20

4.4.2.7 Data Integrity Keywords Normally both keywords will be present in the header if eithe
is present, but this is not required. These keywords apply
to the HDU in which they are contained. If these keywords are
The two keywords described here provide an integrity cheeokitten in one HDU of a multi-HDUFITSfile then it isstrongly
on the information contained RITSHDUS. recommendethat they also be written to every other HDU in
the file with values appropriate to each HDU in turn; in that
case the checksum accumulated over the entire file will equal
DATASUM Keyword. The value field of thedDATASUM keyword -0 as well. TheDATASUM keyword mustbe updated before the
shall consist of a character string thslouldcontain the un- CHECKSUM keyword. In general updating the two checksum key-
signed integer value of the 32-bit 1's complement checkstimwords should be the final step of any update to either data or
the data records in the HDU (i.e., excluding the header b=jor header records in a FITS HDU. It is highlgcommendethat if
For this purpose, each 2880-byiET S logical record should be aFITSfile is.intended for public distribution, then the checksum
interpreted as consisting of 720 32-bit unsigned integee.4 keywords, if present, should contain valid values.
bytes in each integenustbe interpreted in order of decreasing
significance where the most significant byte is first, andehstl .
significant byte is last. Accumulate the sum of these integer / 4:4-3- Additional keywords

ing 1's complementarithmetic in which any overflow of the Mosyew keywordsmay be devised in addition to those described
significant bit is propagated back into the least signifitandf jn this standard, so long as they are consistent with thergene
the sum. alized rules for keywords and do not conflict with mandatory

The DATASUM value is expressed as a character string (i.@! reserved keywords. Any keyword that refers to or depends
enclosed in single quote characters) because supportdulith Upon the existence of other specific HDUs in the same or other
range of 32-bit unsigned integer keyword values is probt'&rnaﬁ'es should be used with caution because the persistenbesﬁt
in some software systems. This string may be padded with ndtPUs cannot always be guaranteed.
significant leading or trailing blank characters or leadiegos.

A string containing only 1 or more consecutive ASCII blanks
may be used to represent an undefined or unknown value for
the DATASUM keyword. TheDATASUM keyword may be omit-

ted in HDUs that have no data records, but it is preferable to
include the keyword with a value of 0. Otherwise, a missing
DATASUM keyword asserts no knowledge of the checksum of
the data records. Recording in the comment field the 1ISO-8601
formatted Datetime when the value of this keyword record is
created or updated iecommended

CHECKSUM Keyword. The value field of th€ HECKSUM keyword
shall consist of an ASCII character string whose value forces
the 32-bit 1's complement checksum accumulated over the en-
tire FITSHDU to equal negative 0. (Note that 1's complement
arithmetic has both positive and negative zero elemertt$. |
recommendedhat the particular 16-character string generated
by the algorithm described in‘/Appendix J be used. A string con
taining only 1 or more consecutive ASCII blanks may be used
to represent an undefined‘or unknown value for GHECKSUM
keyword.

The CHECKSUM keyword valuemustbe expressed in fixed
format, when the algorithm in Appendix J is used, otherwse t
usage of fixed format isscommendedrecording in the com-
ment field the 1ISO-8601-formatted Datetime when the value of
this keyword record is created or updatedeisommended

If the CHECKSUM keyword exists in the header of the HDU
and the accumulated checksum is not equal to -0, or if the
DATASUM keyword exists in the header of the HDU and its value
does not match the data checksum then this provides a stteng i
dication that the content of the HDU has changed subseqoent t
the time that the respective keyword value was computech Suc
an invalid checksum may indicate corruption during a priler fi
copy or transfer operation, or a corruption of the physicatiia
on which the file was stored. It may alternatively reflect an in
tentional change to the data file by subsequent data proggési
the CHECKSUM value was not also updated.

20

68

Appendix J: CHECKSUM Implementation Guidelines 0w 1s 22 3s 4s 5% 6% 7w 8% 9
. - .. D D <z = > P w A B . Cau
This Appendix is not part of thelTS standard, but is included b £ p G " | Cj) K L y
for informational purposes N. O« Pw Qu Ru Su Tu Us Ve Ws
Xe Yo Zo [x Ve Ju "w _s ‘w aa
J.1. Recommended CHECKSUM Keyword Implementation be Cw de ew fu gy he de e ke
| e M e N O« pw gn ra=
TherecommendedHECKSUM keyword algorithm described here || rigure 1. only Ascil alpha-numerics are used to encode the checksum — punctuation is exgluded.

generates a 16-character ASCII string that forces the B2'Di
complement checksum accumulated over the eRtifé&s HDU

to equal negative 0 (all 32 bits equal to 1). In addition, i1 oyerthe rest of the HDU. This algorithm also ensures thatthe
will only contain alphanumeric characters within the rasge9, bytes that make up the 4 integers all have values that camessp

A-Z, and a-z to promote human readability and transcriptiogy ASCII alpha-numeric characters in the range 0-9, A-Z, and
If the present algorithm is used, HGHECKSUM keyword value 5 5

mustbe expressed in fixed format, with the starting single quote
character in column 11 and the ending single quote charactgr Begin with the 1's complement (replace Os with 1s and 1s
in column 28 of theFITS keyword record, because the relative ity ps) of the 32-bit checksum accumulated over all the
placement of the value string within the keyword recofieéets FITS records in the HDU after first initializing ttGIECKSUM
the computed HDU checksum. The steps in the algorithm are as keyword with a fixed-format string consisting of 16 ASCII
follows: Zeros (0000000000000000°).
_) 2. Interpret this complemented 32-bit value as a sequence of
1. Write the CHECKSUM keyword into the HDU header 4 ypsigned 8-bit integers, A, B, C and D, where A is the
with an initial value consisting of 16 ASCIl zeros mgstsignificant byte and D is the least significant. Generate
(" 9000000000000000°) where the first single quote charac- 5 sequence of 4 integers, A1, A2, A3, A4, that are all equal to
teris in column 11 of th&ITSkeyword record. This specific. A divided by 4 (truncated to an integer if necessary). If A is
initialization string is required by the encoding algonitiie- not evenly divisible by 4, add the remainder to A1. The key
scribed in Sect. J.2 The final comment field of the keyword, " property to note here is that the sum of the 4 new integers is
if any, must also be written at this time. It is recommended eqyal to the original byte value (e.g.,AAL + A2 + A3 +
that the current date and time be recorded in the comment a4) perform a similar operation on B, C, and D, resulting in
field to document when the checksum was computed. atotal of 16 integer values, 4 from each of the original bytes
2. Accumulate the 32-bit 1's complement.checksum over the. \yhich should be rearranged in the following order:
FITS logical records that make up the HDU header in the
same manner as was done for the data records by interpret- a1 g1 c1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4
ing each 2880-byte logical record as 720 32-bit unsigned in-

tegers. /) Each of these integers represents one of the 16 characters
3. Calculate the checksum for the entire HDU by adding (Us- in the final CHECKSUM keyword value. Note that if this byte
ing 1's complement arithmetic) the checksum accumulated stream is interpreted as 4 32-bit integers, the sum of tlee int
over the header records to the checksum accumulated overgers is equal to the original complemented checksum value.
the data records (i.e., the previously compmteTASUMKey- 3. Add 48 (hex 30), which is the value of an ASCII zero char-
word value). _ acter, to each of the 16 integers generated in the previous
4. Compute the bit-wise Complement of the 32-bit total HDU step. This p|aces the values in the range of ASCII a|phanu_
checksum value by replacing all O bits with'd and all 1 bits meric characters '0’ (ASCII zero) to 'r’. Thisftset is dfec-
with 0.) tively subtracted back out of the checksum when the initial
5. Encode the complement of the HDU checksum into a 16- cgeCckSUM keyword value string of 16 ASCII Os is replaced
character ASCII string using the algorithm described intSec \ith the final encoded checksum value.

J.2 o o 4. Toimprove human readability and transcription of thigtr
6. Replace the initiaCHECKSUM keyword value with this 16- eliminate any non-alphanumeric characters by considering
character encoded string. The checksum for the entire HDU the bytes a pair at a time (e.g., ALA2, A3 + A4, B1 +
will now be equal to negative 0. B2, etc.) and repeatedly increment the first byte in the pair
by 1 and decrement the 2nd byte by 1 as necessary until they
J.2. Recommended ASCII Encoding Algorithm both correspond to the ASCII value of the allowed alphanu-

meric characters 0-9, A-Z, and a—z shown in Figure 1. Note
The algorithm described here is used to generate an AS@igstr that this operation conserves the value of the sum of the 4
which, when substituted for the value of {ti#ECKSUM keyword, equivalent 32-bit integers, which is required for use irs thi
will force the checksum for the entire HDU to equal negativi O checksum application.
is based on a fundamental property of 1's complement ariicme 5. Cyclically shift all 16 characters in the string one plazéhe
that the sum of an integer and the negation of that integertfie right, rotating the last charactey4) to the beginning of the
bitwise complement formed by replacing all 0 bits with 1s and string. This rotation compensates for the fact that the fixed
all 1 bits with 0s) will equal negative 0 (all bits set to 1).ih formatFITScharacter string values are not aligned on 4-byte
principle is applied here by constructing a 16-charactengst word boundaries in thEITSfile. (The first character of the
which, when interpreted as a byte stream of 4 32-bit intedpars string starts in column 12 of the header card image, rather
a sum that is equal to the complement of the sum accumulatedthan column 13).

68

69

6. Write this string of 16 characters to the value of theew checksum is equal to the old total checksum plus the eheck
CHECKSUM keyword, replacing the initial string of 16 ASCII sum accumulated over the modified records, minus the otigina
Zeros. checksum for the modified records.

An incremental update provides the mechanism for end-to-

To invert the ASCII encoding, cyclically shift the 16 characend checksum verification through any number of intermediat
ters in the encoded string one place to the left, subtradiéixe processing steps. Byalculatingrather tharaccumulatinghe in-

30 ofset from each character, and calculate the checksum bytgrmediate checksums, the original checksum test is peipeg

terpreting the string as 4 32-bit unsigned integers. Thislm through to the final data file. On the other hand, if a new check-

used, for instance, to read the valueCHECKSUM into the soft- sum is/accumulated with each change to the HDU, no informa-
ware when verifying or updating a HDU. tion is preserved about the HDU's original state.

The recipe for updating theHECKSUM keyword following
some change to the HDU i€’ = C — m+ nY, whereC
andC’ represent the HDU's checksum (that is, the complement
This example illustrates the encoding algorithm given ictSe of the CHECKSUM keyword) before and after the modification
J.2 Consider &ITS HDU whose 1's complement checksumand m andnt are the corresponding checksums for the mod-
is 868229149, which is equivalent to hed3C0201D. This / ified FITSrecords or keywords only. Since tRHECKSUM key-
number was obtained by accumulating the 32-bit checksumord contains the complement of the checksum, the correspon
over the header and data records using 1's complement aritigly complemented form of the recipe is more directly usefu
metic after first initializing theCHECKSUM keyword value to "C’ = 7(C + "m+ nv), where ~ (tilde) denotes the (1's) comple-
’0000000000000000°. The complement of the accumulatednent operation. See Braden et al. (1988); Mallory & Kullberg
checksum is 3426738146, which is equivalent to @@3FDFE2. (1990); Rijsinghani (1994). Note that the tilde on the rigahd
The steps needed to encode this hex value into ASCII are shosigie of the equation cannot be distributed over the contets
schematically below: the parentheses due to the dual nature of zero in 1's compteme

arithmetic (Rijsinghani 1994).

J.3. Encoding Example

Byte Preserve byte alignment
A B C D Al Bl CLDI A2 B2 C2D2 A3 B3 C3 D3 A4 BA C4 D4
CC 3F DF E2 -> 33 OF 37 38 33 OF 37 38 33 OF 37 38 33 OF 37 38 J.5. Example C Code for Accumulating the Checksum
+ remainder 0 3 3 2

The 1's complement checksum is simple and fast to com-
=hex 33 12 3A 3A 33 OF 37 38 33 OF 37 38 33 OF 37 38 pute. This routine assumes that the input records are a-multi
+ 0 offset 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 ple of4bytes Iong (as iS the case fEfTS IOgiCﬁI recora)s
but it is not dfficult to allow for odd length records if neces-
sary. To use this routine, first initialize tt@ECKSUM keyword
Eliminate punctuation characters to *0000000000000000° and initializesum32 = 0, then step

= hex 63 42 6A 6A 63 3F 67 68 63 3F 67 68 63 3F 67
ASCII c B jj c¢c? gh ¢ ? gh ¢ ?

«
[=)]
5 o

initial values ¢ B j j ¢ ? g h ¢ ? g h c ? g h through all the=ITSlogical records in the FITS HDU.
c C j j c >g h c¢c @ g h ¢ » gh
c IE) 3 c =9 g c g 9 E ci=9 g void checksum (
c F I3 < < 9 h c c 9 h < < 9 h unsigned char *buf, /* Input array of bytes to be checksummed */
c G J J c i 9 h ¢ D 9 h c 9 h /* (interpret as 4-byte unsigned ints) /
- c 33 c 9 c 9 S 8 int length, /* Length of buf array, in bytes */
final values c H j j c 9 gh ¢ Egh ¢ 9 g h /% (must be multiple of 4))
unsigned int *sum32) /* 32-bit checksum /

final string "hcHjjc9ghcEghc9g" (rotate 1 place to the right)

In this examp|e byte B1 (Origina”y ASCH) is shifted hlgher Increment the input value of sum32 with the 1’s complement sum
(to ASCII H) to balance byte B2 (originally ASCIP) being ,, accunulated over the input buf array.
shifted lower (to ASCII9). /Similarly, bytes B3 and B4 are ' unsigned int hi, lo, hicarry, locarry, i;
shifted by opposing amounts. This.is possible because tbe tw _ _)
sequences of ASCII punctuation characters that can occur i, Joc i ate e o o e B o o cepnranety o/
encoded checksums are both preceded and followed by Ionger The first byte in each pair is the most significant. */
sequences of ASCII a|phanumer|c characters. This operailo /* This algorithm works on both big and little endian machines.*/

hi = (*sum32 >> 16);
purely for cosmetic reasons to improve readability of thalfin 1o = S oons s exrers:

string. for (i=0; i < length; i+=4) {

This is how thes€HECKSUM andDATASUM keywords would hi += ((buf[i] ~ << 8) + buf[i+1]);
appear in &ITS header (with the recommended time stamp in , 10 *= ((Puflis2] << 8% buflish;
the comment field).:

/* fold carry bits from each 16 bit sum into the other sum */

DATASUM = 2503531142’ / 2015-06-28T18:30:45 hicarry = hi >> 16;
CHECKSUM= ’hcHjjc9ghcEghc9g’ / 2015-06-28T18:30:45 locarry = lo >> 16;
while (hicarry || locarry) {

hi = (hi & OxFFFF) + locarry;

f lo = (lo & OxFFFF) + hicarry;
J.4. Incremental Updating of the Checksum hicarry = hi >> 16;

locarry = lo >> 16;

The symmetry of 1’'s complement arithmetic also means that af 3

ter modifying aFITS HDU, the checksum may be incremen- _
. /* concatenate the full 32-bit value from the 2 halves */

tally updated using simple arithmetic without accumulgtine *sum32 = (hi << 16) + lo;

checksum for portions of the HDU that have not changed. The

69

70

J.6. Example C Code for ASCII Encoding

This routine encodes the complement of the 32-bit HDU check-
sum value into a 16-character string. The byte alignmentef t
string is permuted one place to the right T Sto left justify

the string value starting in column 12.

unsigned int exclude[13] = {0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40,
0x5b, 0x5c, 0x5d, Ox5e, 0x5f, 0x60 };

int offset = 0x30; /* ASCII O (zero) */
unsigned long mask[4] = { 0xff000000, 0xff0000, Oxff00, Oxff };

void char_encode (

unsigned int value, /* 1’s complement of the checksum */
/* value to be encoded */
char *ascii) /* Output 16-character encoded string */

{
int byte, quotient, remainder, ch[4], check, i, j, k;
char asc[32];

for (i=0; i < 4; i++) {
/* each byte becomes four */
byte = (value & mask[i]) >> ((3 - i) * 8);
quotient = byte / 4 + offset;
remainder = byte % 4;
for (3=0; j < 4; j++)
ch[j] = quotient;

ch[0] += remainder;

for (check=1; check;) /* avoid ASCII punctuation */
for (check=0, k=0; k < 13; k++)
for (j=0; j < 4; j+=2)
if (ch[jl==exclude[k] || ch[j+1]==exclude[k]) {
ch[jl++;
ch[j+1]--;
check++;

}

for (3=0; j < 4; j++) /* assign the bytes */
asc[4*j+i] = ch[j];
}

for (i=0; i < 16; i++) /* permute the bytes for FITS */
ascii[i] = asc[(i+15)%16];

ascii[16] = 0; /* terminate the string */

70

