483647.0;

double temp, seed;

float rand_value[10000];

/* initialize the random numbers */

seed = 1;

for (ii = 0; ii < N_RANDOM; ii++) {

temp = a * seed;

seed = temp -m * ((int) (temp / m));

/* divide by m for value between 0 and 1 */

rand_value[ii] = seed / m;

}

}

If implemented correctly, the 10 000th value of seed will
equal 1 043 618 065.

67

D
R

A
FT

72

References

Note: Many of theseFITS references are available electronically from the
NASA Astrophysics Data System (ADS) and/or theFITSSupport Office web
sites at
http://adswww.harvard.edu and
http://fits.gsfc.nasa.gov/fits_documentation.html.

Allen, S. & Wells, D. 2005, IETF RFC 4047,
http://www.ietf.org/rfc/rfc4047.txt

ANSI 1977,American National Standard for Information Processing: Code for
Information Interchange, ANSI X3.4–1977 (ISO 646) New York: American
National Standards Institute, Inc.

Braden, R. T., Borman, D.A., and Partridge, C. 1988 ACM Computer
Communication Review, 19, no. 2, 86, IETF RFC 1071,
https://tools.ietf.org/html/rfc1071

Bradner, S. 1997, IETF RFC 2119,http://www.ietf.org/rfc/rfc2119.
txt

Bunclark, P. & Rots, A. 1997,Precise re-definition ofDATE-OBS Keyword en-
compassing the millennium,
http://fits.gsfc.nasa.gov/year2000.html

Calabretta, M. R. & Greisen, E. W. 2002, A&A, 395, 1077
Calabretta, M. R. & Roukema, B. F. 2007, MNRAS, 381, 865
Cotton, W. D., Tody, D. B., & Pence, W. D. 1995, A&AS, 113, 159
Cotton, W. D., et al. 1990,Going AIPS: A Programmer’s Guide to the NRAO

Astronomical Image Processing System, Charlottesville: NRAO
Deutsch P. 1996, RFC 1951, Network Working Group; availableonline:

http://tools.ietf.org/html/rfc1951

Folkner, W. M., Williams, J. G., & Boggs, D. H. 2009, Interplanetary Network
Progress Report 42-178, available online:http://tmo.jpl.nasa.gov/

progress_report/42-178/178C.pdf

Folkner, W. M. et al. 2014, Interplanetary Network ProgressReport 42-
196, available online:http://ipnpr.jpl.nasa.gov/progress_report/
42-196/196C.pdf

Greisen, E. W. & Calabretta, M. R. 2002, A&A, 395, 1061
Greisen, E. W., Calabretta, M. R., Valdes, F. G., & Allen, S. L. 2006, A&A, 446,

747
Greisen, E. W. & Harten, R. H. 1981, A&AS, 44, 371
Grosbøl, P., Harten, R. H., Greisen, E. W., & Wells, D. C. 1988, A&AS, 73, 359
Grosbøl, P. & Wells, D. C. 1994,Blocking of Fixed-block Sequential Media and

Bitstream Devices, http://fits.gsfc.nasa.gov/blocking94.html
Hanisch, R., et al. 2001, A&A, 376, 359
Harten, R. H., Grosbøl, P., Greisen, E. W., & Wells, D. C. 1988, A&AS, 73, 365
IAU 1983,Transactions of the IAU, XVIIIB, 45
IAU 1988,Transactions of the IAU, XXB, 51
IAU 1997, Resolution B1 of the XXIIIrd General Assembly – Transactions of the

IAU Vol. XXIII B, Ed. J. Andersen, (Dordrecht: Kluwer). Available online:
http://www.iau.org/static/resolutions/IAU1997 French.pdf

IEEE 1985,American National Standard – IEEE Standard for Binary Floating
Point Arithmetic, ANSI/IEEE 754–1985, New York: American National
Standards Institute, Inc.

Irwin, A. W. & Fukushima, T. A. 1999, A&A348, 642
ISO 2004,Information technology – Programming languages – Fortran, ISO/

IEC 1539-1:2004, Geneva: International Organization for Standardization
ISO 2004b, International Standard ISO 8601:2004(E),Data elements and in-

terchange formats – Information interchange – Representation of dates and
times

NASA/JPL Planetary Ephemerides 2014a, available online:http://ssd.jpl.

nasa.gov/?ephemerides

NASA/JPL Solar and Planetary Ephemerides 2014b, available online: http://
ssd.jpl.nasa.gov/?planet_eph_export

Mallory, T. & Kullberg, A. 1990, IETF RFC 1141,
https://tools.ietf.org/html/rfc1141

McNally, D., ed. 1988,Transactions of the IAU, Proceedings of the Twentieth
General Assembly(Dordrecht: Kluwer)

Park, X. & Miller, X. 1988, Comm. ACM, 31, Issue 10, 1192; available online:
http://dl.acm.org/citation.cfm?id=63042

Pence, W. D., Seaman, R., & White, R. L. 2009, PASP, 121, 414
Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., & Stobie, E. 2010, A&A,

524, A42
Pence, W. D., Seaman, R., & White, R. L. 2013,Tiled Table Convention for

Compressing FITS Binary Tables, FITS Support Office; available online:
http://fits.gsfc.nasa.gov/registry/tiletablecompression.

html

Ponz, J. D., Thompson, R. W., & Muñoz, J. R. 1994, A&AS, 105, 53
Rice, R. F., Yeh, P.-S., & Miller, W. H. 1993, in Proc. 9th AIAAComputing in

Aerospace Conf., AIAA-93-4541-CP, American Institute of Aeronautics and
Astronautics

Rijsinghani, A. (ed.) 1994, IETF RFC 1624,
https://tools.ietf.org/html/rfc1624

Rots, A. H., Bunclark, P. S., Calabretta, M. R., Allen, S. L.,Manchester, R. N.
& Thompson, W. T. 2015, A&A, 574, A36

Schmitz, M., et al. 1995,Information&On-line data in Astronomy, eds. D. Egret
& M. A. Albrecht (Kluwer Academic Pub.), 259

Standish, E. M. 1990, A&A, 233, 252
Standish, E. M. 1998, JPL Memo IOM 312.F-98-048
Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 363
Wells, D. C. & Grosbøl, P. 1990,Floating Point Agreement forFITS,http://

fits.gsfc.nasa.gov/fp89.txt

White, R. L. 1992, in Proceedings of the NASA Space and Earth Science Data
Compression Workshop, ed. J. C. Tilton, Snowbird, UT; available online:
https://archive.org/details/nasa_techdoc_19930016742

White, R. L., & Greenfield, P. 1999, in ADASS VIII, ASP Conf. Ser. 172, eds.
D. M. Mehringer, R. L. Plante, & D. A. Roberts (San Francisco:ASP), 125

White, R. L., Greenfield, P., Pence, W., Tody, D. & Seaman, R. 2013, Tiled
Image Convention for Storing Compressed Images in FITS Binary Tables,
FITS Support Office; available online:http://fits.gsfc.nasa.gov/
registry/tilecompression.html

Ziv, J., & Lempel, A. 1977, IEEE Transactions on InformationTheory, 23 (3),
337

72

