49

10. Representations of compressed data ZNAXIS — [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
NAXIS keyword (i.e., the number of axes) in the uncom-
pressed FITS image.

Minimizing data volume is important in may contexts, partic
larly for publishers of large astronomical data collectiomhe
following sections describe compressed representatibdata i) ,
in FITS imagesand BINTABLES that preserve metadata and ZNAXISn — [integer; indexed; default: none) The value field of
allow for full or partial extraction of the original data asaes- these keywordshall contain a positive integer that gives the
sary. The resulting FITS file structure is independent ofsihe- value of the correspondingaX1sn keywords (i.e., the size
cific data compression algorithm employed. The implementat ~ ©f axisn) in the uncompressed FITS image.

details for some compression algorithms that are widelhd use

in astronomy are defined in Sect. 10.4, but other compression The comment fields for thBITPIX, NAXIS, and NAXISn
techniques could also be supported. See the FITS convemiorkeywords in the uncompressed imagfeouldbe copied to the
White et al. (2013) for details of the compression technigbat corresponding fields in th@BITPIX, ZNAXIS, and ZNAXISn
beware that the specifications in this Standshdll supersede keywords.

those in the registered convention.

10.1.2. Other Reserved Keywords

10.1. Tiled Image Compression The compressed image tilesustbe stored in the binary table

The following describes the process for compressirigthe same order that the first pixel in each tile appearsen th
n-dimensional FITS images and storing the resulting byt TS image; the tile containing the first pixel in the imagest
stream in a variable-length column in a FITS binary table amppear in the first row of the table, and the tile containirg th
for preserving the image header keywords in the table headast pixel in the imagenustappear in the last row of the binary
The general principle is to first divide time-dimensional image table. The following keywords are reserved for use in déscri
into a rectangular grid of subimages or “tiles.” Each tilehien ing compressed images stored in BINTABLE extensions; they
compressed as a block of data, and the resulting compressegybe present in the header, and their values depend upon the
byte stream is stored in a row of a variable length column iype of image compression employed.

a FITS binary table (see Section 7.3). By dividing the image

into tiles it is possible to extract and uncompress subsesti ZTILEn — [integer; indexed; default: 1 far > 1] The value

of the image without having to uncompress the whole image. field of these keywords (wheris a positive integer index
The default tiling pattern treats each row of a 2-dimendiona thatranges from 1 t8NAXIS) shall contain a positive integer
image (or higher dimensional cube) as a tile, such that each representing the number of pixels along anief the com-

tile containsNAXIS1 pixels. This default may not be optimal pressed tiles. Each tile of pixefsustbe compressed sepa-
for some applications or compression algorithms, so angroth rately and stored in a row of a variable-length vector column
rectangular tiling pattern may be defined using keywords tha in the binary table. The size of each image dimension (given
are defined below. In the case of relatively small images i ma by ZNAXISn) need not be an integer multiple BTILEn, and
suffice to compress the entire image as a single tile, resulting if it is not, then the last tile along that dimension of the im-
in an output binary table with a single row. In the case of age will contain fewer image pixels than the other tileshé t
3-dimensional data cubes, it may be advantageous to treatZTILEn keywords are not present then the default “row-by-
each plane of the cube as a separate tile if application aoétw row” tiling will be assumed, i.e.ZTILE1 = ZNAXIS1, and
typically needs to access the cube on a plane-by-plane basis the value of all the otheZTILEn keywordsmustequal 1.

ZNAMEi — [character; indexed; default: nhone] The value field
10.1.1. Required Keywords of these keywords (wherieis a positive integer index start-
N ing with 1) shall supply the names of up to 999 algorithm-
In addition to the mandatory keywords for BINTABLE exten- gpecific parameters that are needed to compress or uncom-
sions (see Sect. 7.3.1) the following keywords are resefved press the image. The order of the compression parameters

use in the header of a FITS binary table extension to destitbe mayhpe significant, ancnaybe defined as part of the descrip-
structure of a valid compressed FITS image. All are mangator tjon of the specific decompression algorithm.

ZIMAGE — [logical; value’T’] The value field of this keyword ZVALi — [character; indexed; default: none] The value field of
shall contain the logical valuéT’ to indicate that the FITS these keywords (whereis a positive integer index start-
binary table extension contains a compressed image, ahd tha ing with 1) shall contain the values of up to 999 algorithm-
logically this extensiorshouldbe interpreted as an image specific parameters with the same indexThe value of
rather than a table. ZVALi may have any valid FITS data type.

ZCMPTYPE — [character; default: none] The value field of this ZMASKCMP — [character; default: none] The value field of this
keywordshall contain a character string giving the name of keywordshall contain the name of the image compression
the algorithm that was used to compress the image. Only the algorithm that was used to compress the optional null-pixel
values given in Table 36 are permitted; the corresponding data mask. This keyword may be omitted if no null-pixel data
algorithms are described in Sect. 10.4. Other algorithms ma masks appear in the table. See Sect. 10.2.2 for details.

be added in the future. ZQUANTIZ — [character; default:NO_DITHER '] The value field
ZBITPIX — [integer; default: none] The value field of this key- of this keywordshall contain the name of the algorithm that

word shallcontain an integer that gives the value of the was used to quantize floating-pointimage pixels into intege

BITPIX keyword in the uncompressed FITS image. values, which were then passed to the compression algorithm

49

50

as discussed further in Sect. I. If this keyword is not prgsetkeywords, or the World Coordinate System keywords such as
the default is to assume that no dithering was applied duri@@YPEn, CRPIXn andCRVALN).
quantization.

ZDITHER® — [integer; default: none] The value field of this key40.1.3. Table Columns
word shall contain a positive integer (that may range from 1)))
to 10000 inclusive) that gives the seed value for the randof#o0 columns in the FITS binary table are defined below to con-
dithering pattern that was used when quantizing the floatin@in the compressed image tiles; the order of the columrisein t
point pixel values. This keyworthaybe absent if no dither- table is not significant. One of the table columns descrilpes o
ing was applied. See Sect. | for further discussion. tional content; but when this column appeamnitstbe used as
defined in this section. The column names (given byItiEPEN
The following keywords are reserved to preserve a verbatkeyword) are reserved; they are shown here in upper caseslett
copy of thevalue and comment fieldsr keywords in the origi- but case is not significant.
nal uncompressed FITS image that were used to describe-its st , i
ructure. These optional keywords, when presshall be used COMPRESSEDDATA — [required; variable-length] Each row of
when reconstructing an identical copy of the original FITBW this columnmustcontain the byte stream that is generated
of the uncompressed image. Thehyouid notppear in the com- @ a result of compressing the corresponding image tile. The

pressed image header unless the corresponding keywords wer data type of the column (as given by tfiEORMN keyword)

’1QB’, ’1QI’,or’1QJ’), depending on whether the com-
pression algorithm generates an output stream of 8-bisbyte
or integers of 16-, or 32-bits.

ZSIMPLE — [logical; value’ T’] The value field of this keyword
mustcontain the value of the origin&IMPLE keyword in the
uncompressed image.

ZEXTEND — [character] The value field of this keywordust
contain the value of the origin@XTEND keyword in the un-
compressed image.

ZBLOCKED — [logical] The value field of this keywonshustcon-
tain the value of the origina@BLOCKED keyword in the un-
compressed image.

ZTENSION — [character] The value field of this keywondust
contain the originaATENSION keyword in the uncompresse
image.

ZPCOUNT - [integer] The value field of this keywordustcon-
tain the originalPCOUNT keyword in the uncompressed im-
age.

ZGCOUNT - [integer] The value field of this keywordustcon-
tain the originalGCOUNT keyword in the uncompressed im-
age.

ZHECKSUM — [character] The value field of this keywondust
contain the originalCHECKSUM keyword (see Sect. 4.4.2.7)
in the uncompressed image. ther the’ 1P’ or ’ 1Q’ variable-length array FITS column format

ZDATASUM — [character] The value field of this keywordust if the size of the heap in the compressed FITS file B1 GB. If
contain the originabATASUM keyword (see Sect. 4.4.2.7) inthe the heap is larger than 2.1 GB, then thQ’ format (which

the uncompressed image. uses 64-bit pointershustbe used.
When using the optional quantization method described in

The ZSIMPLE, ZEXTEND, andZBLOCKED keywordsmust not Sect. | to compress floating-pointimages, the followingiomhs
be used unless the original uncompressed image was cahtai@eerequired
in the primary array of a FITS file. ThETENSION, ZPCOUNT,
andZGCOUNT keywordsmust nobe used unless the original un- ZSCALE — [floating-point; optional] This columshallbe used
compressed image was contained in an IMAGE extension. to contain linear scale factors that, along WIZERO, trans-
The FITS header of the compressed imagsy/contain other form the floating-point pixel values in each tile to integers

When using the quantization method to compress floating-
point images that is described in Sect. |, it sometimes map&o
possible to quantize some of the tiles (e.qg., if the rangexa&lp
values is too large or if most of the pixels have the same value
and hence the calculated RMS noise level in the tile is close
to zero). There also may be other rare cases where the nominal
compression algorithm cannot be applied to certain tirethése
cases, an alternate techniquaybe used in which the raw pixel

gvalues are losslessly compressed with the GZIP algorithm.

GZIP_COMPRESSED_DATA [optional; variable-length] If the raw
pixel values in an image tile are losslessly compressed with
the GZIP algorithm, the resulting byte streamistbe stored
in this column (with a’ 1PB’ or *1QB’ variable-length ar-
ray column format). The correspondiGQMPRESSED DATA
column for these tilesnustcontain a null pointer (i.e., the
pair of integers that constitute the descriptor for the poiu
mustboth have the value zero: see Sect. 7.3.5).

The compressed data columns described albbossguse ei-

keywords. If a FITS primary array or IMAGE extension is com- Vi&,
pressed using the procedure described heresitasgly recom- F; — ZZERO
mendedhat all the keywords (including comment fields) in the i = rOU”d(m) (12)

header of the original image, except for the mandatory kega/o _ - . .
mentioned above, be copied verbatim and in the same oraer int Whereli andF; are the integer and (original) floating-point

the header of the binary table extension that contains the co

values of the image pixels, respectively andtband func-

pressed image. All these keywords will have the same mean- tion rounds the result to the nearest integer value.

ing and interpretation as they did in the original image newe
cases where the keyword is not normally expected to occhein t
header of a binary table extension (e.g., BSEALE andBZERO

50

ZZERO — [floating-point; optional] This columshall be used to

contain zero point fisets that are used to scale the floating-
point pixel values in each tile to integers via Eq. 12.

51

Do not confuse th&ZSCALE and ZZERO columns with the White & Greenfield (1999) and by Pence et al. (2009). With this
BSCALE andBZERO keywords (defined in Sect. 4.4.2) which maynethod, the ZSCALE value (which is numerically equal to the
be present in integer FITS images. Any such integer imaggsacing between adjacent quantization levels) is caledtatbe
should normally be compressed without any further scaind, some fraction, Q, of the RMS noise as measured in background
theBSCALE andBZERO keywordsshouldbe copied verbatim into regions of the image. Pence et al. (2009) shows that the numbe
the header of the binary table containing the compressegdmaof binary bits of noise that are preserved in each pixel vaue

Some images contain undefined pixel values; in uncomiven bylog,(Q) + 1.792. Q results directly related to the com-
pressed floating-point images these pixels have an IEEE Nphessed file size: decreasing Q by a factor of 2 will decrease
value. However, these pixel values will be altered whengigie the file size by about 1 jtixel. In order to achieve the great-
quantization method described in Sect. | to compress flgatirest amount of compression, one should use the smallest value
point images. The value of the undefined pixelaybe pre- of Q that still preserves the required amount of photometmnit
served in the following way. astrometric precision in the image. Image quality will réma

comparable regardless of the noise level.

ZBLANK - [integer; optional] When present, this column A potential problem when applying this scaling method to
shallbe used to store the integer value that represents wtronomical images, in particular, is that it can lead tpshesm-
defined pixels in the scaled integer array. TReommended atic bias in the measured intensities in faint parts of thagen
value forZBLANK is —2147483648, the largest negative 32As the image is quantized more coarsely, the measured itytens
bit integer. If the same null value is used in every tile of thef the background regions of the sky will tend to be biased to-
image, therZBLANK maybe given in a header keyword in-wards the nearest quantize level. One veffigative technique
stead of a table column; if both a keyword and a table colunior minimizing this potential bias is tditherthe quantized pixel
namedZBLANK are present, the values in the table columvalues by introducing random noise during the quantizgiion
mustbe used. If there are no undefined pixels in the imagess. So instead of simply scaling every pixel value in timeesa
thenZBLANK is not requiredto be present either as a tablavay using Eq. 12, the quantized levels are randomized byusin

column or a keyword. this slightly modified equation:
If the uncompressed image has an integer data type Fi — ZZERO
(ZBITPIX > 0) then the value of undefined pixels is given by the — round(ZSCALE *R- 0'5) (13)

BLANK keyword (see Sect. 5.3), whiahouldbe used instead of _)
ZBLANK. When using some compression techniques that do MtereR; is a random number between 0.0 and 1.0, and 0.5 is
exactly preserve integer pixel values, it it may be necgssar Subtracted so that the mean quantity equals 0. Then regtiien
store the location of the undefined pixels prior to compressifloating-point value, the sami is used with the inverse for-
the image. The locatiomsaybe stored in an image mask, whichmula:

mustitself be compressed and stored in a table column with the

following definition. See Sect. 10.2.2 for more details. Fi = ((li - R + 0.5) « ZSCALE) + ZZERO (14)

NULL_PTXEL MASK — [integer array; optional] When presentThls “subtra_ctlve dltherlng"_technlque has tf@et ofdltherlr_lg
this columnshallbe used to store, in compressed form, alne zero-point of the quantization grid on a pixel by pixesisa
image mask with the same original dimensions as the uffithout adding any actual noise to the image. The rfiketoe of
compressed image, that records the location of the undefifBi§ iS that the mean (and median) pixel value in faint region

pixels. The process defined in Sect. 10.8h2llbe used to ©f the image more closely approximate the value in the origi-
construct the compressed pixel mask. nal unquantized image than if all the pixels are scaled witho

dithering.
Additional columnsmaybe present in the table to supply Th_e key requirement when using this subtractive dithering
other parameters that relate to each image tile. Howevesethtechnique is thathe exact same random number sequenast

parametershould notbe recorded in the image HDU when thd*e used when quantizing the pixel values to integers, answhe
uncompressed image is restored. restoring them to floating point values. While most computer

languages supply a function for generating random numbers,

these functions are not guaranteed to generate the samensequ
10.2. Quantization of Floating-Point Data of numbers every time. An algorithm for generating a repalata
rsequence of pseudo random numbersiis given in Appendisl; thi

While floating-point format images may be losslessly co r?égorithmmustbe used when applying a subtractive dither.

pressed, noisy images often do not compress very well. Hig

compression can only be achieved by removing some of this

noise without losing the useful information content. Oneneo 10.2.1. Dithering Algorithms

monly used technique for reducing the noise is to scale the

floating-point values into quantized integers using Eq.a] The ZQUANTIZ keyword, if presentmusthave one of the fol-

using theZSCALE and ZZERO columns to record the two scal-lowing values to indicate the type of quantization, if arhatt

ing codficients that are used for each tile. Note that the abser@as applied to the floating-pointimage for compression:

of these two columns in a tile-compressed floating-pointgena

is an indication that the image was not scaled and was instea@i® DITHER — No dithering was performed; the floating-point

losslessly compressed. pixels were simply quantized using Eq. 12. This option
An effective scaling algorithm for preserving a speci- shallbe assumed if thBQUANTIZ keyword is not present in

fied amount of noise in each pixel value is described by the header of the compressed floating-pointimage.

51

52

SUBTRACTIVE_DITHER 1 — The basic subtractive ditheringwas If the floating-point pixel has an IEEE NaN value, then it is

performed, the algorithm for which is described below. Note not quantized or dithered but instead is set to the reserved
that an image quantized using this technique can still be un- integer value specified by tIf#BLANK keyword. For consis-
quantized using the simple linear scaling function given by tency, the value of; should also be incremented in this case
Eq. 12, at the cost of introducing slightly more noise in the even though it is not used.

image than if the full subtractive dithering algorithm were6. Compress the array of quantized integers using the ksssle
applied. algorithm that is specified by theCMPTYPE keyword (use

SUBTRACTIVEDITHER 2 — This dithering algorithm is identi- _ RICE.1 by default).

cal to that forSUBTRACTIVE DITHER 1, except that any pix- /- Writt the ~ compressed bytestream into the
els in the floating-point image that are exactly equal to 0.0 COMPRESSED DATA column in the appropriate row of
are represented by the reserved vah@147483647 in the _ thebinary table corresponding to that tile.

quantized integer array. When the image is subsequently (- Writé the linear scaling and zero point values that weeglus
compressed and unscaled, these pixelst berestored to ~ IN EQ. 13 for that tile into th&SCALE andZZERO columns,
their original value of 0.0. This dithering option is useful respectively, in the same row of the binary table.

the zero-valued pixels have special significance to the dafa Repeat Steps 4 through 8 for each tile of the image.
analysis software, so that the value of these piralst not

be dithered. 10.2.2. Preserving undefined pixels with lossy compression

The process for generating a subtractive dither for a flgatinThe undefined pixels in integer images are flagged by a reserve

pointimage is the following: BLANK value and will be preserved if a lossless compression al-

1.

52

. Choose an integer in the range 1 to 10000 to serve as gn

. Write the integer seed value that was selected in thequisvi

;) ‘o .. gorithm is used.ZBLANK is used for undefined pixels in floating-
Generate a sequence of 10000 single-precision floating-p intimages.) If the image is compressed with a lossy akgoxj

random numbers, RN, with a value between 0.0 and 1!0: ; ; : '
Since it could be computationally expensive to generatet en some other technique must be used to identify the uregkfin

unique random number for every pixel of large images, sirffXe!S In the image. In this case itiscommendethat the un-
ply cycle through this look-up table of random numbers. defined pixels be recorded with the following procedure:

Create an integer data mask with the same dimensions as the
image tile
For each undefined pixel in the image, set the correspgndin

initial seed value for creating a unique sequence of random
numbers from the array that was calculated in the previo

step. The purpose of this is to reduce the chances of apply- mask pixels to 1 and all the other pixels to O.

ing the same dithering pattern to two images that are SU: - mnress the mask array using a lossless algorithm such as
sequently subtracted fr_om eqch o.ther (or Co'?dded)’ b‘?caus PLIO or GZIP, and record the name of that algorithm with
the benefits of randomized dithering are lost if all the pBxel the keywordZMASKCHP.

are dithered in phase with each other. The exact method fgr o6 the compressed byte stream in a variable-lengly arr
computing this seed integer is not important as long as the column called’ NULL_PIXEL MASK’ in the table row corre-
value is chosen more or less randomly. sponding to that image tile

step as the value of tteDITHERO keyword in the header of The data mask array pixethouldhave the shortest integer
the compressed image. This value is required to recompiiga type that is supported by the compression algorithen (i.
the same dithering pattern when uncompressing the imaggsually 8-bit bytes). When uncompressing the image tile, th

. Before quantizing each tile of the floating point image; casoftwaremustcheck if the corresponding compressed data mask

culate an initial value for two fiset parametersp andl1, exists with a length greater than 0, and if so, uncompress the
with the following formulae: mask and set the corresponding undefined pixels in the image

lo = modNeje — 1 + ZDITHERS®, 10000) (15) array to the value given by tBLANK keyword.
I = INT(RN(lg) = 500) (16)

whereNye is the row number in the binary table that is use
to store the compressed bytes for that BT THERO is that The following section describes the process for comprgssin
value of that keyword, and RN/ is the value of theg‘ ran- the content of BINTABLE columns. Some additional details of
dom number in the sequence that was computed in the fIBNTABLE compression may be found in Pence et al. (2013),
step. Note thaty has a value in the range 0 to 9999 dad but the specifications in this Standashdall supersede those in
has a value in the range 0 to 499. This method for computitite registered convention. The uncompressed table maylbe su
lp andl; was chosen so that afférent sequence of randomdivided into tiles, each containing a subset of rows, thezthea
numbers is used to compress successive tiles in the imagaumn of data within each tile is extracted, compressed, an
and so that the sequence lgfvalues has a length of orderstored as a variable-length array of bytes in the output com-
100 million elements before repeating. pressed table. The header keywords from the uncompressed ta

chO.é’. Tiled Table Compression

. Now gquantize each floating-point pixel in the tile usindple, with only a few limited exceptionshallbe copied verba-

Eq. 13 and using random number RN(for the first pixel. tim to the header of the compressed table. The compresded tab
Increment the value of; for each subsequent pixel in themustitself be a valid FITS binary table (albeit one where the
tile. If 1, reaches the upper limit of 10000, then increment thmntents cannot be interpreted without uncompressingdhe c
value ofly and recomputé; from Eq. 16. Iflp also reaches tents) that contains the same number and order of columns as
the upper limit of 10000, then resktto O. in the uncompressed table, and that contains one row for each

53

tile of rows in the uncompressed table. Only the compression rows of data from the original binary table that are contdine
algorithms specified in Sect. 10.3.5 are permitted. in each tile of the compressed table. The number of rows
in the last tile may be less than in the previous tiles. Note
that if the entire table is compressed as a single tile, then
the compressed table will only contains a single row, and the
With only a few exceptions noted below, all the keywords and ZTILELEN andZNAXIS2 keywords will have the same value.
corresponding comment fields from the uncompressed table
mustbe copied verbatim, in order, into the header of the co
pressed table. Note in particular that the values of thervede
column descriptor keyword&'YPEn, TUNITNn, TSCALN, TZERON, The procedure for compressing a FITS binary table consfsts o
TNULLn, TDISPn, andTDIMn, as well as all the column-specificthe following sequence of steps:
WCS keywords defined in the FITS standandysthave the -~]]]
same values and data types in both the original and in the cofk- Divide table into tiles (optional)
pressed table, with the understanding that these keywppig a / In order to limit the amount of data that must be managed
to the uncompressed data values. atonetime, large FITS tablesaybe divided into tiles, each .
The only keywords thamust notbe copied verbatim from containing the same number of rows _(except for theT last tile
the uncompressed table header to the compressed tablerheadévhichmaycontain fewer rows). Each tile of the table is com-
are the mandatoryAXIS1, NAXIS2, PCOUNT, andTFORMn key- pressed in order and each is §tored_|n asingle row in the out-
words, and the option@HECKSUM, DATASUM (see Sect. 4.4,2.7), Putcompressed table. There is no fixed upper limit on the al-
andTHEAP keywords. These keywords must necessarily describe lowed tile size, but for practical purposes irecommended
the contents and structure of the compressed table itsedf. T that it not exceed 100 MB.
original values of these keywords in the uncompressed tal#e Decompose each tile into the component columns
mustbe stored in a new set of reserved keywords in the com- FITS binary tables are physically stored in row-by-row se-
pressed table header. Note that there is no need to preserve @juential order, such that the data values for the first row in
copy of theGCOUNT keyword because the value is always equal each column are followed by the values in the second row,
to 1 for BINTABLES. The complete set of keywords that have a and so on (see Sect. 7.3.3). Because adjacent columns in
reserved meaning within a tile-compressed binary tablgisen binary tables can contain very non-homogeneous types of
below: data, it can be challenging tdheiently compress the native
stream of bytes in the FITS tables. For this reason, the table
is first decomposed into its component columns, and then
each column of data is compressed separately. This also al-
lows one to choose the modtieient compression algorithm
for each column.

Compress each column of data

10.3.1. Required Keywords

™M.3.2. Procedure for Table Compression

ZTABLE — [logical; value:’T’] The value field of this keyword
shallbe ’ T’ to indicate that the FITS binary table extension
contains a compressed BINTABLE, and that logically this
extensionshouldbe interpreted as a tile-compressed binary
table.

3.
ZNAXIS1 — [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
NAXIS1 keyword in the original uncompressed FITS table
header. This represents the width in bytes of each row in the
uncompressed table.

ZNAXIS2 — [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
NAXIS2 keyword in the original uncompressed FITS tables,
header. This represents the number of rows in the uncom-
pressed table.

ZPCOUNT — [integer; default: none] The value field of this key-
word shallcontain an integer that gives the value of the
PCOUNT keyword in the original uncompressed FITS table
header.

ZFORMn — [character; indexed; default: none] The value field
of these keywordshall contain the character string values
of the correspondin@FORMn keywords that defines the data
type of columm in the original uncompressed FITS table.

ZCTYPn — [character; indexed; default: none] The value field
of these keywordshallcontain the character string value

Each column of datanustbe compressed with one of the
lossless compression algorithms described in Sect. 10.4. |
the table is divided into tiles, then the same compression al
gorithm mustbe applied to a given column in every tile. In
the case of variable-length array columns (where the data
are stored in the table heap: see Sect. 7.3.5), each individu
variable length vectamustbe compressed separately.

Store the compressed bytes

The compressed stream of bytes for each colunustbe
written into the corresponding column in the output table.
The compressed tablmust have exactly the same num-
ber and order of columns as the input table, however the
data type of the columns in the output table will all have a
variable-length byte data type, willfORMn = ’1QB’. Each

row in the compressed table corresponds to a tile of rows in
the uncompressed table.

In the case of variable-length array columns, the array of
descriptors that point to each compressed variable-length
array, as well as the array of descriptors from the input
uncompressed tablequstalso be compressed and written
into the corresponding column in the compressed table. See

mnemonic hame of the algorithm that was used to compress Sect. 10.3.6 for more details.

columnn of the table. The only permitted values are given in
Sect. 10.3.5, and the corresponding algorithms are destrib
in Sect 10.4.

10.3.3. Compression Directive Keywords

ZTILELEN — [integer; default: none] The value field of thisThe following compression-directive keywords, if presierthe
keywordshall contain an integer representing the number dfeader of the table to be compressed, are reserved to provide

53

54

guidance to the compression software on how the table siheuldable only contains descriptors, which are composed of two i
compressed. The compression softwstieuldattempt to obey tegers that give the size and location of the arrays in th@.hea
these directives, but if that is not possible the softwarg dis- When uncompressing, these descriptor values will be netded
regard them and use an appropriate alternative. These kdgwavrite the uncompressed VLAs back into the same locationén th
are optional, but must be used as specified below. heap as in the original uncompressed table. Thus, the filpw

]]] processnustbe followed, in order, when compressing a VLA
— FZTILELN — [integer] The value field of this keyword column within a tile:

shall contain an integer that specifies the requested number

of table rows in each tile which are to be compressed asla For€ach VLA in the column: o
group. — Read the array from the input table and compress it using

the algorithm specified bgCTYP for this VLA column.

— Write the resulting bytestream to the heap of the com-
pressed table.

— Store (or append) the descriptors to the compressed
bytestream (whicmustbe 64-bit Q-type) in a temporary
array.

. Append the VLA descriptors from the uncompressed table
(whichmaybe either Q-type or P-type) to the temporary ar-
ray of VLA descriptors for the compressed table.

— FZALGOR — [character] The value field of this keyword
shallcontain a character string giving the mnemonic name
of the algorithm that is requested to be used by default to
compress every column in the table. The permitted values
are given in Sect. 10.3.5.

— FZALGn— [character; indexed] The value fields of these key;
wordsshallcontain a character string giving the mnemonic2
name of the algorithm that is requested to compress column
n of the table. The current allowed values are the same as for
the FZALGOR keyword. TheFZALGn keyword takes prece- 3. Compress the combined array of descriptors USELP_1,
dence oveFZALGOR in determining which algorithm to use and write that byte stream into the corresponding VLA col-

for a particular column if both keywords are present. umniin the output table, so that the compressed array is ap-
pended to the heap.

10.3.4. Other Reserved Keywords When uncompressing a VLA column, two stages of uncom-

. X pressiormustbe performed in order:
The following keywords are reserved to store a verbatim cop

of the value and comment fields for specific keywords in thé. Uncompress the combined array of descriptors using the
original uncompressed BINTABLE. These keywords, if présen 9zip algorithm.
shouldbe used to reconstruct an identical copy of the uncon®. For each descriptor to a compressed array:

pressed BINTABLE, anghould notappear in the compre§sed — Read the compressed VLA from the compressed ta-
table header unless the corresponding keywords were iiesen ble and uncompress it using the algorithm specified by
the uncompressed BINTABLE. ZCTYP for this VLA column.

ZTHEAP — [integer: default: none] The value field of this key- Write it to the correct location in the uncompressed table.

word shallcontain an integer that gives the value of the
THEAP keyword if present in the originaluncompressed FIT
table header.

ZHECKSUM — [character; default: none] The value field of this
keywordshall contain an character string that gives the valugable 36: Valid mnemonic values for tA€MPTYPE andZCTYPn
of the CHECKSUM keyword (see Sect. 4.4.2.7).in the originakeywords
uncompressed FITS HDU.

ZDATASUM — [character; default: none] The value field of this Yalue Sect. Compression Type
keyword shall contain an character that gives the value of RICE-1 10.4.1 Rice algorithm for integer data

§0.4. Compression Algorithms

the DATASUM keyword (see Sect. 4.4.2.7) in the original un- GZIP-1 10.4.2 Combination of the LZ77 algorithm
and Hufman coding, used in Gnu
compressed FITS HDU. GZIP
’GZIP_.2’ 10.4.2 Like *GZIP_1’, but with reshéiled
: : pixel values

10.3.5. Supported Compression Algorithms for Tables 'PLIO.1’ 10.4.3 IRAF PLIO algorithm for integer data
The permitted algorithms for compressing BINTABLE columns "HCOMPRESS_1” 10.4.4 H-compress algorithm for 2-D images
are RICE_1, GZIP_1, and GZIP_2 (plus NOCOMPRESS), which ~_'NOCOMPRESS’ the HDU remains uncompressed

are lossless and are described in Sect. 10.4. Lossy conguress

could be allowed in the future once a process is defined to pre- The name of the permitted algorithms for compressing FITS
serve the details of the compression. HDUs, as recorded in th&CMPTYPE keyword, are listed in
Table 36; if other types are later supported, thayst be
registered with the IAUFWG to reserve the keyword values.
Keywords for the parameters of supported compression algo-
Compression of BINTABLE tiles that contain variable-lelngt- rithms have also been reserved, and are described with each
ray (VLA) columns requires special consideration becahse talgorithm in the subsections below. If alternative compi@s
array values in these columns are not stored directly ingbkef algorithms require keywords beyond those defined below, the
but are instead stored in a data heap which follows the mhla tamustalso be registered with the IAUFWG to reserve the associ-
(see Sect. 7.3.5). The VLA columnin the original, uncompeels ated keyword names.

10.3.6. Compressing Variable-Length Array Columns

54

55

10.4.1. Rice compression integer-valued image masks in a compressed form. The com-
, , : . : pression algorithm used is based on run-length encodirt), wi
When ZCMPTYPE = "RICE-1" the Rice algorithm (Rice etal. y,o apility to dynamically follow level changes in the image
1993) shallbe used for data (de)compression. When Selegt‘?ﬁ’principle allowing a 16-bit encoding to be used regarsitefs

the keywords in Table 3ghouldalso appear in the header withye jmage depth. However, this algorithm has only been imple
one of the values indicated. If these keywords are absesm, thyanted in a way that supports image depths of no more than

their default valuesnustbe_used._The Rice algorithm is loss- » bits: thereforé PLI0_1’ mustonly be used for integer image
less, but can only be applied to integer-valued arraysttérs types with values between 0 ang2

a significant performance advantage over the other compress™ " 1 compressed line lists are stored as variable lengtyisarra

techniques (see White etal. 2013). of type short integer (16 bits per list element), regardigshe
)) mask depth. A line list consists of a series of simple insiomns

Table 37: Keyword parameters for Rice compression \hich are executed in sequence to reconstruct a line of tisk.ma
Each 16 bit instruction consists of the sign bit (not usedhyee

Values bit opcode, and twelve bits of data, i.e.:
Keyword Permitted Default Meaning
ZNAME1 ’BLOCKSIZE’ - Size of block in pixels -t tommm +
ZVAL1 16, 32 32 No. of pixels in a block |16]15 13]12 1]
ZNAME2 ’BYTEPIX’ - Size of pixel value in bytes oo o= +
ZVAL2 1,2,4,8 4 No. 8-bit bytes per original | | opcode | data |
pixel value e e +

_ The significance of the data depends upon the instruction.
10.4.2. GZIP compression In order to reconstruct a mask line, the application exaguti

WhenzZCMPTYPE = 'GZIP.1’ the gzip algorithmshallbe used these instructions is required to keep track of two values, t

for data (de)compression. There are no algorithm parasjet gurrent h_|gh value gind the current position in the_ outpug. fin
50 the keywordsZNAMEN aﬁd ZVALN should notappear in the “he detailed operation of each instruction is given in T@&8e
header. The gzip algorithm is used in the free GNU software
compression utility of the same name. It was created by J.-
L. Gailly and M. Adler, based on the DEFLATE algorithm g
(Deutsch 1996), which is a combination of LZ77 (Ziv & Lempel _Inst._ Opcode Meaning ,
1977) and H&Eman coding. The uniyzip program accepts an 2N 00 Zero the next N output pixels.

Table 38: PLIO Instructions

integer parameter that provides a trade between optiraizégir Y 04 ﬁ.et the next N output pixels to the current
: . - igh value.

speed (1) and compression ratio (9), which does fiecathe N 05 Zero the next N-1 output pixels, and set pixel

format of the resultant data stream. The selection of this pa N to the current high value. ’

rameter is an implementation detail that is not covered g/ th sy 05 Set the high value (absolute rather than in-

Standard. cremental), taking the high 15 bits from the
WhenZCMPTYPE = ’GZIP_2’ the gzip2 algorithnshallbe next word in the instruction stream, and the

used for data (de)compression. The gzip2 algorithm is avari low 12 bits from the current data value.

tion onGZIP_1. There are no algorithm parameters, so the key- IH,DH 62,03 Increment (IH) or decrement (DH) the cur-

words ZNAMEn and ZVALn should notappear in the header. In rent high value by the data value. The cur-

rent position is not fiected.

IS,DS 06,07 Increment (IS) or decrement (DS) the cur-
rent high value by the data value, and step,
i.e., output one high value.

this case the bytes in the array of data values aréfiskiiso that
they are arranged in order of decreasing significance béfre
ing compressed. For example, a 5-element contiguous afray o
2-byte (16-bit) integer values, with an original big-emtiayte

order of:
The high valuemustbe set to 1 at the beginning of a line,
AuAgB1BoC1CoD1 Do B hence thaH,DHandIS, DS instructions are not normally needed
will have the following byte order after skiing: for Boolean masks.
A1B.C1D1E1A2B,CoDoES

10.4.4. H-Compress algorithm

whereA;, By, C4, D1, andE; are the most significant bytes fromWhenZCMPTYPE = *HCOMPRESS_1’ the H-compress algorithm
each of the integer values. Byte shing shallonly be per- shallbe used for data (de)compression. The algorithm was de-
formed for integer or floating-point numeric data typesjdagy scribed by White (1992), and can be applied only to images wit

bit, and character typeaust nobe shified. two dimensions. Briefly, the compression method is to apply,
order:
10.4.3. IRAF/PLIO compression 1. a wavelet transform called the H-transform (a Haar trans-

When ZCHPTYPE = 'PLIO.1’ the IRAF PLIO algorithm form generalized to two dimensions), followed by

shallbe used for data (de)compression. There are no algorith#n & guantization that discards noise in the image whilérreta
parameters, so the keyworgBAMEN andZVALN should notap- ing the signal on all scales, followed by

pear in the header. The PLIO algorithm was developed to stoBe a quadtree coding of the quantized @éents.

55

56

The H-transform is a two-dimensional generalization of the
Haar transform. The H-transform is calculated for an imafge o
size 2! x 2N as follows:

1. Divide the image up into blocks of22 pixels. Call the four
pixel values in a bloclagg, ai0, ap1, andas .

2. For each block compute 4 d@eients:
ho = (@11 + @10 + @1 + @o0) /(SCALE * o)
hx = (@11 + @10 — @1 — @o0)/(SCALE * o)
hy = (a11 — @10 + ap1 — 8o0)/(SCALE * o)
he = (a11 — @10 — @01 + Ao)/(SCALE * o)
whereSCALE is an algorithm parameter defined below, and
o characterizes the RMS noise in the uncompressed image.

3. Construct a ®! x 2N-1 image from theh, values for each
2x 2 block. Divide that image up intox22 blocks and repeat
the above calculation. Repeat this proclgimes, reducing
the image in size by a factor of 2 at each step, until only one
hp value remains.

This calculation can be easily inverted to recover the nagim-
age from its transform. The transform is exactly reverdiisiag
integer arithmetic. Consequently, the program can be used f
either lossy or lossless compression, with no special a@mbro
needed for the lossless case.

Noise in the original image is still presentin the H-tramgip
however. To compress noisy images, eachfiogient can be di-
vided bySCALE = o, whereSCALE ~ 1 is chosen according to
how much loss is acceptable. This reduces the noise in the-tra
form to O5/SCALE, so that large portions of the transform are
zero (or nearly zero) and the transform is highly compréasib

There is one user-defined parameter associated with the H-
Compress algorithm: a scale factor to the RMS noise in the
image that determines the amount of compression that can be
achieved. It is not necessary to know what scale factor wed us
when compressing the image in order to uncompress it, but it
is still useful to record it. The keywords in Table 3Bouldbe
recorded in the header for this purpose.

Table 39: Keyword parameters for H-compression

Values
Keyword Permitted Default Meaning
ZNAME1 ’SCALE’ - Scale factor

ZVAL1 0.O0orlarger 0.0 Scaling of the RMS noise; 0.0
yields lossless compression

Scale Factor— The floating-point scale parameter determines
the amount of compression; higher values result in higher
compression but with greater loss of informatiSGALE =
0.0 is a special case that yields lossless compressiothé.e.
decompressed image has exactly the same pixel values as
the original imageSCALE > 0.0 leads to lossy compression,
whereSCALE determines how much of the noise is discarded.

56

Appendix I: Random Number Generator

This Appendix is not part of thelTS standard, but is included
for informational purposes
The portable random number generator algorithm below is
from Park & Miller (1988). This algorithm repeatedly evates
the function
seed= (a* seed modm

where the values ad and m are shown below, but it is imple-
mented in a way to avoid integer overflow problems.

int random_generator(void) {
/* initialize an array of random numbers */

int ii;

double a = 16807.0;
double m = 2147483647.0;
double temp, seed;

float rand_value[10000];

/* initialize the random numbers */
seed = 1;
for (ii
temp a * seed;
seed = temp -m * ((int) (temp / m));
/% divide by m for value between ® and 1 */
rand_value[ii] = seed / m;

0; ii < N_RANDOM; ii++) {

If implemented correctly, the 10 Oovalue of seed will
equal 1043618 065.

67

67

72

References Ponz, J. D., Thompson, R. W., & Mufioz, J. R. 1994, AGAS, 10, 5
Rice, R. F., Yeh, P.-S., & Miller, W. H. 1993, in Proc. 9th AlAGomputing in

) . Aerospace Conf., AIAA-93-4541-CP, American Institute afrAnautics and
Note: Many of theseFITS references are available electronically from the agironautics

NASA Astrophysics Data System (ADS) godtheFITS Support Gfice web Rijsinghani, A. (ed.) 1994, IETF RFC 1624

sites .at https://tools.ietf.org/html/rfc1624
http://adswww.harvard.edu and . Rots, A. H., Bunclark, P. S., Calabretta, M. R., Allen, S.Manchester, R. N.
http://fits.gsfc.nasa.gov/fits_documentation.html. & Thompson, W. T. 2015, A&A, 574, A36

Schmitz, M., et al. 1999nformation& On-line data in Astronomyeds. D. Egret
& M. A. Albrecht (Kluwer Academic Pub.), 259
AIIen, S. &Wells, D. 2005, IETF RFC 4047, Standlsh, E. M. 1990, A&A, 233, 252

http://www.ietf.org/rfc/rfc4047. txt _ _ Standish, E. M. 1998, JPL Memo IOM 312.F-98-048
ANSI 1977,American National Standard for Information Processingd@dor \yelis, D. C., Greisen, E. W., & Harten, R. H. 1981, AGAS, 44336

Info_rmation Interchang,e_ANSI X3.4-1977 (1SO 646) New York: American Wells, D. C. & Grosbal, P. 199Gloating Point Agreement faFITS, http: //
National Standards Institute, Inc. fits.gsfc.nasa.gov/fp89. txt

Braden, R. T, Borman, D.A, and Partridge, C. 1988 ACM Cot®pu \yhjte R.L.1992, in Proceedings of the NASA Space and Eartere Data

Communication Review, 19, no. 2, 86, IETF RFC 1071, Compression Workshop, ed. J. C. Tilton, Snowbird, UT; ai#é online:

https://tools.ietf.org/html/rfc1071 . https://archive.org/details/nasa_techdoc_19930016742
Bradner, S. 1997, IETF RFC 211Brtp://www.ietf.org/rfc/rfc2119. \white R. L., & Greenfield, P. 1999, in ADASS VIII, ASP Conf.1S&72, eds.

™t D. M. Mehringer, R. L. Plante, & D. A. Roberts (San Francisé&P), 125

Bunclark, P.-& Rots, A 19_97Precise re-definition oDATE-0BS Keyword en- White, R. L., Greenfield, P., Pence, W., Tody, D. & Seaman, ®.32Tiled
compassing the millenniym Image Convention for Storing Compressed Images in FITSrifiables
http://fits.gsfc.nasa.gov/year2000.html FITS Support @ice; available onlinehttp://fits.gsfc.nasa.gov/

Calabretta, M. R. & Greisen, E. W. 2002, A&A, 395, 1077 registry/tilecompression.html

Calabretta, M. R. & Roukema, B. F. 2007, MNRAS, 381, 865 Ziv, J., & Lempel, A. 1977, IEEE Transactions on Informatidheory, 23 (3),

Cotton, W. D., Tody, D. B., & Pence, W. D. 1995, A&AS, 113, 159 337

Cotton, W. D., et al. 1990Going AIPS: A Programmer’s Guide to the NRAO
Astronomical Image Processing Systéharlottesville: NRAO

Deutsch P. 1996, RFC 1951, Network Working Group; availabtdine:
http://tools.ietf.org/html/rfc1951

Folkner, W. M., Williams, J. G., & Boggs, D. H. 2009, Interpktary Network
Progress Report 42-178, available onlifetctp://tmo.jpl.nasa.gov/
progress_report/42-178/178C.pdf

Folkner, W. M. et al. 2014, Interplanetary Network Progrd3sport 42-

196, available onlinéattp://ipnpr. jpl.nasa.gov/progress_report/
42-196/196C.pdf

Greisen, E. W. & Calabretta, M. R. 2002, A&A, 395, 1061

Greisen, E. W., Calabretta, M. R., Valdes, F. G., & Allen, S2006, A&A, 446,

747

Greisen, E. W. & Harten, R. H. 1981, A&AS, 44, 371

Grosbgl, P., Harten, R. H., Greisen, E. W., & Wells, D. C. 1988AS, 73, 359

Grosbgl, P. & Wells, D. C. 19948locking of Fixed-block Sequential Media and
Bitstream Deviceshttp://fits.gsfc.nasa.gov/blocking94.html

Hanisch, R., et al. 2001, A&A, 376, 359

Harten, R. H., Grosbgl, P., Greisen, E. W., & Wells, D. C. 1988AS, 73, 365

IAU 1983, Transactions of the IALXVIIIB, 45

IAU 1988, Transactions of the IALXXB, 51

IAU 1997, Resolution B1 of the XXllIrd General Assembly — figactions of the
IAU Vol. XXIII B, Ed. J. Andersen, (Dordrecht: Kluwer). Avigble online:
httpy/www.iau.orgstatigresolutiond AU1997_French.pdf

IEEE 1985,American National Standard — IEEE Standard for Binary Flngt
Point Arithmetic ANSI/IEEE 754-1985, New York: American National
Standards Institute, Inc.

Irwin, A. W. & Fukushima, T. A. 1999, A&A348, 642

ISO 2004,Information technology — Programming languages — Forire®icy
IEC 1539-1:2004, Geneva: International Organization fan8ardization

ISO 2004b, International Standard ISO 8601:2004(B3fa elements and in-
terchange formats — Information interchange — Represantaif dates and
times

NASA/JPL Planetary Ephemerides 2014a, available ontinep://ssd. jpl.
nasa.gov/?ephemerides

NASA/JPL Solar and Planetary Ephemerides 2014b, availableeohlintp: //
ssd. jpl.nasa.gov/?planet_eph_export

Mallory, T. & Kullberg, A. 1990, IETF RFC 1141,
https://tools.ietf.org/html/rfc1141

McNally, D., ed. 1988 Transactions of the IAU, Proceedings of the Twentieth
General AssemblgDordrecht: Kluwer)

Park, X. & Miller, X. 1988, Comm. ACM, 31, Issue 10, 1192; dshie online:
http://dl.acm.org/citation.cfm?id=63042

Pence, W. D., Seaman, R., & White, R. L. 2009, PASP, 121, 414

Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., & $toBi 2010, A&A,

524, A42

Pence, W. D., Seaman, R., & White, R. L. 20T8ed Table Convention for
Compressing FITS Binary Table§ITS Support @ice; available online:
http://fits.gsfc.nasa.gov/registry/tiletablecompression.
html

72

