21

4.4.2.8 Checksum Keywords CHECKSUM Keyword. The value field of th&€ HECKSUM keyword
shall consist of an ASCII character string whose value forces
the 32-bit 1’'s complement checksum accumulated over the en-

The checksum keywords described here provide an integriti FITSHDU to equal negative 0. There are a vast number of
check on the information contained iRITS HDUs. The POSSible character strings that could satisfy this requee, but
CHECKSUM keyword is defined to have a value that forces thi@r the sake of consistency and uniformity itrscommended
32-bit 1's complement checksum accumulated over all th@2gdhat the particular 16-character string generated by tyerghm
byte FITSlogical records in the HDU to equal negative 0. (Notéescribed in Appendix J be used. A string containing only 1 or
that 1's complement arithmetic has both positive and negatimore consecutive ASCII blanks may be used to represent an un-
zero elements). Verifying that the accumulated checkststilis defineéd or unknown value for tH@HECKSUM keyword.
equal to -0 provides a fast and fairly reliable way to deteeni e CHECKSUM keyword valuemustbe expressed in fixed
that the HDU has not been modified by subsequent data pf@tmat, when the algorithm in Appendix J is used, otherwiige t
cessing operations or corrupted while copying or storirgile US@ge of fixed format i,ecommendetbr analogy.
on physical media. The checksum does not guard against orga-
nized transformations or malicious tampering, howeverabee 4 4 3. additional keywords
simple transformations, such as rearranging the order 4fit32
words in the file, do notféect the computed checksum valueNew keywordsmay be devised in addition to those described
The checksum also does not provide any information on tiethis standard, so long as they are consistent with thergene
authenticity of the file because tiG8ECKSUM keyword can al- alized rules for keywords and do not conflict with mandatory
ways be updated after making modifications to the file, legvi®r reserved keywords. Any keyword that refers to or depends
no trace that the file is not the same as the original. upon the existence of other specific HDUs in the same or other

files should be used with caution because the persistenbes# t
Two FITSkeywords are reserved to record the checksum iRDUs cannot always be guaranteed.
formation in an HDUDATASUM and CHECKSUM. Normally both
keywords will be present in the header if either is preseut, b
this is not required. These keywords applyly to the HDU in
which they are contained. If tHRIECKSUM keywords are written
in one HDU of a multi-HDUFITS file then it isstrongly rec-
ommendedhat they also be written to every other HDU in the
file. In that case the checksum accumulated over the engre fil
will equal -0 as well. It isrecommendethat the current date and
time be written into the comment field of both keywords to docu
ment when the checksum was computed (or more precisely, the
time that the checksum computation process was started). It
also highlyrecommendethat if aFITSfile is intended for pub-
lic distribution, then the checksum keywords, if presehtidd
contain valid values.

DATASUM Keyword. The value field of theDATASUM keyword
shallconsist of a character string containing the unsigned érteg
value of the 32-bit 1's complement checksum of the data dscor
in the HDU (i.e., excluding'the header records). For this pur
pose, each 2880-byt TS logical record should be interpreted
as consisting of 720 32-bit unsigned integers. The 4 byteadh
integermustbe interpreted in order of decreasing significance
where the most significant byte is first, and the least siganitic
byte is last. Accumulate the sum of these integers usingobis ¢
plement arithmetic in which any overflow of the most significa
bit is propagated back into the least significant bit of thasu

The DATASUM value is expressed as a character string (i.e.,
enclosed in single quote characters) because supportgduaith
range of 32-bit unsigned integer keyword values is probtema
in some software systems. This string may be padded with non-
significant leading or trailing blank characters or leadiegos.

A string containing only 1 or more consecutive ASCII blanks
may be used to represent an undefined or unknown value for the
DATASUM keyword. TheDATASUM keyword may be omitted in
HDUs that have no data records, butit is preferable to irethd
keyword with a value of 0. Otherwise, a missiDATASUM key-
word asserts no knowledge of the checksum of the data records

21

62

Appendix C: Summary of keywords

This Appendix is not part of tHel TS standard, but is included for convenient reference.

All of the mandatory and reserved keywords that are defingdarstandard, except for the reserved WCS keywords that are
discussed separately in Sect. 8, are listed in Tables C21 a8d C.3An alphabetized list of these keywords and their definitisns
available onlinehttp://heasarc.gsfc.nasa.gov/docs/fcg/standard_dict.html.

Table C.1: MandatoriI TS keywords for the structures described in this document.

Primary Conforming Image ASCII table Binary table = Compesss Compressed Random groups
HDU extension extension extension extension imbges table$ records
SIMPLE XTENSION XTENSION® XTENSION? XTENSION® SIMPLE
BITPIX BITPIX BITPIX BITPIX =8 BITPIX = 8 BITPIX
NAXIS NAXIS NAXIS NAXIS =2 ©NAXIS =2 NAXIS
NAXISn* NAXISn* NAXISn* NAXIS1 NAXIS1 NAXIS1 =0
END PCOUNT PCOUNT = 0 NAXIS2 NAXIS2 NAXISn*
GCOUNT GCOUNT =1 PCOUNT =0 PCOUNT GROUPS =T
END END GCOUNT =1 GCOUNT =1 PCOUNT
TFIELDS TFIELDS GCOUNT
TFORMn® TFORMn® END
TBCOLn® END
END

(UXTENSION=.’'IMAGE._._.’ for the image extensiof?)XTENSION=.’ TABLE....’ for the ASCII table extensio®?XTENSION=.’ BINTABLE’ for
the binary table extensioff!Runs from 1 through the value BAXIS. ®Runs from 1 through the value GFIELDS.

Table C.2: Reservel TS keywords for the structures described in this document.

Allt Array> ASClitable Binarytable Compressed Compressed Randonpgrou
HDUs HDUs extension extension images tables records
DATE EXTNAME BSCALE =~ TSCALn TSCALn PTYPEn
DATE-OBS EXTVER BZERO TZEROn TZEROn PSCALn
ORIGIN EXTLEVEL BUNIT TNULLn TNULLn PZEROn
AUTHOR EQUINOX BLANK TTYPEn TTYPEn
REFERENC EPOCH® DATAMAX TUNITn TUNITn
COMMENT BLOCKED® DATAMIN TDISPn TDISPn
HISTORY EXTEND* TDIMn
L TELESCOP THEAP
OBJECT INSTRUME
OBSERVER

CHECKSUM
DATASUM

MThese keywords are further categorized in Table @®rimary HDU, image extension, user-defined HDUs with sarmayastructure.
©®Deprecated®Only permitted in the primary HDU.

Table C.3: General reserv&diTSkeywords described in this document.

Production Bibliographic Commentary Observation
DATE AUTHOR COMMENT DATE-0BS
ORIGIN REFERENC HISTORY TELESCOP
BLOCKED! LLLLL INSTRUME
OBSERVER
OBJECT
EQUINOX
EPOCH!

MDeprecated.

62

— The last paragraph of Sect. 4.1.2.3 was corrected to state
that the ASCII text characters have hexadecimal values
20 through 7E, not 41 through 7E.

H.3. List of modifications to the latest FITS standard

The checksum keywords described in Sect. 4.4.2.8 were
originally introduced as aFITS convention since 1994,
and registered in 2007. The text of the original conven-
tionis reported ahttp://fits.gsfc.nasa.gov/registry/
checksum.html. The diferences with this standard concern:

— The omission of some additional implementation guidelines
— The omission of a discussion on alternate algorithms ard rel
evant additional references.

69

69

71

Appendix J: CHECKSUM Implementation Guidelines 0w 1s 22 3s 4s 5% 6% 7w 8% 9
. - .. D D <z = > P w A B . Cau
This Appendix is not part of thelTS standard, but is included b £ p G " | Cj) K L y
for informational purposes N. O« Pw Qu Ru Su Tu Us Ve Ws
Xe Yo Zo [x Ve Ju "w _s ‘w aa
J.1. Recommended CHECKSUM Keyword Implementation be Cw de ew fu gy he de e ke
| e M e N O« pw gn ra=
TherecommendedHECKSUM keyword algorithm described here || rigure 1. only Ascil alpha-numerics are used to encode the checksum — punctuation is exgluded.

generates a 16-character ASCII string that forces the B2'Di
complement checksum accumulated over the eRtifé&s HDU

to equal negative 0 (all 32 bits equal to 1). In addition, i1 oyerthe rest of the HDU. This algorithm also ensures thatthe
will only contain alphanumeric characters within the rasge9, bytes that make up the 4 integers all have values that camessp

A-Z, and a-z to promote human readability and transcriptiogy ASCII alpha-numeric characters in the range 0-9, A-Z, and
If the present algorithm is used, HGHECKSUM keyword value 5 5

mustbe expressed in fixed format, with the starting single quote
character in column 11 and the ending single quote charactgr Begin with the 1's complement (replace Os with 1s and 1s
in column 28 of theFITS keyword record, because the relative ity ps) of the 32-bit checksum accumulated over all the
placement of the value string within the keyword recofieéets FITS records in the HDU after first initializing ttGIECKSUM
the computed HDU checksum. The steps in the algorithm are as keyword with a fixed-format string consisting of 16 ASCII
follows: Zeros (0000000000000000°).
_) 2. Interpret this complemented 32-bit value as a sequence of
1. Write the CHECKSUM keyword into the HDU header 4 ypsigned 8-bit integers, A, B, C and D, where A is the
with an initial value consisting of 16 ASCIl zeros mgstsignificant byte and D is the least significant. Generate
(" 9000000000000000°) where the first single quote charac- 5 sequence of 4 integers, A1, A2, A3, A4, that are all equal to
teris in column 11 of th&ITSkeyword record. This specific. A divided by 4 (truncated to an integer if necessary). If A is
initialization string is required by the encoding algonitiie- not evenly divisible by 4, add the remainder to A1. The key
scribed in Sect. J.2 The final comment field of the keyword, " property to note here is that the sum of the 4 new integers is
if any, must also be written at this time. It is recommended eqyal to the original byte value (e.g.,AAL + A2 + A3 +
that the current date and time be recorded in the comment a4) perform a similar operation on B, C, and D, resulting in
field to document when the checksum was computed. atotal of 16 integer values, 4 from each of the original bytes
2. Accumulate the 32-bit 1's complement.checksum over the. \yhich should be rearranged in the following order:
FITS logical records that make up the HDU header in the
same manner as was done for the data records by interpret- a1 g1 c1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4
ing each 2880-byte logical record as 720 32-bit unsigned in-

tegers. /) Each of these integers represents one of the 16 characters
3. Calculate the checksum for the entire HDU by adding (Us- in the final CHECKSUM keyword value. Note that if this byte

ing 1's complement arithmetic) the checksum accumulated stream is interpreted as 4 32-bit integers, the sum of tlee int

over the header records to the checksum accumulated overgers is equal to the original complemented checksum value.

the data records (i.e., the previously compmteTASUMKey- 3. Add 48 (hex 30), which is the value of an ASCII zero char-

word value). _ acter, to each of the 16 integers generated in the previous
4. Compute the bit-wise Complement of the 32-bit total HDU step. This p|aces the values in the range of ASCII a|phanu_

checksum value by replacing all O bits with'd and all 1 bits meric characters '0’ (ASCII zero) to 'r’. Thisftset is dfec-

with 0. tively subtracted back out of the checksum when the initial

5. Encode the complement of the HDU checksum into a 16- cHECKSUM keyword value string of 16 ASCII Os is replaced
character ASCII string using the algorithm described intSec \ith the final encoded checksum value.

J.2 o o 4. Toimprove human readability and transcription of thigtr
6. Replace the initiaCHECKSUM keyword value with this 16- eliminate any non-alphanumeric characters by considering
character encoded string. The checksum for the entire HDU the bytes a pair at a time (e.g., ALA2, A3 + A4, B1 +
will now be equal to negative 0. B2, etc.) and repeatedly increment the first byte in the pair
by 1 and decrement the 2nd byte by 1 as necessary until they
J.2. Recommended ASCII Encoding Algorithm both correspond to the ASCII value of the allowed alphanu-

meric characters 0-9, A-Z, and a—z shown in Figure 1. Note
The algorithm described here is used to generate an AS@igstr that this operation conserves the value of the sum of the 4
which, when substituted for the value of {ti#ECKSUM keyword, equivalent 32-bit integers, which is required for use irs thi
will force the checksum for the entire HDU to equal negativi O checksum application.
is based on a fundamental property of 1's complement ariicme 5. Cyclically shift all 16 characters in the string one plazéhe
that the sum of an integer and the negation of that integertfie right, rotating the last charactey4) to the beginning of the
bitwise complement formed by replacing all 0 bits with 1s and string. This rotation compensates for the fact that the fixed
all 1 bits with 0s) will equal negative 0 (all bits set to 1).ih formatFITScharacter string values are not aligned on 4-byte
principle is applied here by constructing a 16-charactengst word boundaries in thEITSfile. (The first character of the
which, when interpreted as a byte stream of 4 32-bit intedpars string starts in column 12 of the header card image, rather
a sum that is equal to the complement of the sum accumulatedthan column 13).

71

72

6. Write this string of 16 characters to the value of theew checksum is equal to the old total checksum plus the eheck
CHECKSUM keyword, replacing the initial string of 16 ASCII sum accumulated over the modified records, minus the otigina
Zeros. checksum for the modified records.

An incremental update provides the mechanism for end-to-
To invert the ASCII encoding, cyclically shift the 16 characend checksum verification through any number of intermediat
ters in the encoded string one place to the left, subtradiéixe processing steps. Byalculatingrather tharaccumulatinghe in-

30 ofset from each character, and calculate the checksum bytgrmediate checksums, the original checksum test is peipeg

terpreting the string as 4 32-bit unsigned integers. Thislm through to the final data file. On the other hand, if a new check-

used, for instance, to read the valueCHECKSUNM into the soft- sum is/accumulated with each change to the file, no informatio
ware when verifying or updating a file. is preserved about the file’s original state.

The recipe for updating theHECKSUM keyword following
some change to the file i€’ = C - m+ m', whereC and

C’ represent the file's checksum (that is, the complement of

This example illustrates the encoding algorithm given ictSe the CHECKSUM keyword) before and after the modification and

J.2 Consider &ITS HDU whose 1's complement checksunm and nY are the corresponding checksums for the modified

is 868229149, which is equivalent to hed3C0201D. This / FITS records or keywords only. Since tlREECKSUM keyword

number was obtained by accumulating the 32-bit checkswuntains.the complement of the checksum, the correspoiyding
over the header and data records using 1's complement aritbmplemented form of the recipe is more directly useft!:=
metic after first initializing theCHECKSUM keyword value to “(C + "m+ nY), where ~ (tilde) denotes the (1's) complement op-

0000000000000000°. The complement of the accumulateckration. See Braden et al. (1988); Mallory & Kullberg (1990)

checksum is 3426738146, which is equivalent to @@3FDFE2. Rijsinghani (1994). Note that the tilde on the right handesid

The steps needed to encode this hex value into ASCII are shawirthe equation cannot be distributed over the contents @f th

schematically below: parentheses due to the dual nature of zero in 1's complement

arithmetic (Rijsinghani 1994).

J.3. Encoding Example

Byte Preserve byte alignment
A B C D Al Bl CLDI A2 B2 C2D2 A3 B3 C3 D3 A4 BA C4 D4
CC 3F DF E2 -> 33 OF 37 38 33 OF 37 38 33 OF 37 38 33 OF 37 38 J.5. Example C Code for Accumulating the Checksum
+ remainder 0 3 3 2

The 1's complement checksum is simple and fast to com-
=hex 33 12 3A 3A 33 OF 37 38 33 OF 37 38 33 OF 37 38 pute. This routine assumes that the input records are a-multi
+ 0 offset 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 ple of4bytes Iong (as iS the case fEfTS IOgiCﬁI recora)s
but it is not dfficult to allow for odd length records if neces-
sary. To use this routine, first initialize tt@ECKSUM keyword
Eliminate punctuation characters to *0000000000000000° and initializesum32 = 0, then step

= hex 63 42 6A 6A 63 3F 67 68 63 3F 67 68 63 3F 67
ASCII c B jj c¢c? gh ¢ ? gh ¢ ?

«
[=)]
5 o

initial values ¢ B j j ¢ ? g h ¢ ? g h c ? g h through all the=ITSlogical records in the FITS HDU.
c C j j c >g h c¢c @ g h ¢ » gh
c IE) 3 c =9 g c g 9 E ci=9 g void checksum (
c F I3 < < 9 h c c 9 h < < 9 h unsigned char *buf, /* Input array of bytes to be checksummed */
c G J J c i 9 h ¢ D 9 h c 9 h /* (interpret as 4-byte unsigned ints) /
- c 33 c 9 c 9 S 8 int length, /* Length of buf array, in bytes */
final values c H j j c 9 gh ¢ Egh ¢ 9 g h /% (must be multiple of 4))
unsigned int *sum32) /* 32-bit checksum /

final string "hcHjjc9ghcEghc9g" (rotate 1 place to the right)

In this examp|e byte B1 (Origina”y ASCH) is shifted hlgher Increment the input value of sum32 with the 1’s complement sum
(to ASCII H) to balance byte B2 (originally ASCIP) being ,, accunulated over the input buf array.
shifted lower (to ASCII9). /Similarly, bytes B3 and B4 are ' unsigned int hi, lo, hicarry, locarry, i;
shifted by opposing amounts. This.is possible because tbe tw _ _)
sequences of ASCII punctuation characters that can occur i, Joc i ate e o o e B o o cepnranety o/
encoded checksums are both preceded and followed by Ionger The first byte in each pair is the most significant. */
sequences of ASCII a|phanumer|c characters. This operailo /* This algorithm works on both big and little endian machines.*/

hi = (*sum32 >> 16);
purely for cosmetic reasons to improve readability of thalfin 1o = S oons s exrers:

string. for (i=0; i < length; i+=4) {

This is how thes€HECKSUM andDATASUM keywords would hi += ((buf[i] ~ << 8) + buf[i+1]);
appear in &ITS header (with the recommended time stamp in , 10 *= ((Puflis2] << 8% buflish;
the comment field).:

/* fold carry bits from each 16 bit sum into the other sum */

DATASUM = 2503531142’ / 2015-06-28T18:30:45 hicarry = hi >> 16;
CHECKSUM= ’hcHjjc9ghcEghc9g’ / 2015-06-28T18:30:45 locarry = lo >> 16;
while (hicarry || locarry) {

hi = (hi & OxFFFF) + locarry;

f lo = (lo & OxFFFF) + hicarry;
J.4. Incremental Updating of the Checksum hicarry = hi >> 16;

locarry = lo >> 16;

The symmetry of 1’'s complement arithmetic also means that af 3

ter modifying aFITS HDU, the checksum may be incremen- _
. /* concatenate the full 32-bit value from the 2 halves */

tally updated using simple arithmetic without accumulgtine *sum32 = (hi << 16) + lo;

checksum for portions of the file that have not changed. The

72

J.6. Example C Code for ASCII Encoding

73

Greisen, E. W. & Calabretta, M. R. 2002, A&A, 395, 1061
Greisen, E. W., Calabretta, M. R., Valdes, F. G., & Allen, S2006, A&A, 446,

This routine encodes the complement of the 32-bit HDU check-747
sum value into a 16-character string. The byte alignmenh@ef tGreisen, E. W. & Harten, R. H. 1981, A&AS, 44, 371

string is permuted one place to the right fliTSto left justify
the string value starting in column 12.

unsigned int exclude[13] = {0x3a, 0x3b, O0x3c, 0x3d, 0x3e, 0x3f, 0x40,
0x5b, 0x5c, 0x5d, Ox5e, O0x5f, 0x60 };

int offset = 0x30;
unsigned long mask[4] =

/* ASCII O (zero) */
{ 0x£f000000, 0xff0000, O0xff00, Oxff };

void char_encode (
unsigned int value, /* 1’s complement of the checksum */
/¥ value to be encoded */
char *ascii) /* Output 16-character encoded string */
{

int byte, quotient, remainder, ch[4], check, i, j, k;
char asc[32];

for (i=0; i < 4; i++) {
/* each byte becomes four */
byte = (value & mask[i]) >> ((3 - i) * 8);
quotient = byte / 4 + offset;
remainder = byte % 4;
for (3j=0; j < 4; j++)
ch[j] = quotient;

ch[0] += remainder;

for (check=1; check;) /% avoid ASCII punctuation */
for (check=0, k=0; k < 13; k++)
for (j=0; j < 4; j+=2)
if (ch[j]==exclude[k] || ch[j+1]==exclude[k]) {
ch[jl++;
ch[j+11--;
check++;

}

for (j=0; j < 4; j++) /*
asc[4*j+i] = ch[j];

assign the bytes */

}

16; i++)
asc[(i+15)%16];

for (i=0; i <
ascii[i] =

/* permute the bytes for FITS */

ascii[16] = 0; /* terminate the string */

References

Grosbgl, P., Harten, R. H., Greisen, E. W., & Wells, D. C. 1988AS, 73, 359

Grosbgl, P. & Wells, D. C. 19948locking of Fixed-block Sequential Media and
Bitstream Deviceshttp://fits.gsfc.nasa.gov/blocking94.html

Hanisch, R., et al. 2001, A&A, 376, 359

Harten, R. H., Grosbgl, P., Greisen, E. W., & Wells, D. C. 1988AS, 73, 365

IAU 1983, Transactions of the IA|XVIIIB, 45

IAU 1988, Transactions of the IAlXXB, 51

IEEE 1985,American National Standard — IEEE Standard for Binary Fingt
Point Arithmetic ANSI/IEEE 754-1985, New York: American National
Standards Institute, Inc.

ISO 2004, Information technology — Programming languages — Fortri®Qy/
IEC 1539-1:2004, Geneva: International Organization fan8ardization

Mallory, T. & Kullberg, A. 1990, IETF RFC 1141,
https://tools.ietf.org/html/rfcl141

McNally, D., ed. 1988 Transactions of the IAU, Proceedings of the Twentieth
General AssemblfDordrecht: Kluwer)

Pence, W. D.; Chiappetti, L., Page, C. G., Shaw, R. A., & $t0Bi 2010, A&A,
524, A42

Ponz, J. D., Thompson, R. W., & Mufioz, J. R. 1994, AGAS, 10, 5

Rijsinghani, A. (ed.) 1994, IETF RFC 1624,
https://tools.ietf.org/html/rfcl1624

Schmitz, M., et al. 1999nformationé& On-line data in Astronomyeds. D. Egret
& M. A. Albrecht (Kluwer Academic Pub.), 259

Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS, 44336

Wells, D. C. & Grosbal, P. 199@loating Point Agreement fdfITS, http://
fits.gsfc.nasa.gov/fp89.txt

Note: Many of theseFITS references are available electronically from the

NASA Astrophysics Data System (ADS) gndtheFITS Support Gfice web
sites at

http://adswww.harvard.edu and
http://fits.gsfc.nasa.gov/fits_documentation.html.

Allen, S. & Wells, D. 2005, IETF RFC 4047,
http://www.ietf.org/rfc/rfc4047.txt

ANSI 1977,American National Standard for Information Processing:dédor
Information InterchangeANSI X3.4-1977 (ISO 646) New York: American
National Standards Institute, Inc.

Braden, R. T., Borman, D.A., and Partridge, C. 1988 ACM Cotapu
Communication Review, 19, no. 2, 86, IETF RFC 1071,
https://tools.ietf.org/html/rfc1071

Bradner, S. 1997, IETF RFC 211Bttp://www.ietf.org/rfc/rfc2119.
txt

Bunclark, P. & Rots, A. 1997Precise re-definition cDATE-0BS Keyword en-
compassing the millennium
http://fits.gsfc.nasa.gov/year2000.html

Calabretta, M. R. & Greisen, E. W. 2002, A&A, 395, 1077

Calabretta, M. R. & Roukema, B. F. 2007, MNRAS, 381, 865

Cotton, W. D., Tody, D. B., & Pence, W. D. 1995, A&AS, 113, 159

Cotton, W. D., et al. 1990Going AIPS: A Programmer’s Guide to the NRAO

Astronomical Image Processing SystéPharlottesville: NRAO

73

