
D
R

A
FT

Definition of the Flexible Image Transport System
(FITSFITS)

TheFITSFITSStandard

Version 4.0: updated 2016 July 22 by the IAUFWG

DocumentOriginal documentpublication date: 2016 July 22
Language-edited document publication date: 2018 August xx

FITSFITSWorking Group1

Commission 5: Documentation and Astronomical Data2

International Astronomical Union
http://fits.gsfc.nasa.gov/iaufwg/

1 to be absorbed in Data Representation Working Group under new Commission B2
2 now Commission B2 Data and Documentation

1

http://fits.gsfc.nasa.gov/iaufwg/

DRAFT

0

D
R

A
FT

i

Contents

Contents i

1 Introduction 1
1.1 Brief history ofFITSFITS . 1
1.2 Version history of this document .. 1
1.3 Acknowledgments 2

2 Definitions, acronyms, and symbols 3
2.1 Conventions used in this document 3
2.2 Defined terms 3

3 FITSFITS file organization 4
3.1 Overall file structure .. 4
3.2 IndividualFITSFITSStructures 5
3.3 Primary header and data unit .. 5

3.3.1 Primary header 5
3.3.2 Primary data array 5

3.4 Extensions 5
3.4.1 Requirements for conforming extensions 5
3.4.2 Standard extensions 6
3.4.3 Order of extensions 6

3.5 Special records (restricted use) 6
3.6 Physical blocking .. 6

3.6.1 BitstreamBit-streamdevices . 6
3.6.2 Sequential media 6

3.7 Restrictions on changes .. 6

4 Headers 6
4.1 Keyword records 6

4.1.1 Syntax 6
4.1.2 Components 6

4.2 Value 7
4.2.1 Character string 7
4.2.2 Logical 8
4.2.3 Integer number 8
4.2.4 Real floating-point number .. 9
4.2.5 Complex integer number 9
4.2.6 Complex floating-point number .. 9
4.2.7 Date 9

4.3 Units 9
4.3.1 Construction of units strings .. 10
4.3.2 Units in comment fields 11

4.4 Keywords 11
4.4.1 Mandatory keywords 11
4.4.2 Other reserved keywords 13
4.4.3 Additional keywords 17

5 DataRepresentationrepresentation 17
5.1 Characters 17
5.2 Integers 17

5.2.1 Eight-bit 17
5.2.2 Sixteen-bit 17
5.2.3 Thirty-two-bit 17
5.2.4 Sixty-four-bit 17
5.2.5 Unsigned integers 17

5.3 IEEE-754 floating point .. 17
5.4 Time 18

i

D
R

A
FT

ii

6 Random groupsRandom-groupsstructure 18
6.1 Keywords 18

6.1.1 Mandatory keywords 18
6.1.2 Reserved keywords 18

6.2 Data sequence 19
6.3 Data representation .. 19

7 Standard extensions 19
7.1 Image extension 19

7.1.1 Mandatory keywords 19
7.1.2 Other reserved keywords 20
7.1.3 Data sequence 20

7.2 TheASCII tableASCII-tableextension . 20
7.2.1 Mandatory keywords 20
7.2.2 Other reserved keywords 21
7.2.3 Data sequence 22
7.2.4 Fields 23
7.2.5 Entries 23

7.3 Binary tableBinary-tableextension .24
7.3.1 Mandatory keywords 24
7.3.2 Other reserved keywords 24
7.3.3 Data sequence 27
7.3.4 Data display 28
7.3.5 Variable-length arrays .. 30
7.3.6 Variable-length-array guidelines 31

8 World coordinate World-coordinate systems 31
8.1 Basic concepts 31
8.2 World coordinate systemWorld-coordinate-systemrepresentations . 32

8.2.1 Alternative WCS axis descriptions 35
8.3 Celestial coordinate systemCelestial-coordinate-systemrepresentations . 35
8.4 Spectral coordinate systemSpectral-coordinate-systemrepresentations . 37

8.4.1 Spectral coordinateSpectral-coordinatereference frames . 37
8.5 Conventional coordinateConventional-coordinatetypes . 39

9 Representations of time coordinates 39
9.1 Time values 39

9.1.1 ISO-8601datetimedatetimestrings . 39
9.1.2 Julian and Besselian epochs .. 40

9.2 Time coordinate frame .. 40
9.2.1 Time scale 40
9.2.2 Time reference value 41
9.2.3 Time reference position 42
9.2.4 Time reference direction .. 43
9.2.5 Solar SystemEphemerisephemeris. 43

9.3 Time unit 43
9.4 Time offset, binning, and errors 44

9.4.1 Time offset 44
9.4.2 Time resolution and binning .. 44
9.4.3 Time errors 44

9.5 Global time keywords .. 45
9.6 Othertime coordinatetime-coordinateaxes . 45
9.7 Durations 46
9.8 Recommended best practices .. 46

9.8.1 Global keywords and overrides .. 46
9.8.2 Restrictions on alternate descriptions 46
9.8.3 Image time axes 46

ii

D
R

A
FT

iii

10 Representations of compressed data 47
10.1 TiledImage Compressionimage compression. 47

10.1.1 RequiredKeywordskeywords . 47
10.1.2 OtherReserved Keywordsreserved keywords. 47
10.1.3 TableColumnscolumns. 48

10.2 Quantization ofFloating-Point Datafloating-point data . 49
10.2.1 DitheringAlgorithmsalgorithms . 50
10.2.2 Preserving undefined pixels with lossy compression .. 51

10.3 TiledTable Compressiontable compression. 51
10.3.1 RequiredKeywordskeywords . 51
10.3.2 Procedure forTable Compressiontable compression. 52
10.3.3 CompressionDirective Keywordsdirective keywords. 52
10.3.4 OtherReserved Keywordsreserved keywords. 52
10.3.5 SupportedCompression Algorithmscompression algorithmsfor Tablestables 52
10.3.6 CompressingVariable-Length Array Columnsvariable-length array columns. 53

10.4 CompressionAlgorithmsalgorithms . 53
10.4.1 Rice compression 53
10.4.2 GZIPGzipcompression 53
10.4.3 IRAF/PLIO compression 54
10.4.4 H-Compress algorithm 54

A Syntax of keyword records 56

B Suggestedtime scaletime-scalespecification 57

C Summary of keywords 58

D ASCII text 60

E IEEE floating-point formats 60
E.1 Basic formats 60

E.1.1 Single 61
E.1.2 Double 61

E.2 Byte patterns 61

F Reserved extension type names 63
F.1 Standard extensions .. 63
F.2 Conforming extensions .. 63
F.3 Other suggested extension names .. 63

G MIME types 63
G.1 MIME type ‘application/fitsapplication/fits’ . 63

G.1.1 Recommendations for application writers 64
G.2 MIME type ‘image/fitsimage/fits’ . 64

G.2.1 Recommendations for application writers 64
G.3 File extensions 65

H Past changes or clarifications to the formal definition ofFITSFITS 65
H.1 Differences between the requirements in thisstandardStandardand the requirements in the originalFITSFITSpapers. 65
H.2 List of modification to theFITSstandardFITSStandard, version 3Version 3.0. 65
H.3 List of modifications to the latestFITS standardFITSStandard . 66
H.4 List of modifications for language editing. 67

I Random Number GeneratorRandom-number generator 67

J CHECKSUM Implementation GuidelinesCHECKSUM implementation guidelines 67
J.1 RecommendedCHECKSUMKeyword ImplementationCHECKSUM keyword implementation. 68
J.2 Recommended ASCIIEncoding Algorithmencoding algorithm. 68
J.3 EncodingExampleexample. 69
J.4 IncrementalUpdatingupdatingof theChecksumchecksum . 69
J.5 ExampleC Codecodefor AccumulatingaccumulatingtheChecksumchecksum. 69
J.6 ExampleC Codecodefor ASCII Encodingencoding . 70

iii

D
R

A
FT

iv

K Header inheritance convention 70

L Green Bank convention 70

References/ Index 71

List of Tables

1 Significant milestones in the development ofFITSFITS. 2
2 Version history of thestandardStandard. 2
3 IAU-recommended basic units. .. 9
4 Additional allowed units. .. 10
5 Prefixes for multiples and submultiples. 11
6 Characters and strings allowed to denote mathematical operations. 11
7 Mandatory keywords for primary header. 11
8 Interpretation of validBITPIXBITPIX value. 11
9 Example of a primary array header. .. 13
10 Mandatory keywords in conforming extensions. 13
11 Usage ofBZEROBZERO to represent non-default integer data types. 16
12 Mandatory keywords in primary header preceding random groups. 18
13 Mandatory keywords inimageIMAGE extensions. 19
14 Mandatory keywords inASCII tableASCII-tableextensions. 21
15 ValidTFORMnTFORMn format values inTABLETABLE extensions. 21
16 ValidTDISPnTDISPn format values inTABLETABLE extensions. 22
18 ValidTFORMnTFORMn data types inBINTABLEBINTABLE extensions. 24
17 Mandatory keywords inbinary tablebinary-tableextensions. 25
19 Usage ofTZEROnTZEROn to represent non-default integer data types. 26
20 ValidTDISPnTDISPn format values inBINTABLEBINTABLE extensions. 27
21 WCS and celestial coordinates notation. 33
22 Reserved WCS keywords (continues on next page) 34
23 Reservedcelestial coordinate algorithmcelestial-coordinate-algorithmcodes. 36
24 Allowed values ofRADESYSa. 37
25 Reservedspectral coordinatespectral-coordinatetype codes. 38
26 Non-linear spectral algorithm codes. 38
27 Spectral reference systems. .. 39
28 Examplekeywordskeyword recordsfor a 100 element100-elementarray of complex values. 39
29 Conventional Stokes values. .. 39
30 Recognized Time Scale Values .. 41
31 Standard Time Reference Position Values 42
32 Compatibility of Time Scales and Reference Positions 42
33 Validsolar systemSolar System ephemerides. 44
34 Recommended time units 44
35 Keywords for global time values .. 45
36 Valid mnemonic values for theZCMPTYPE andZCTYPn keywords . 53
37 Keyword parameters for Rice compression 53
38 PLIO Instructions 54
39 Keyword parameters for H-compression 55
C.1 MandatoryFITSkeywords. 58
C.2 ReservedFITSkeywords. 58
C.3 General reservedFITSkeywords. .. . 59
D.1 ASCII character set .. 60
E.1 Summary of format parameters. .. 61
E.2 IEEE floating-point formats. .. 62

iv

D
R

A
FT

1

1. Introduction

An archival format must be utterly portable and self-
describing, on the assumption that, apart from the tran-
scription device, neither the software nor the hardware
that wrote the data will be available when the data
are read. ‘Preserving Scientific Data on our Physical
Universe,’ p. 60. Steering Committee for the Study
on the Long-Term Retention of Selected Scientific and
Technical Records of the Federal Government, [US]
National Research Council, National Academy Press
1995.

This document, hereafter referred to as the
‘standardStandard’, describes the Flexible Image Transport
System (FITS)FITS), which is the standard archival data format
for astronomical data sets. AlthoughFITSFITS was originally
designed for transporting image data on magnetic tape (which
accounts for the ‘I’ and ‘T’ in the name), the capabilities of
the FITSFITS format have expanded to accommodatemore
complexmore-complexdata structures. The role ofFITSFITS
has also grown from simply a way to transport data between
different analysis software systems into the preferred format for
data in astronomical archives, as well as the on-line analysis
format used by many software packages.

This standard is intended as a formal codification of the
FITSformatFITS format, which has been endorsed by the
International Astronomical Union (IAU) for the interchange of
astronomical data (IAU 1983). It is fully consistent with all ac-
tions and endorsements of the IAUFITSFITS Working Group
(IAUFWG), which was appointed by Commission 5 of the IAU
to oversee further development of theFITSFITS format. In par-
ticular, this standard defines the organization and contentof the
header and data units for all standardFITSFITSdata structures:
the primary array, therandom groupsrandom-groupsstructure,
the image extension, theASCII tableASCII-tableextension, and
the binary tablebinary-tableextension. It also specifies mini-
mum structural requirements and general principles governing
the creation of new extensions. For headers, it specifies the
proper syntax for keyword records and defines required and re-
served keywords. For data, it specifiescharacter and numeric
valuecharacter- and numeric-valuerepresentations and the or-
dering of contents within the byte stream.

One important feature of theFITSFITS format is that its
structure, down to the bit level, is completely specified in docu-
ments (such as this standard), many of which have been pub-
lished in refereed scientific journals. Given these documents,
which are readily available in hard copy form in libraries around
the world as well as in electronic form on the Internet, future
researchers should be able to decode the stream of bytes in any
FITSFITS format data file. In contrast, many other current data
formats are only implicitly defined by the software that reads and
writes the files. If that software is not continually maintained so
that it can be run on future computer systems, then the informa-
tion encoded in those data files could be lost.

1.1. Brief history of FITSFITS

TheFITSFITSformat evolved out of the recognition that a stan-
dard format was needed for transferring astronomical images
from one research institution to another. The first prototype de-
velopments of a universal interchange format that would eventu-

ally lead to the definition of theFITSFITSformat began in 1976
between Don Wells at KPNO and Ron Harten at the Netherlands
Foundation for Research in Astronomy (NFRA). This need for
an image interchange format was raised at a meeting of the
Astronomy section of the U.S. National Science Foundation in
January 1979, which led to the formation of a task force to work
on the problem. Most of the technical details of the first basic
FITSFITS agreement (with files consisting of only a primary
header followed by a data array) were subsequently developed
by Don Wells and Eric Greisen (NRAO) in March 1979. After
further refinements, and successful image interchange tests be-
tween observatories that used widely different types of com-
puter systems, the first papers that defined theFITSFITS format
were published in 1981 (Wells et al. 1981; Greisen & Harten
1981). TheFITSFITS format quickly became thedefactode
factostandard for data interchange within the astronomical com-
munity (mostly on9-tracknine-trackmagnetic tape at that time),
and was officially endorsed by the IAU in 1982 (IAU 1983).
Most national and international astronomical projects andor-
ganizations subsequently adopted theFITSFITS format for dis-
tribution and archiving of their scientific data products. Some
of the highlights in the developmental history ofFITSFITS are
shown in Table 1.

1.2. Version history of this document

The fundamental definition of theFITSFITS format was orig-
inally contained in a series of published papers (Wells et al.
1981; Greisen & Harten 1981; Grosbøl et al. 1988;
Harten et al. 1988). AsFITSFITS became more widely
used, the need for a single document to unambiguously define
the requirements of theFITSFITS format became apparent. In
1990, the NASA Science Office of Standards and Technology
(NOST) at the Goddard Space Flight Center provided funding
for a technical panel to develop the first version of thisstandard
Standarddocument. As shown in Table 2, the NOST panel
produced several draft versions, culminating in the first NOST
standard document, NOST 100-1.0, in 1993. Although this
document was developed under a NASA accreditation process,
it was subsequently formally approved by the IAUFWG, which
is the international control authority for theFITSFITS format.
The small update to thestandardStandardin 1995 (NOST
100-1.1) added a recommendation on the physical units of
header keyword values.

The NOST technical panel was convened a second time to
make further updates and clarifications to thestandardStandard,
resulting in the NOST 100-2.0 versionthat, whichwas approved
by the IAUFWG in 1999 and published in 2001 (Hanisch et al.
2001). In 2005, the IAUFWG formally approved the variable-
length array convention in binary tables, and a short time later
approved support for the 64-bit integers data type. New ver-
sions of thestandardStandardwere released to reflect both of
these changes (versions IAUFWGVersions IAUFWG2.1 and
IAUFWG 2.1b).

In early 2007 the IAUFWG appointed its own technical
panel to consider further modifications and updates to the
standardStandard. The changes proposed by this panel, which
were ultimately approved in 2008 by the IAUFWG after a for-
mal public review process, are shown in theVersion3.0version
of the document, published in Pence et al. (2010).

1

D
R

A
FT

2

Table 1: Significant milestones in the development ofFITSFITS.

Date Milestone Section

1979 InitialFITSFITSAgreement and first interchange of files
1981 Published original (single HDU) definition (Wells et al. 1981)
1981 Publishedrandom groupsrandom-groupsdefinition (Greisen & Harten 1981) Sect.6
1982 Formally endorsed by the IAU (IAU 1983)
1988 Defined rules for multiple extensions (Grosbøl et al. 1988)
1988 IAUFITSFITSWorking Group (IAUFWG) established
1988 Extended to includeASCII tableASCII-tableextensions (Harten et al. 1988) Sect.7.2
1988 Formal IAU approval of ASCII tables (IAU 1988) Sect. 7.2
1990 Extended to include IEEE floating-point data (Wells & Grosbøl 1990) Sect.5.3
1994 Extended to multipleIMAGEarrayIMAGE-arrayextensions (Ponz et al. 1994) Sect.7.1
1995 Extended tobinary tablebinary-tableextensions (Cotton et al. 1995) Sect.7.3
1997 Adopted4-digit yearfour-digit-yeardate format (Bunclark & Rots 1997) Sect.4.4.2
2002 Adopted proposals forworld coordinateworld-coordinatesystems (Greisen & Calabretta 2002) Sect.8
2002 Adopted proposals for celestial coordinates (Calabretta & Greisen 2002) Sect.8.3
2004 Adopted MIME types forFITSFITSdata files (Allen & Wells 2005) App.G
2005 Extended to support variable-length arrays in binary tables Sect. 7.3.5
2005 Adopted proposals forspectral coordinatespectral-coordinatesystems (Greisen et al. 2006) Sect.8.4
2005 Extended to include 64-bit integer data type Sect. 5.2.4
2006 Adopted WCS HEALPix projection (Calabretta & Roukema 2007) Sect.8.3
2006 EstablishedFITSconvention registry
2014 Adopted proposals for time coordinates (Rots et al. 2015) Sect. 9
2016 Adopted proposals for compressed data Sect. 10
2016 Adopted various registered conventions App. H.3
2018 General language editing App. H.4

Table 2: Version history of thestandardStandard.

Version Date Status

NOST 100-0.1 1990 December First Draft Standard
NOST 100-0.2 1991 June Second Revised Draft Standard
NOST 100-0.3 1991 December Third Revised Draft Standard
NOST 100-1.0 1993 June NOST Standard
NOST 100-1.1 1995 September NOST Standard
NOST 100-2.0 1999 March NOST Standard
IAUFWG 2.1 2005 April IAUFWG Standard
IAUFWG 2.1b 2005 December IAUFWG Standard
IAUFWG 3.0 2008 July IAUFWG Standard
IAUFWG 4.0 2016 July IAUFWG Standard(approved)
IAUFWG 4.0 2018 August IAUFWG Standard (language-edited)

Since 2006 a Registry forFITSconventions submitted by the
community was established under the care of the IAUFWG at
http://fits.gsfc.nasa.gov/fits_registry.html. The
Registry was intended as a repository of documentation of us-
ages, which, although not endorsed as part of theFITSStandard,
are otherwise perfectly legal usages ofFITS. In 2014 a small
team was formed to evaluate the possible incorporation of some
conventions within the Standard, while another small team was
in charge to update the Standard document with a summary of
the WCS time representation (Rots et al. 2015), which in the
meanwhile had been voted natively as part of theFITSStandard.

Details on the conventions that have been incorporated into
this latest version of the Standard (CONTINUE long-string key-
words, blank header space,CHECKSUM, column limits, tiled im-
age and table compression) or only briefly mentioned (key-
word inheritance and Green Bank conventions) are describedin
Appendix H.3, which also lists the corresponding affected sec-
tions of the Standard.

After the approval by the IAUFWG in July 2016 the
Standard was subjected to a thorough language editing (withno
impact on the technical prescriptions) before the final issue in
2018. Details about the language editing changes are provided
in Appendix H.4.

The latest version of thestandardStandard, as well as other
information about theFITSFITS format, can be obtained from
the FITSSupport Office web siteFITS Support Office web-
site at http://fits.gsfc.nasa.gov. This web sitewebsite
also contains the contact information for the Chairman of the
IAUFWG, to whom any questions or comments regarding this
standardStandardshould be addressed.

1.3. Acknowledgments

The members of the three technical panels that produced this
standardStandardare shown below.

First technical panel,1990 – 19931990–1993
Robert J. Hanisch (Chair) Space Telescope Science Inst.
Lee E. Brotzman Hughes STX

2

http://fits.gsfc.nasa.gov/fits_registry.html
http://fits.gsfc.nasa.gov

D
R

A
FT

3

Edward Kemper Hughes STX
Barry M. Schlesinger Raytheon STX
Peter J. Teuben University of Maryland
Michael E. Van SteenbergNASA Goddard SFC
Wayne H. Warren Jr. Hughes STX
Richard A. White NASA Goddard SFC

Second technical panel,1994 – 19991994–1999
Robert J. Hanisch (Chair) Space Telescope Science Inst.
Allen Farris Space Telescope Science Inst.
Eric W. Greisen National Radio Astr. Obs.
William D. Pence NASA Goddard SFC
Barry M. Schlesinger Raytheon STX
Peter J. Teuben University of Maryland
Randall W. Thompson Computer Sciences Corp.
Archibald Warnock A/WWW Enterprises

Third technical panel, 2007
William D. Pence (Chair) NASA Goddard SFC
Lucio Chiappetti IASF Milano, INAF, Italy
Clive G. Page University of Leicester, UK
Richard Shaw National Optical Astr. Obs.
Elizabeth Stobie University of Arizona

Dedicated task forces, 2013-2016
Lucio Chiappetti IASF Milano, INAF, Italy
Steve Allen UCO Lick Observatory
Adam Dobrzycki European Southern Observatory
William D. Pence NASA Goddard SFC
Arnold Rots Harvard Smithsonian CfA
Richard Shaw National Optical Astr. Obs.
William T. Thompson NASA Goddard SFC

Language editing, 2016-2018
Malcolm J. Currie Rutherford Appleton Lab, UK
Lucio Chiappetti IASF Milano, INAF, Italy

2. Definitions, acronyms, and symbols

2.1. Conventions used in this document

Terms or letters set inCourier fontCourier typeface

represent literal strings that appear inFITSFITSfiles. In the case
of keyword names, such as ‘NAXISnNAXISn’, the lower case
lower-caseletter represents a positive integer index number, gen-
erally in the range 1 to 999. The emphasized wordsmust, shall,
should, may, recommended,and optionalmust, shall, should,
may, recommended, required, and optional in this document
are to be interpreted as described in IETF standard, RFC 2119
(Bradner 1997).

2.2. Defined terms

 Used to designate an ASCII space character.
ANSI American National Standards Institute.
Array A sequence of data values. This sequence corresponds

to the elements in a rectilinear,n-dimension-dimensional
matrix (1≤ n ≤ 999, orn = 0 in the case of a null array).

Array value The value of an element of an array in aFITSFITS
file, without the application of the associated linear transfor-
mation to derive the physical value.

ASCII American National Standard Code for Information
Interchange.

ASCII character Any member of the7-bit seven-bitASCII
character set.

ASCII digit One of the ten ASCII characters ‘0’ through ‘9’,
which are represented by decimal character codes 48 through
57 (hexadecimal 30 through 39).

ASCII NULL The ASCII character that has all eight bits set to
zero.

ASCII space The ASCII character for space, which is repre-
sented by decimal 32 (hexadecimal 20).

ASCII text The restricted set of ASCII characters decimal 32
through 126 (hexadecimal 20 through 7E).

BasicFITS TheFITS
BasicFITS The FITS structure consisting of the primary

header followed by a single primary data array. This is
also known as Single ImageFITSFITS (SIF), as opposed to
Multi-ExtensionFITSFITS (MEF) files that contain one or
more extensions following the primary HDU.

Big endian The numerical data format used inFITSFITS files
in which themost significantmost-significantbyte of the
value is stored first followed by the remaining bytes in or-
der of significance.

Bit A single binary digit.
Byte An ordered sequence of eight consecutive bits treated as a

single entity.
Card image An obsolete term for an 80-character keyword

record derived from the 80-column punched computer cards
that were prevalent in the 1960s and 1970s.

Character string A sequence of one or more of the restricted
set ofASCII textASCII-textcharacters, decimal 32 through
126 (hexadecimal 20 through 7E).

Conforming extension An extension whose keywords and or-
ganization adhere to the requirements for conforming exten-
sions defined in Sect.3.4.1 of thisstandardStandard.

Data block A 2880-byteFITSFITS block containing data de-
scribed by the keywords in the associated header of that
HDU.

Deprecate To express disapproval of. This term is used to re-
fer to obsolete structures thatshould notshould notbe used
in new FITSfilesbut whichshallFITS files, but whichshall
remain valid indefinitely.

Entry A single value in anASCII table or binary tableASCII-
table or binary-tablestandard extension.

Extension A FITSFITSHDU appearing after the primary HDU
in aFITSFITSfile.

Extension type nameThe value of theXTENSIONXTENSION
keyword, used to identify the type of the extension.

Field A component of a larger entity, such as a keyword record
or a row of anASCII table or binary tableASCII-table or
binary-tablestandard extension. A field in atable extension
table-extensionrow consists of a set ofzero or morezero-or-
moretable entries collectively described by a single format.

File A sequence of one or more records terminated by an end-
of-file indicator appropriate to the medium.

FITS
FITS Flexible Image Transport System.
FITSblock

3

D
R

A
FT

4

FITS block A sequence of 28808-bit eight-bitbytes aligned on
2880 byte2880-byteboundaries in theFITSFITSfile, most
commonly either a header block or a data block. Special
records are another infrequently used type ofFITSFITS
block. This block length was chosen because it is evenly di-
visible by the byte and word lengths of all known computer
systems at the timeFITSFITSwas developed in 1979.

FITSfile
FITS file A file with a format that conforms to the specifications

in this document.
FITSstructure
FITS structure One of the components of aFITSFITSfile: the

primary HDU, therandom groupsrandom-groupsrecords, an
extension, or, collectively, the special records following the
last extension.

FITSSupport Office TheFITSinformation web site
FITS Support Office The FITS information websitethat is

maintained by the IAUFWG and is currently hosted at
http://fits.gsfc.nasa.gov.

Floating point A computer representation of a real number.
Fraction The field of the mantissa (or significand) of a floating-

point number that lies to the right of its implied binary point.
Group parameter value The value of one of the parameters

preceding a group in therandom groupsrandom-groups
structure, without the application of the associated linear
transformation.

HDU Header and Data Unit. A data structure consisting of a
header and the data the header describes. Note that an HDU
maymayconsist entirely of a header with no data blocks.

Header A series of keyword records organized within one or
more header blocks that describes structures and/or data
which thatfollow it in the FITSFITSfile.

Header block A 2880-byteFITSFITS block containing a se-
quence of thirty-six 80-character keyword records.

Heap The supplemental data area following the main data table
in abinary tablebinary-tablestandard extension.

IAU International Astronomical Union.
IAUFWG International Astronomical Union FITSFITS

Working Group.
IEEE Institute of Electrical and Electronic Engineers.
IEEE NaN IEEE Not-a-Number value; used to represent unde-

fined floating-point values inFITSFITSarrays and binary ta-
bles.

IEEE special values Floating-point number byte patterns
that have a special, reserved meaning, such as−0, ±∞,
±underflow, ±overflow, ±denormalized, ±NaN. (See
Appendix E).

Indexed keyword A keyword name that is of the form of a
fixed root with an appended positive integer index number.

Keyword name The first eight bytes of a keyword record,
which contain the ASCII name of a metadata quantity (un-
less it is blank).

Keyword record An 80-character record in a header block con-
sisting of a keyword name in the first eight characters fol-
lowed by anoptionaloptional value indicator, value, and
comment string. The keyword recordshallshallbe composed
only of the restricted set ofASCII textASCII-textcharacters
ranging from decimal 32 to 126 (hexadecimal 20 to 7E).

Mandatory keyword A keyword thatmustmustbe used in all
FITSFITS files or a keywordrequiredrequired in conjunc-
tion with particularFITSFITSstructures.

Mantissa Also known as significand. The component of an
IEEE floating-point number consisting of an explicit or im-
plicit leading bit to the left of its implied binary point anda
fraction field to the right.

MEF Multi-ExtensionFITSFITS, i.e., aFITSFITSfile contain-
ing a primary HDU followed by one or more extension
HDUs.

NOST NASA/Science Office of Standards and Technology.
Physical value The value in physical units represented by an el-

ement of an array and possibly derived from the array value
using the associated, butoptionaloptional, linear transforma-
tion.

Pixel Short for ‘Picture element’; a single location within an
array.

Primary data array The data array contained in the primary
HDU.

Primary HDU The first HDU in aFITSFITSfile.
Primary header The first header in aFITSFITSfile, containing

information on the overall contents of the file (as well as on
the primary data array, if present).

Random Group A FITSFITS structure consisting of a collec-
tion of ‘groups’, where a group consists of a subarray of data
and a set of associated parameter values. Random groups are
deprecated for any use other than for radio interferometry
data.

Record A sequence of bits treated as a single logical entity.
Repeat count The number of values represented in a field in a

binary tablebinary-tablestandard extension.
Reserved keyword An optionalkeyword that mustoptional

keyword thatmustbe used only in the manner defined in
thisstandardStandard.

SIF Single ImageFITSFITS, i.e., aFITSFITS file containing
only a primary HDU, without any extension HDUs. Also
known as BasicFITSFITS.

Special records A series of one or moreFITSFITSblocks fol-
lowing the last HDU whose internal structure does not other-
wise conform to that for the primary HDU or to that specified
for a conforming extension in thisstandardStandard. Any use
of special records requires approval from the IAUFITSFITS
Working Group.

Standard extension A conforming extension whose header and
data content are completely specified in Sect.7 of this
standardStandard, namely, an image extension, anASCII
tableASCII-tableextension, or abinary tablebinary-table
extension.

3. FITSFITS file organization

3.1. Overall file structure

A FITSfile shallFITS file shall be composed of the following
FITSFITSstructures, in the order listed:

– Primary header and data unit (HDU).
– Conforming Extensions (optionaloptional).
– Other special records (optionaloptional, restricted).

A FITSFITS file composed of only the primary HDU is some-
times referred to as a BasicFITSFITS file, or a Single Image
FITSFITS(SIF) file, and aFITSFITSfile containing one or more
extensions following the primary HDU is sometimes referredto
as a Multi-ExtensionFITSFITS(MEF) file.

4

http://fits.gsfc.nasa.gov

D
R

A
FT

5

Each FITSFITS structure shallshall consist of an inte-
gral number ofFITSblocksFITS blocks,which are each 2880
bytes (23040 bits) in length. The primary HDUshallshall start
with the first FITSFITS block of theFITSFITS file. The first
FITSFITSblock of each subsequentFITSFITSstructureshallbe
theFITSshall be theFITSblock immediately following the last
FITSFITSblock of the precedingFITSFITSstructure.

This standard does not imposeStandard neither imposesa
limit on the total size of aFITSFITSfile, nor imposes a limiton
the size of an individual HDU within aFITSFITSfile. Software
packages that read or write data according to thisstandard
Standardcould be limited, however, in the size of files that are
supported. In particular, some software systems have histori-
cally only supported files up to 231 bytes in size (approximately
2.1× 109 bytes).

3.2. Individual FITSFITS Structures

The primary HDU and every extension HDUshallshall consist
of one or more 2880-byte header blocks immediately followed
by an optionaloptional sequence of associated 2880-byte data
blocks. The header blocksshallshall contain only the restricted
set ofASCIIASCII-text textcharacters, decimal 32 through 126
(hexadecimal 20 through 7E). The ASCII control characters with
decimal values less than 32 (including the null, tab, carriage re-
turn, andline feedline-feedcharacters), and the delete character
(decimal 127 or hexadecimal 7F)must notmust notappear any-
where within a header block.

3.3. Primary header and data unit

The first component of aFITSfile shallFITS file shall be the
primary HDU, which always contains the primary header and
maymaybe followed by the primary data array. If the primary
data array has zero length, as determined by the values of the
NAXISNAXIS and NAXISnNAXISn keywords in the primary
header (Sect.4.4.1), then the primary HDUshallshall contain
no data blocks.

3.3.1. Primary header

The header of a primary HDUshallshall consist of one or more
header blocks, each containing a series of 80-character keyword
records containing only the restricted set ofASCIIASCII-text
text characters. Each 2880-byte header block contains 36 key-
word records. The last header blockmustcontain theENDmust
contain theEND keyword (defined in Sect.4.4.1)4.4.1),which
marks the logical end of the header. Keyword records without
information (e.g., following theENDEND keyword)shallshallbe
filled with ASCII spaces (decimal 32 or hexadecimal 20).

3.3.2. Primary data array

The primary data array, if present,shallshall consist of a sin-
gle data array with from 1 to 999 dimensions (as specified by
theNAXISNAXIS keyword defined in Sect.4.4.1). Therandom
groupsrandom-groupsconvention in the primary data array is a
more complicatedmore-complicatedstructure and is discussed
separately in Sect.6. The entire array of data values are rep-
resented by a continuous stream of bits starting with the first
bit of the first data block. Each data valueshallshall consist of

A(1, 1, . . . , 1),
A(2, 1, . . . , 1),

...,
A(NAXIS1NAXIS1, 1, . . . , 1),
A(1, 2, . . . , 1),
A(2, 2, . . . , 1),

.

..,
A(NAXIS1NAXIS1, 2, . . . , 1),

..

.,
A(1, NAXIS2NAXIS2, . . . ,NAXISmNAXISm),

...,
A(NAXIS1, NAXIS2NAXIS1, NAXIS2, . . . ,NAXISmNAXISm)

Fig. 1: Arrays of more than one dimensionshallshall consist
of a sequence such that the index alongaxis Axis 1 varies
most rapidly and those along subsequent axes progressivelyless
rapidly.

a fixed number of bits that is determined by the value of the
BITPIXBITPIX keyword (Sect.4.4.1). Arrays of more than one
dimensionshallshall consist of a sequence such that the index
alongaxisAxis 1 varies most rapidly, that alongaxisAxis 2 next
most rapidly, and those along subsequent axes progressively less
rapidly, with that alongaxism, wheremAxis m, wherem is the
value ofNAXISNAXIS, varying least rapidly. There is no space
or any other special character between the last value on a row
or plane and the first value on the next row or plane of a multi-
dimensional array. Except for the location of the first element,
the array structure is independent of theFITSFITSblock struc-
ture. This storage order is shown schematically in Fig. 1 andis
the same order as in multi-dimensional arrays in the Fortranpro-
gramming language (ISO 2004). The index count along each
axisshallshall begin with 1 and increment by 1 up to the value
of theNAXISnNAXISn keyword (Sect.4.4.1).

If the data array does not fill the final data block, the remain-
der of the data blockshallshallbe filled by setting all bits to zero.
The individual data valuesshallshall be stored in big-endian
byte order such that the byte containing themost significant
most-significantbits of the value appears first in theFITSFITS
file, followed by the remaining bytes, if any, in decreasing order
of significance.

3.4. Extensions

3.4.1. Requirements for conforming extensions

All extensions, whether or not further described in thisstandard,
shallStandard,shall fulfill the following requirements to be in
conformance with thisFITSstandardFITSStandard. New exten-
sion typesshouldshouldbe created only when the organization
of the information is such that it cannot be handled by one of
the existing extension types. AFITSFITS file that contains ex-
tensions is commonly referred to as a multi-extensionFITSFITS
(MEF) file.

3.4.1.1. Identity

Each extension typeshallshall have a unique type name,

5

D
R

A
FT

6

specified in the header by theXTENSIONXTENSION keyword
(Sect. 4.4.1). To preclude conflict, extension type names
mustmustbe registered with the IAUFWG. The current list of
registered extensions is given in Appendix F. An up-to-date
list is also maintained on theFITSSupport Office web siteFITS
Support Office website.

3.4.1.2. Size specification

The total number of bits in the data of each extension
shallshall be specified in the header for that extension, in the
manner prescribed in Sect.4.4.1.

3.4.2. Standard extensions

A standard extension is a conforming extension whose organi-
zation and content are completely specified in Sect.7 of this
standardStandard. Only one extension formatshallshall be ap-
proved for each type of data organization.

3.4.3. Order of extensions

An extensionmaymayfollow the primary HDU or another con-
forming extension. Standard extensions and other conforming
extensionsmaymayappear in any order in aFITSFITSfile.

3.5. Special records (restricted use)

Special records are 2880-byteFITSFITS blocks following the
last HDU of theFITSFITSfile that have an unspecified structure
that does not meet the requirements of a conforming extension.
The first8 eight bytes of the special recordsmust notmust not
contain the string ‘XTENSION’. It is recommendedrecommended
that they do not contain the string ‘SIMPLE ’. The con-
tents of special records are not otherwise specified by this
standardStandard.

Special records were originally designed as a way for
the FITSFITS format to evolve by allowing newFITSFITS
structures to be implemented. Following the development of
conforming extensions, which provide a general mechanism for
storing different types of data structures inFITSFITSformat in a
well defined manner, the need for other new types ofFITSFITS
data structures has been greatly reduced. Consequently, further
use of special records is restricted and requires the approval of
the IAU FITSFITSWorking Group.

3.6. Physical blocking

3.6.1. Bitstream Bit-stream devices

For bitstreambit-streamdevices, including but not restricted to
logical file systems,FITSfilesshallFITSfilesshallbe interpreted
as a sequence of one or more 2880-byteFITSFITS blocks, re-
gardless of the physical blocking structure of the underlying
recording media. When writing aFITSFITS file on media with
a physical block size unequal to the 2880-byteFITSFITSblock
length, any bytes remaining in the last physical block follow-
ing the end of theFITSFITS file shouldshouldbe set to zero.
Similarly, when readingFITSFITS files on such media, any
bytes remaining in the last physical block following the endof
theFITSfile shallFITSfile shallbe disregarded.

3.6.2. Sequential media

TheFITSFITSformat was originally developed for writing files
on sequentialmagnetic tapemagnetic-tapedevices. The follow-
ing rules on how to write to sequential media (Grosbøl & Wells
1994) are now irrelevant to most currentdata storagedata-
storagedevices.

If physically possible,FITSfilesshallFITSfilesshallbe writ-
ten on sequential media in blocks that are from one to ten integer
multiples of2880-bytes2880 bytesin length. If this is not pos-
sible, theFITSfile shallFITSfile shall be written as abitstream
bit streamusing the native block size of the sequential device.
Any bytes remaining in the last block following the end of the
FITSfile shallFITSfile shallbe set to zero.

When readingFITSFITSfiles on sequential media, any files
shorter than 2880 bytes in length (e.g., ANSI tape labels) are not
considered part of theFITSfiles andshouldFITSfiles andshould
be disregarded.

3.7. Restrictions on changes

Any structure that is a validFITSFITS structure shallshall
remain a validFITSFITSstructure at all future times. Use of cer-
tain validFITSstructuresmayFITSstructuresmaybe deprecated
by this or futureFITSstandardFITSStandarddocuments.

4. Headers

The first two sections of this chapter define the structure andcon-
tent of header keyword records.This is followed in Sect. 4.3 with
Sect. 4.3 offersrecommendations on how physical units should
be expressed. The final section defines the mandatory and re-
served keywords for primary arrays and conforming extensions.

4.1. Keyword records

4.1.1. Syntax

Each 80-character header keyword recordshallshall consist of
a keyword name, a value indicator (onlyrequired required
if a value is present), anoptionaloptional value, and an
optionaloptional comment. Keywordsmaymay appear in any
order except where specifically stated otherwise in this
standardStandard. It is recommendedrecommendedthat the or-
der of the keywords inFITSFITSfiles be preserved during data
processing operations because the designers of theFITSFITS
file may have used conventions that attach particular signifi-
cance to the order of certain keywords (e.g., by grouping se-
quences ofCOMMENTCOMMENT keywords at specific loca-
tions in the header, or appendingHISTORYHISTORY keywords
in chronological order of the data processing steps) or using
CONTINUECONTINUE keywords to generate long-string key-
word values).

A formal syntax, giving a complete definition of the syn-
tax of FITSFITS keyword records, is given in Appendix A.
It is intended as an aid in interpreting the text defining the
standardStandard.

In earlier versions of thisstandard a FITSStandard aFITS
keyword, assumed as an item whose value is to be looked up by
name (and presumably assigned to a variable) by aFITS read-
ing FITS-readingprogram, was associated one to one to a sin-
gle header keyword record. With the introduction of continued

6

D
R

A
FT

7

(long-string) keywords (seeSect.4.2.1.2), suchFITS keywords
may FITS keywordsmayspan more than one header keyword
record, and the valueshallshall be created by concatenation as
explained inSect.4.2.1.2.

4.1.2. Components

4.1.2.1. Keyword name (bytesBytes 1 through 8)

The keyword nameshallshallbe a left justified,8-charactereight-
character, space-filled, ASCII string with no embedded spaces.
All digits 0 through 9 (decimal ASCII codes 48 to 57, or
hexadecimal 30 to 39) and upper case Latin alphabetic char-
acters‘A’ through ‘Z’ ’A’ through ’Z’ (decimal 65 to 90 or
hexadecimal 41 to 5A) are permitted;lower case characters
shall notlower-case charactersshall notbe used. The underscore
(‘ ’’ ’, decimal 95 or hexadecimal 5F) and hyphen (‘-’ ’-’,
decimal 45 or hexadecimal 2D) are also permitted. No other
characters are permitted.3 For indexed keyword names that
have a single positive integer index counter appended to the
root name, the countershall nothave leading zeroesshall not
have leading zeros(e.g., NAXIS1, not NAXIS001NAXIS1,
not NAXIS001). Note that keyword names that begin with (or
consist solely of) any combination of hyphens, underscores, and
digits are legal.

4.1.2.2. Value indicator (bytesBytes 9 and 10)

If the two ASCII characters'= ' (decimal 61 followed by
decimal 32) are present inbytesBytes9 and 10 of the keyword
record, this indicates that the keyword has a value field associ-
ated with it, unless it is one of the commentary keywords defined
in Sect.4.4.2 (i.e., aHISTORYHISTORY, COMMENTCOMMENT,
or completely blank keyword name)which by definition, which,
by definition,have no value.

4.1.2.3. Value/comment (bytesBytes 11 through 80)

In keyword records that contain the value indicator in
bytesBytes9 and 10, the remainingbytesBytes11 through 80 of
the recordshallshall contain the value, if any, of the keyword,
followed by optionaloptional comments. In keyword records
without a value indicator,bytesBytes9 through 80shouldshould
be interpreted as commentary text, however, this does not
preclude conventions that interpret the content of these bytes in
other ways.

The value field, when present,shallcontain the ASCII text
shall contain the ASCII-textrepresentation of a literal string
constant, a logical constant, or a numerical constant, in the for-
mat specified in Sect.4.2. The value fieldmaymaybe a null
field; i.e., it maymayconsist entirely of spaces, in which case
the value associated with the keyword is undefined.

The mandatoryFITSFITSkeywords defined in thisstandard
must notStandardmust not appear more than once within
a header. All other keywords that have a valueshould
notshould notappear more than once. If a keyword does appear
multiple times with different values, then the value is indetermi-
nate.

3 This requirement differs from the wording in the originalFITSFITS
papers. See AppendixHH.

If a comment follows the value field, itmustmust be
preceded by a slash (‘ /’’/’, decimal 47 or hexadecimal
2F).3 A space between the value and the slash is strongly
recommendedrecommended. The commentmaymaycontain any
of the restricted set ofASCIIASCII-text text characters, deci-
mal 32 through 126 (hexadecimal 20 through 7E). The ASCII
control characters with decimal values less than 32 (including
the null, tab, carriage return, andline feedline-feedcharacters),
and the delete character (decimal 127 or hexadecimal 7F)must
notmust notappear anywhere within a keyword record.

4.2. Value

The structure of the value field depends on the data type of the
value. The value field represents a single value and not an array
of values.3 The value fieldmustmustbe in one of two formats:
fixed or free. The fixed-format isrequiredrequired for values
of mandatory keywords and isrecommendedrecommendedfor
values of all other keywords.

4.2.1. Character string

4.2.1.1 Single record Single-record string keywords

A character stringcharacter-stringvalue shallshall be com-
posed only of the set of restrictedASCIIASCII-text text
characters, decimal 32 through 126 (hexadecimal 20 through
7E) enclosed bysingle quotesingle-quotecharacters (“'’”,
decimal 39, hexadecimal 27). A single quote is represented
within a string as two successive single quotes, e.g., O’HARA
= 'O''HARA''O''HARA'. Leading spaces are significant; trailing
spaces are not. ThisstandardStandardimposes no requirements
on the case sensitivity of character string values unless explicitly
stated in the definition of specific keywords.

If the value is a fixed-format character string, the start-
ing single quote charactermustbe in bytesingle-quote charac-
ter must be in Byte 11 of the keyword record and the clos-
ing single quotemustmust occur in or beforebyteByte 80.
Earlier versions of thisstandard alsorequiredStandard also
requiredthat fixed-format characters stringsmustmustbe padded
with space characters to at least a length of eight charac-
ters so that the closing quote character does not occur be-
fore byteByte 20. This minimumcharacter stringcharacter-
stringlength is no longerrequiredrequired, except for the value
of the XTENSIONXTENSION keyword (e.g.,'IMAGE ' and
'TABLE '; see Sect.7)whichmust7), whichmustbe padded
to a length of eight characters for backward compatibility with
previous usage.

Free-format character strings follow the same rules as fixed-
format character strings except that the startingsingle quote
charactermayoccur after bytesingle-quote charactermayoccur
after Byte11. Any bytes preceding the starting quote character
and afterbyteByte10mustmustcontain the space character.

Note that there is a subtle distinction between the following
three keywords: .

KEYWORD1= '' / null string keyword

KEYWORD2= ' ' / empty string keyword

KEYWORD3= / undefined keyword

7

D
R

A
FT

8

The value of KEYWORD1KEYWORD1 is a null, or zero
length zero-length string whereas the value of the
KEYWORD2KEYWORD2 is an empty string (nominally a
single space character because the first space in the string
is significant, but trailing spaces are not). The value of
KEYWORD3KEYWORD3 is undefined and has an indeterminate
data type as well, except in cases where the data type of the
specified keyword is explicitly defined in thisstandardStandard.

The maximum length of a string value that can be repre-
sented on a single keyword record is 68 characters, with the
opening and closing quote characters inbytesBytes11 and 80,
respectively. In general, no length limitlessfewerthan 68 is im-
plied for character-valued keywords.

Whenever a keyword value is declared ‘string’ or said to
‘contain a character string’, the length limits in this section ap-
ply. The next section4.2.1.2applies when the value is declared
‘long-string’.

4.2.1.2 Continued string (long-string) keywords

Earlier versions of this Standard only definedsingle record
single-recordstring keywords as described in the previous sec-
tion. The Standard now incorporates a convention (originally de-
veloped for use inFITSFITSfiles from high-energy astrophysics
missions) for continuing arbitrarily long string values over a po-
tentially unlimited sequence of multiple consecutive keyword
records using the following procedure: .

1. Divide thelong stringlong-stringvalue into a sequence of
smaller substrings, each of whichis no longer than 67 char-
actersin lengthcontains fewer than 68 characters. (Note that
if the string contains any literalsingle quotesingle-quote
characters, then thesemust must be represented as a pair
of single quotesingle-quotecharacters in theFITSkeyword
FITS-keyword value, and these two charactersmust must
both be contained within a single substring).

2. Append an ampersand character (‘&’ ’&’) to the end of each
substring, except for the last substring. This character serves
as a flag toFITSreadingFITS-readingsoftware that this
string valuemaymaybe continued on the following keyword
in the header.

3. Enclose each substring withsingle quote single-quote
characters. Non-significant space charactersmaymayoccur
between the ampersand character and the closing quote char-
acter.

4. Write the first substring as the value of the specified key-
word.

5. Write each subsequent substring, in order, to a series
of keywords that all have the reserved keyword name
CONTINUE(seeCONTINUE (see Sect.4.4.2) inbytesBytes1
through 8, and have space characters inbytesBytes9 and
10 of the keyword record. The substringmay may be lo-
cated anywhere inbytesBytes11 through 80 of the keyword
record andmay may be preceded by non-significant space
characters starting inbyte Byte 11. A comment stringmay
mayfollow the substring; if present, the comment stringmust
mustbe separated from the substring by aforward slash char-
acter (‘/’ forward-slash character (’/’). Also, it is strongly
recommendedthat the slash character be preceded by a space
character.

The CONTINUE keyword must notCONTINUE keyword
must notbe used with of any of the mandatory or reserved key-
words defined in thisstandardStandardunless explicitly de-
clared of type long-string.

The following keyword records illustrate a string value that
is continued over multiple keyword records. (Note: the length of
the substrings have been reduced to fit within the page layout):
.)

WEATHER = 'Partly cloudy during the evening f&'

CONTINUE 'ollowed by cloudy skies overnight.&'

CONTINUE ' Low 21C. Winds NNE at 5 to 10 mph.'

If needed, additional space for the keyword comment field
can be generated by continuing the string value with one or more
null strings, as illustrated schematically below: .

STRKEY = 'This keyword value is continued &'

CONTINUE ' over multiple keyword records.&'

CONTINUE '&' / The comment field for this

CONTINUE '&' / keyword is also continued

CONTINUE '' / over multiple records.

FITSreading FITS-reading software can reconstruct the
long string long-string value by following an inverse pro-
cedure of checking if the string value ends with the‘&’
’&’ character and is immediately followed by a conform-
ing CONTINUECONTINUE keyword record. If both con-
ditions are true, then concatenate the substring from the
CONTINUECONTINUE record onto the previous substring after
first deleting the trailing‘&’ ’&’ character. Repeat these steps
until all subsequentCONTINUECONTINUE records have been
processed.

Note that if a string value ends with the‘&’ ’&’ charac-
ter, but is not immediately followed by aCONTINUECONTINUE
keyword that conforms to all the previously described require-
ments, then the‘&’ character should’&’ charactershouldbe
interpreted as the literal last character in the string. Also, any ‘or-
phaned’CONTINUECONTINUE keyword records (formally not
invalidating theFITS FITS file, although likely representing an
error with respect to what the author of the file meant)should
shouldbe interpreted as containing commentary text inbytes 9
– 80Bytes 9–80(similar to aCOMMENTCOMMENT keyword).

4.2.2. Logical

If the value is a fixed-format logical constant, itshallshallappear
as anuppercaseTor Fupper-caseT orF in byteByte30. A logical
value is represented in free-format by a single character consist-
ing of anuppercaseTor Fupper-caseT or F as the first non-space
character inbytesBytes11 through 80.

4.2.3. Integer number

If the value is a fixed-format integer, the ASCII representation
shallshall be right-justified inbytesBytes11 through 30. An in-
teger consists of a‘+’ ’+’ (decimal 43 or hexadecimal 2B) or
‘−’ ’-’ (decimal 45 or hexadecimal 2D) sign, followed by one
or more contiguous ASCII digits (decimal 48 to 57 or hexadec-
imal 30 to 39), with no embedded spaces. The leading‘+’ ’+’
sign isoptionaloptional. Leading zeros are permitted, but are not

8

D
R

A
FT

9

significant. The integer representationshallshallalways be inter-
preted as a signed, decimal number. ThisstandardStandarddoes
not limit the range of an integer keyword value, however, soft-
ware packages that read or write data according to thisstandard
Standardcould be limited in the range of values that are sup-
ported (e.g., to the range that can be represented by a 32-bitor
64-bit signed binary integer).

A free-format integer value follows the same rules as fixed-
format integers except that the ASCII representationmaymay
occur anywhere withinbytesBytes11 through 80.

4.2.4. Real floating-point number

If the value is a fixed-format real floating-point num-
ber, the ASCII representationshallshall be right-justified in
bytesBytes11 through 30.

A floating-point number is represented by a decimal number
followed by anoptionaloptional exponent, with no embedded
spaces. A decimal numbershallshall consist of a‘+’ ’+’ (deci-
mal 43 or hexadecimal 2B) or‘–’ ’-’ (decimal 45 or hexadeci-
mal 2D) sign, followed by a sequence of ASCII digits containing
a single decimal point (‘.’ ’.’), representing an integer part and a
fractional part of the floating-point number. The leading‘+’ ’+’
sign isoptionaloptional. At least one of the integer part or frac-
tional partmustmustbe present. If the fractional part is present,
the decimal pointmustmustalso be present. If only the integer
part is present, the decimal pointmaymaybe omitted, in which
case the floating-point number is indistinguishable from anin-
teger. The exponent, if present, consists of an exponent letter
followed by an integer. Letters in the exponential form (‘E’ or
‘D’) ’E’ or ’D’)4 shallshall be upper case. The full precision of
64-bit values cannot be expressed over the whole range of values
using the fixed-format. Thisstandard does not imposeStandard
neither imposesan upper limit on the number of digits of preci-
sion, nor any limit on the range of floating-point keyword val-
ues. Software packages that read or write data according to this
standardStandardcould be limited, however, in the range of val-
ues and exponents that are supported (e.g., to the range thatcan
be represented by a 32-bit or 64-bit floating-point number).

A free-format floating-point value follows the same rules as
a fixed-format floating-point value except that the ASCII repre-
sentationmaymayoccur anywhere withinbytesBytes11 through
80.

4.2.5. Complex integer number

There is no fixed-format for complex integer numbers.5

If the value is a complex integer number, the valuemustmust
be represented as a real part and an imaginary part, separated
by a comma and enclosed in parentheses e.g.,(123, 45). Spaces
may(123, 45). Spacesmay precede and follow the real and
imaginary parts. The real and imaginary parts are represented
in the same way as integers (Sect.4.2.3). Such a representa-
tion is regarded as a single value for the complex integer num-

4 The‘D’ ’D’ exponent form is traditionally used when representing
values that have more decimals of precision or a larger magnitude than
can be represented by asingle precisionsingle-precision32-bit floating-
point number, but otherwise there is no distinction between‘E’ ’E’ or
‘D’ ’D’.

5 This requirement differs from the wording in the originalFITSFITS
papers. See AppendixHH.

Table 3: IAU-recommended basic units.

Quantity Unit Meaning Notes

SI base& supplementary units
length m meter
mass kg kilogram g gram allowed
time s second
plane angle rad radian
solid angle sr steradian
temperature K kelvin
electric current A ampere
amount of substance mol mole
luminous intensity cd candela

IAU-recognized derived units
frequency Hz hertz s−1

energy J joule N m
power W watt J s−1

electric potential V volt J C−1

force N newton kg m s−2

pressure, stress Pa pascal N m−2

electric charge C coulomb A s
electric resistance Ohm ohm V A−1

electric conductance S siemens A V−1

electric capacitance F farad C V−1

magnetic flux Wb weber V s
magnetic flux density T tesla Wb m−2

inductance H henry Wb A−1

luminous flux lm lumen cd sr
illuminance lx lux lm m−2

ber. This representationmaymay be located anywhere within
bytesBytes11 through 80.

4.2.6. Complex floating-point number

There is no fixed-format for complex floating-point numbers.5

If the value is a complex floating-point number, the value
mustmustbe represented as a real part and an imaginary part,
separated by a comma and enclosed in parentheses, e.g.,(123.23,
-45.7). Spacesmay(123.23, -45.7). Spacesmayprecede and
follow the real and imaginary parts. The real and imaginary parts
are represented in the same way as floating-point values (Sect.
4.2.4). Such a representation is regarded as a single value for

the complex floating-point number. This representationmaymay
be located anywhere withinbytesBytes11 through 80.

4.2.7. Date

There is strictly no such thing as a data type fordate valued
keywords, however a pseudo data type ofdatetimeis defined in
Sect. 9.1.1 andmustmustbe used to write ISO-8601datetime
strings as character strings.

If a keyword needs to express atime in JD or MJD (see
Sect. 9), this can be formatted as an arbitrary precision number,
optionally separating the integer and fractional part as specified
in Sect. 9.2.2.

4.3. Units

When a numerical keyword value represents a physical quantity,
it is recommendedrecommendedthat units be provided. Units
shall beshall be represented with a string of characters com-

9

D
R

A
FT

10

Table 4: Additional allowed units.

Quantity Unit Meaning Notes
plane angle plane angle deg degree of arc π/180 rad

arcmin minute of arc 1/60 deg
arcsec second of arc 1/3600 deg
mas milli-second of arc 1/3 600 000 deg

time min minute 60 s
h hour 60 min= 3600 s
d day 86 400 s

† a year (Julian) 31 557 600 s (365.25 d), peta a(Pa) forbidden
† yr year (Julian) a is IAU-style

energy∗ † eV electron volt 1.6021765× 10−19 J
‡ erg erg 10−7 J

Ry rydberg 1
2

(

2πe2

hc

)2
mec2 = 13.605692 eV

mass∗ solMass solar mass 1.9891× 1030 kg
u unified atomic mass unit 1.6605387× 10−27 kg

luminosity solLum Solar luminosity 3.8268× 1026 W
length ‡ Angstrom angstrom 10−10 m

solRad Solar radius 6.9599× 108 m
AU astronomical unit 1.49598× 1011 m
lyr light year 9.460730× 1015 m

† pc parsec 3.0857× 1016 m
events count count

ct count
photon photon
ph photon

flux density † Jy jansky 10−26 W m−2 Hz−1

† mag (stellar) magnitude
† R rayleigh 1010/(4π) photons m−2 s−1 sr−1

magnetic field †‡ G gauss 10−4 T
area pixel (image/detector) pixel

pix (image/detector) pixel
†‡ barn barn 10−28 m2

Miscellaneous units

D debye 1
3 × 10−29 C.m

Sun relative to Sun e.g., abundances
chan (detector) channel
bin numerous applications (including the1-d analogueone-dimensional analogof pixel)
voxel 3-d analoguethree-dimensional analogof pixel

† bit binary information unit
† byte (computer) byte 8 bit eight bits

adu Analog-to-digital converter
beam beam area of observation as in Jy/beam

Notes.(†)Addition of prefixes for decimal multiples and submultiplesare allowed.(‡)Deprecated in IAU Style Manual (McNally 1988) but still in
use.(∗)Conversion factors from CODATA Internationally recommended values of the fundamental physical constants 2002 (http://physics.

nist.gov/cuu/Constants/).

posed of the restrictedASCII textASCII-textcharacter set. Unit
strings can be used as values of keywords (e.g., for the reserved
keywordsBUNIT, andTUNITnBUNIT, andTUNITn), as an en-
try in a character stringcharacter-stringcolumn of anASCII or
binary tableASCII-table or binary-tableextension, or as part of
a keyword comment string (see Sect.4.3.2, below).

The units of allFITSFITS header keyword values, with the
exception of measurements of angles,shouldshould conform
with the recommendations in the IAU Style Manual (McNally
1988). For angular measurements given as floating-point values
and specified with reserved keywords, the unitsshouldshould
be degrees (i.e.,degdeg). If a requirement exists within this
standardStandardfor the units of a keyword, then those units
mustmustbe used.

The units for fundamental physical quantities recommended
by the IAU are given in Table 3, and. Table 4 listsadditional

units that are commonly used in astronomyare given in Table 4.
Further specifications for time units are given in Sect. 9.3.The
recommendedplain textplain-textform for the IAU-recognized
base unitsare given incolumnColumn2 of both tables.6 All base
units stringsmaymaybe preceded, with no intervening spaces,
by a single character (two for deca) taken from Table 5 and repre-
senting scale factors mostly in steps of 103. Compound prefixes
(e.g.,ZYeV ZYeV for 1045 eV) must notmust notbe used.

6 These tables are reproduced from the first in a series of papers
on world coordinateworld-coordinatesystems (Greisen & Calabretta
2002), which provides examples and expanded discussion.

10

http://physics.nist.gov/cuu/Constants/
http://physics.nist.gov/cuu/Constants/

D
R

A
FT

11

4.3.1. Construction of units strings

Compound units stringsmaymay be formed by combining
strings of base units (including prefixes, if any) with the rec-
ommended syntax described in Table 6. Two or more base units
strings (calledstr1andstr2str1 andstr2 in Table 6)maymay
be combined using the restricted set of (explicit or implicit) op-
erators that provide for multiplication, division, exponentiation,
raising arguments to powers, or taking the logarithm or square-
root of an argument. Note that functions such asloglog actually
require dimensionless arguments, so thatlog(Hz)log(Hz), for
example, actually meanslog(x/1 Hz)log(x/1 Hz). The final
units string is the compound string, or a compound of com-
pounds, preceded by anoptionaloptionalnumeric multiplier of
the form10**k, 10̂ k, or 1010**k , 10ˆk, or 10±k wherekk is
an integer,optionally surrounded by parentheses with the sign
characterrequiredrequired in the third form in the absence of
parentheses. Creators ofFITSFITS files are encouraged to use
the numeric multiplier only when the available standard scale
factors of Table 5 will not suffice. Parentheses are used for
symbol grouping and are stronglyrecommendedrecommended
whenever the order of operations might be subject to misin-
terpretation. A space character implies multiplication, which
can also be conveyed explicitly with an asterisk or a period.
Therefore, although spaces are allowed as symbol separators,
their use is discouraged. Note that, per IAU convention, case is
significant throughout. The IAU style manual forbids the useof
more than one slash (‘ /’’/’) character in a units string. However,
since normal mathematical precedence rules apply in this con-
text, more than one slashmaymaybe used but is discouraged.

A unit raised to a power is indicated by the unit string
followed, with no intervening spaces, by theoptionaloptional
symbols** or ˆ followed by the power given as a numeric ex-
pression, calledexprexpr in Table 6. The powermaymaybe a
simple integer, with or without sign,optionally surrounded by
parentheses. Itmaymay also be a decimal number (e.g.,1.5,
0.51.5, 0.5) or a ratio of two integers (e.g.,7/97/9), with or
without sign, whichmustmust be surrounded by parentheses.
Thus meters squaredmaymaybe indicated bym**(2), m**+2,
m+2, m2, mˆ2, mˆ(+2)m**(2), m**+2, m+2, m2, mˆ2, mˆ(+2),
etc. and per meter cubedmaymaybe indicated bym**-3, m-3,
mˆ(-3), /m3m**-3, m-3, mˆ(-3), /m3, and so forth. Meters
to the three-halves powermaymay be indicated bym(1.5),
mˆ(1.5), m**(1.5), m(3/2), m**(3/2), and mˆ(3/2), but
notby mˆ3/2 or m1.5m(1.5), mˆ(1.5), m**(1.5), m(3/2),
m**(3/2), andmˆ(3/2), butnot by ms/2 or m1.5.

4.3.2. Units in comment fields

If the units of the keyword value are specified in the comment
of the header keyword, it isrecommendedrecommendedthat the
units string be enclosed in square brackets (i.e., enclosedby ‘[’
and ‘]’) at the beginning of the comment field, separated from
the slash (‘ /’’/’) comment field delimiter by a single space char-
acter. An example, using a non-standard keyword, is
EXPTIME = 1200. / sexposure time in secondsEXPTIME =

1200. / [s] exposure time in seconds

This widespread, butoptionaloptional, practice suggests that
square bracketsshouldshouldbe used in comment fields only
for this purpose. Nonetheless, softwareshould notshould not
depend on units being expressed in this fashion within a key-
word comment, and softwareshould notshould notdepend on

Table 5: Prefixes for multiples and submultiples.

Submult Prefix Char Mult Prefix Char

10−1 deci d 10 deca da

10−2 centi c 102 hecto h

10−3 milli m 103 kilo k

10−6 micro u 106 mega M

10−9 nano n 109 giga G

10−12 pico p 1012 tera T

10−15 femto f 1015 peta P

10−18 atto a 1018 exa E

10−21 zepto z 1021 zetta Z

10−24 yocto y 1024 yotta Y

Table 6: Characters and strings allowed to denote mathematical
operations.

String Meaning

str1 str2 Multiplication
str1*str2 Multiplication
str1.str2 Multiplication
str1/str2 Division
str1**expr Raised to the powerexpr
str1ˆexpr Raised to the powerexpr
str1expr Raised to the powerexpr
log(str1) Common Logarithm (to base 10)
ln(str1) Natural Logarithm
exp(str1) Exponential (estr1)
sqrt(str1) Square root

Table 7: Mandatory keywords for primary header.

Position Keyword

1 SIMPLESIMPLE = TT
2 BITPIXBITPIX
3 NAXISNAXIS

4 NAXISn, nNAXISn, n = 1, . . . ,NAXISNAXIS

...

(other keywords)
...

last ENDEND

Table 8: Interpretation of validBITPIXBITPIX value.

Value Data represented
8 8 Character or unsigned binary integer

1616 16-bit two’s complement binary integer
3232 32-bit two’s complement binary integer
6464 64-bit two’s complement binary integer

-32−32 IEEEsingle precisionsingle-precisionfloating point
-64−64 IEEEdouble precisiondouble-precisionfloating point

any string within square brackets in a comment field containing
a proper units string.

11

D
R

A
FT

12

4.4. Keywords

4.4.1. Mandatory keywords

Mandatory keywords arerequiredrequired in every HDU as de-
scribed in the remainder of this subsection. Theymustmustbe
used only as described in thisstandardStandard. Values of the
mandatory keywordsmustmustbe written in fixed-format.

4.4.1.1. Primary header

The SIMPLESIMPLE keyword is required required to be
the first keyword in the primary header of allFITSFITS files.
The primary headermustmust contain the other mandatory
keywords shown in Table 7 in the order given. Other keywords
must notmust not intervene between theSIMPLESIMPLE
keyword and the lastNAXISnNAXISn keyword.

SIMPLESIMPLE keyword. The value fieldshallshall contain
a logical constant with the valueTT if the file conforms to
this standardStandard. This keyword is mandatory for the pri-
mary header andmust notmust notappear in extension headers.7

A value of FF signifies that the file does not conform to this
standardStandard.

BITPIXBITPIX keyword. The value fieldshallshall contain an
integer. The absolute value is used in computing the sizes ofdata
structures. Itshallshall specify the number of bits that represent
a data value in the associated data array. The only valid values
of BITPIXBITPIX are given in Table 8. Writers ofFITSarrays
shouldselect aBITPIXFITSarraysshouldselect aBITPIX data
type appropriate to the form, range of values, and accuracy of
the data in the array.

NAXISNAXIS keyword. The value fieldshallshall contain a
non-negative integer no greater than 999 representing the num-
ber of axes in the associated data array. A value of zero signifies
that no data follow the header in the HDU.

NAXISnNAXISn keywords. The NAXISnkeywords
mustNAXISn keywords must be present for all valuesn =
1, ..., NAXISn = 1, . . . , NAXIS, in increasing order ofnn,
and for no other values ofnn. The value field of this indexed
keywordshallshall contain a non-negative integer representing
the number of elements alongaxis nAxis n of a data array.
A value of zero for any of theNAXISnNAXISn signifies that
no data follow the header in the HDU (however, therandom
groups random-groupsstructure described in Sect.6 has
NAXIS1 6 hasNAXIS1 =0 0, but will have data following the
header if the otherNAXISnNAXISn keywords are non-zero). If
NAXISNAXIS is equal to0, thereshall not0, thereshall notbe
anyNAXISnNAXISn keywords.

ENDEND keyword. This keyword has no associated value.
Bytes 9 through 80shallshall be filled with ASCII spaces (dec-
imal 32 or hexadecimal 20). TheENDEND keyword marks the

7 This requirement differs from the wording in the originalFITSFITS
papers. See AppendixHH.

logical end of the header andmustmustoccur in the last 2880-
byteFITSFITSblock of the header.

The total number of bits in the primary data array, exclusive
of fill that is needed after the data to complete the last 2880-byte
data block (Sect.3.3.2), is given by the following expression:

NbitsNbits = |BITPIXBITPIX| × (NAXIS1NAXIS1 × NAXIS2NAXIS2 × · ·

whereNbits mustbeNbits mustbe non-negative and is the num-
ber of bits excluding fill,mm is the value ofNAXISNAXIS, and
BITPIXBITPIX and theNAXISnNAXISn represent the values
associated with those keywords. Note that therandom groups
random-groupsconvention in the primary array has amore
complicatedmore-complicatedstructure whose size is given by
Eq. 4. The header of the firstFITSFITS extension in the file, if
present,shallshall start with the firstFITSFITSblock following
the data block that contains the last bit of the primary data array.

An example of a primary array header is shown in Table 9.
In addition to the required keywords, it includes a few of the
reserved keywords that are discussed in Sect.4.4.2.

4.4.1.2. Conforming extensions

All conforming extensions, whether or not further speci-
fied in this standard,mustStandard,must use the keywords
defined in Table 10 in the order specified. Other keywords
must notmust notintervene between theXTENSIONXTENSION
keyword and theGCOUNTGCOUNT keyword. TheBITPIX,
NAXIS, NAXISn, andENDBITPIX, NAXIS, NAXISn, andEND
keywords are defined in Sect.4.4.1.

XTENSIONXTENSION keyword. The value field shallshall
contain a character string giving the name of the extension
type. This keyword is mandatory for an extension header and
must notmust notappear in the primary header.8 7 To preclude
conflict, extension type namesmustmustbe registered with the
IAUFWG. The current list of registered extensions is given
in Appendix F. An up-to-date list is also maintained on the
FITSSupport Office web siteFITSSupport Office website.

PCOUNTPCOUNT keyword. The value fieldshallshall contain
an integer thatshallshall be used in any way appropriate to de-
fine the data structure, consistent with Eq. 2. InIMAGEIMAGE
(Sect. 7.1) andTABLETABLE (Sect. 7.2) extensions this key-
wordmustmusthave the value0; in BINTABLE0; in BINTABLE

extensions (Sect.7.3) it is used to specify the number of bytes
that follow the main data table in the supplemental data area
called the heap. This keyword is also used in therandom groups
random-groupsstructure (Sect.6) to specify the number of pa-
rameters preceding each array in a group.

GCOUNTGCOUNT keyword. The value fieldshallshall contain
an integer thatshallshallbe used in any way appropriate to define
the data structure, consistent with Eq. 2. This keywordmustmust
have the value1 in the IMAGE, TABLEand BINTABLE1 in
the IMAGE, TABLE, andBINTABLE standard extensions defined
in Sect. 7. This keyword is also used in therandom groups

8 This requirement differs from the wording in the original
FITSpapers. See Appendix H.

12

D
R

A
FT

13

Table 9: Example of a primary array header.

Keyword records

SIMPLE = T / file does conform to FITS standardSIMPLE = T / file does conform

BITPIX = 16 / number of bits per data pixel

NAXIS = 2 / number of data axes

NAXIS1 = 250 / length of data axis 1

NAXIS2 = 300 / length of data axis 2

OBJECT = 'Cygnus X-1'

DATE = '2006-10-22'

END

random-groupsstructure (Sect.6) to specify the number of ran-
dom groups present.

The total number of bits in the extension data array (exclu-
sive of fill that is needed after the data to complete the last 2880-
byte data block) is given by the following expression:

NbitsNbits = |BITPIXBITPIX| × GCOUNTGCOUNT ×

(PCOUNTPCOUNT + NAXIS1NAXIS1 × NAXIS2NAXIS2 × · · · × NAXISmNAXISm),(2)

whereNbits mustbeNbits mustbe non-negative and is the num-
ber of bits excluding fill;mm is the value ofNAXISNAXIS; and
BITPIX, GCOUNT, PCOUNTBITPIX, GCOUNT, PCOUNT, and
the NAXISnNAXISn represent the values associated with those
keywords. IfNbits > 0Nbits > 0, then the data arrayshallshall
be contained in an integral number of 2880-byteFITSFITSdata
blocks. The header of the nextFITSFITSextension in the file, if
any,shallshall start with the firstFITSFITSblock following the
data block that contains the last bit of the current extension data
array.

4.4.2. Other reserved keywords

The reserved keywords described below areoptionaloptional,
but if present in the header theymustmustbe used only as de-
fined in this standardStandard. They apply to anyFITSFITS
structure with the meanings and restrictions defined below.Any
FITSstructuremayFITSstructuremayfurther restrict the use of
these keywords.

4.4.2.1. General descriptive keywords

DATEDATE keyword. The value field shallshall contain
a character string giving the date on which the HDU
was created, in the formYYYY-MM-DD YYYY-MM-DD,
or the date and time when the HDU was created,
in the form YYYY-MM-DDThh:mm:ss.sss. . ., where
YYYY shallYYYY-MM-DDThh:mm:ss[.sss. . .], where YYYY

shall be the four-digit calendar year number,MMMM the two-
digit month number with January given by 01 and December
by 12, andDDDD the two-digit day of the month. When both
date and time are given, the literalTshallT shall separate the
date and time,hhshallhh shall be the two-digit hour in the day,
mmmm the two-digit number of minutes after the hour, and
ss.sss. . .ss[.sss. . .] the number of seconds (two digits fol-
lowed by anoptionaloptionalfraction) after the minute. Default
valuesmust notmust notbe given to any portion of the date/time
string, and leading zerosmust notmust notbe omitted. The
decimal part of the seconds field isoptionalandmayoptionaland
maybe arbitrarily long, so long as it is consistent with the rules

Table 10: Mandatory keywords in conforming extensions.

Position Keyword

1 XTENSIONXTENSION
2 BITPIXBITPIX
3 NAXISNAXIS

4 NAXISn, nNAXISn, n = 1, . . . ,NAXISNAXIS

5 PCOUNTPCOUNT
6 GCOUNTGCOUNT

...

(other keywords)
...

last ENDEND

for value formats of Sect.4.2. Otherwise said, the format for
DATEDATE keywords written after January 1, 2000shallshall
be the ISO-8601datetimeform described in Sect. 9.1.1. See
also Sect. 9.5.

The value of theDATEkeyword shallDATE keyword shall
always be expressed in UTC when in this format, for all data
sets created on Earth.

The following formatmaymay appear on files written be-
fore January 1, 2000. The value field contains a character string
giving the date on which the HDU was created, in the form
DD/MM /YY, whereDDDD/MM/YY, whereDD is the day of the
month,MMMM the month number with January given by 01 and
December by 12, andYYYY the last two digits of the year, the
first two digits being understood to be 19. Specification of the
date using Universal Time isrecommendedrecommendedbut not
assumed.

When a newly created HDU is substantially a verbatim copy
of another HDU, the value of theDATEDATE keyword in the
original HDU maymaybe retained in the new HDU instead of
updating the value to the current date and time.

ORIGINORIGIN keyword. The value fieldshallshall contain a
character string identifying the organization or institution re-
sponsible for creating theFITSFITSfile.

EXTENDEXTEND keyword. The value fieldshallshall contain
a logical value indicating whether theFITSFITSfile is allowed
to contain conforming extensions following the primary HDU.
This keywordmaymayonly appear in the primary header and
must notmust notappear in an extension header. If the value field
is Tthen theremayT then theremaybe conforming extensions in
theFITSFITSfile following the primary HDU. This keyword is
only advisory, so its presence with a valueTT does not require

13

D
R

A
FT

14

that theFITSFITSfile contains extensions, nor does the absence
of this keyword necessarily imply that the file does not contain
extensions. Earlier versions of thisstandardStandardstated that
theEXTENDkeywordmustEXTEND keywordmustbe present in
the primary header if the file contained extensions, but thisis no
longerrequiredrequired.

BLOCKEDBLOCKED keyword. This keyword is deprecated and
should notshould notbe used in newFITSFITS files. It is re-
served primarily to prevent its use with other meanings. As pre-
viously defined, this keyword, if used, wasrequiredrequiredto
appear only within the first 36 keywords in the primary header.
Its presence with therequiredrequired logical value ofTT ad-
vised that the physical block size of theFITSFITSfile on which
it appearsmaymaybe an integral multiple of theFITSFITSblock
length and not necessarily equal to it.

4.4.2.2. Keywords describing observations

DATE-OBSDATE-OBS keyword. The format of the value field
for DATE-OBSkeywordsshallDATE-OBS keywordsshall fol-
low the prescriptions for theDATEDATE keyword (Sect.4.4.2
and Sect. 9.1.1 Either the four-digit year format or the two-
digit year format maymay be used for observation dates
from 1900 through 1999, although the four-digit format is
recommendedrecommended.

When the format with a four-digit year is used, the default in-
terpretations for timeshouldshouldbe UTC for dates beginning
1972-01-01 and UT before. Other date and time scales are per-
missible. The value of theDATE-OBSkeywordshallDATE-OBS
keywordshall be expressed in the principal time system or time
scale of the HDU to which it belongs; if there is any chance
of ambiguity, the choiceshouldshouldbe clarified in comments.
The value ofDATE-OBSshallDATE-OBS shallbe assumed to re-
fer to the start of an observation, unless another interpretation is
clearly explained in the comment field. Explicit specification of
the time scale isrecommendedrecommended. By default, times
for TAI and times that run simultaneously with TAI, e.,g., UTC
and TT, will be assumed to be as measured at the detector (or, in
practical cases, at the observatory). For coordinate timessuch as
TCG, TCB, and TDB, the defaultshallshall be to include light-
time corrections to the associated spatial origin, namely the geo-
center for TCG and thesolar-systemSolar Systembarycenter
for the other two. Conventionsmaymaybe developed that use
other time systems. Time scales are now discussed in detail in
Sect. 9.2.1 and Table 30.

When the value ofDATE-OBSDATE-OBS is expressed in the
two-digit year form, allowed for files written before January 1,
2000 with a year in the range1900-19991900–1999, there is no
default assumption as to whether it refers to the start, middle or
end of an observation.

DATExxxxDATExxxx keywords. The value fields for all key-
words beginning with the stringDATEDATE whose value con-
tains date, andoptionallytime, informationshallshall follow the
prescriptions for theDATE-OBSDATE-OBS keyword. See also
Sect. 9.1.1 for thedatetimeformat, and Sect. 9.5 for further
global time keywords specified by the Standard.

TELESCOPTELESCOP keyword. The value field shallshall
contain a character string identifying the telescope used to ac-
quire the data associated with the header.

INSTRUMEINSTRUME keyword. The value field shallshall
contain a character string identifying the instrument usedto ac-
quire the data associated with the header.

OBSERVEROBSERVER keyword. The value field shallshall
contain a character string identifying who acquired the data as-
sociated with the header.

OBJECTOBJECT keyword. The value fieldshallshall contain a
character string giving a name for the object observed.

4.4.2.3. Bibliographic keywords

AUTHORAUTHOR keyword. The value fieldshallshall contain
a character string identifying who compiled the information in
the data associated with the header. This keyword is appropriate
when the data originate in a published paper or are compiled
from many sources.

REFERENCREFERENC keyword. The value field shallshall
contain a character string citing a reference where the
data associated with the header are published. It is
recommendedrecommendedthat either the 19-digit biblio-
graphic identifier8 used in the Astrophysics Data System bibli-
ographic databases (http://adswww.harvard.edu/) or the
Digital Object Identifier (http://doi.org) be included in the
value string, when available (e.g.,’1994A&AS..103..135A’or
’doi:10.1006/jmbi.1998.2354’’1994A&AS..103..135A’ or
’doi:10.1006/jmbi.1998.2354’).

4.4.2.4. Commentary keywords

These keywords provide commentary information about the
contents or history of theFITSfile and mayFITS file and
may occur any number of times in a header. These keywords
shallshall have no associated value even if the value indica-
tor characters̀ = ' appear inbytesBytes 9 and 10 (hence it
is recommendedrecommendedthat these keywords not contain
the value indicator). Bytes 9 through 80maymaycontain any of
the restricted set ofASCIIASCII-texttextcharacters, decimal 32
through 126 (hexadecimal 20 through 7E).

In earlier versions of thisstandardStandardcontinued string
keywords (seeSect.4.2.1.2) could be handled as commentary
keywords if the relevant convention was not supported. Now
CONTINUEkeywordsshallCONTINUE keywordsshall be hon-
oured as specified inSectionSect.4.2.1.2.

COMMENTCOMMENT keyword. This keywordmaymaybe used
to supply any comments regarding theFITSFITSfile.

8 This bibliographic convention (Schmitz et al. 1995) was initially
developed for use within NED (NASA/IPAC Extragalactic Database)
and SIMBAD (operated at CDS, Strasbourg, France).

14

http://adswww.harvard.edu/
http://doi.org

D
R

A
FT

15

HISTORYHISTORY keyword. This keywordshouldshould be
used to describe the history of steps and procedures associated
with the processing of the associated data.

Keyword field is blank. This keywordmaymaybe used to sup-
ply any comments regarding theFITSFITS file. It is frequently
used for aesthetic purposes to provide a break between groups
of related keywords in the header.

A sequence of one or more entirely blank keyword records
(consisting of 80 ASCII space characters) that immediatelypre-
cede theENDkeyword mayEND keywordmaybe interpreted as
non-significant fill space thatmaymaybe overwritten when new
keywords are appended to the header. This usage convention en-
ables an arbitrarily large amount of header space to be preallo-
cated when theFITSFITSHDU is first created, which can help
mitigate the potentially time-consuming alternative of having to
shift all the following data in the file by 2880 bytes to make room
for a newFITSFITSheader block each time space is needed for
a new keyword.

4.4.2.5. Keywords that describe arrays

These keywords are used to describe the contents of an
array, either in the primary array, in animageIMAGE extension
(Sect. 7.1), or in a series of random groups (Sect.6). They are
optionaloptional, but if they appear in the header describing an
array or groups, theymustmustbe used as defined in this section
of this standard. Theyshall notStandard. Theyshall notbe used
in headers describing other structures unless the meaning is the
same as defined here.

BSCALEBSCALE keyword. This keywordshallshall be used,
along with theBZEROBZERO keyword, to linearly scale the ar-
ray pixel values (i.e., the actual values stored in theFITSFITS
file) to transform them into the physical values that they repre-
sent using Eq. 3.

physicalvalue = BZEROBZERO + BSCALEBSCALE × arrayvalue.(3)

The value fieldshallshall contain a floating-point number rep-
resenting the coefficient of the linear term in the scaling equa-
tion, the ratio of physical value to array value at zero off-
set. The default value for this keyword is1.01.0. Before sup-
port for IEEE floating-point data types was added toFITSFITS
(Wells & Grosbøl 1990), this technique of linearly scaling in-
teger values was the only way to represent the full range of
floating-point values in aFITSFITS array. This linear scaling
technique is still commonly used to reduce the size of the data
array by a factor of two by representing 32-bit floating-point
physical values as 16-bit scaled integers.

BZEROBZERO keyword. This keyword shallshall be used,
along with theBSCALEBSCALE keyword, to linearly scale the
array pixel values (i.e., the actual values stored in theFITSFITS
file) to transform them into the physical values that they repre-
sent using Eq. 3. The value fieldshallshall contain a floating-
point number representing the physical value corresponding to
an array value of zero. The default value for this keyword is
0.00.0.

Besides its use in representing floating-point values as scaled
integers (see the description of theBSCALEBSCALE keyword),
theBZEROBZERO keyword is also used when storingunsigned
integerunsigned-integervalues in theFITSFITS array. In this
special case theBSCALEkeywordshallBSCALE keywordshall
have the default value of1.01.0, and theBZEROkeyword
shallBZERO keywordshall have one of the integer values shown
in Table 11.

Since theFITSFITS format does not support a native un-
signed integer data type (except for the unsigned8-bit eight-bit
byte data type), the unsigned values are stored in theFITSFITS
array as native signed integers with the appropriate integer offset
specified by theBZEROBZERO keyword value shown in the ta-
ble. For the byte data type, the converse technique can be used to
store signed byte values as native unsigned values with the neg-
ative BZEROBZERO offset. In each case, the physical value is
computed by adding the offset specified by theBZEROBZERO
keyword to the native data type value that is stored in the
FITSfile.FITSfile.9

BUNITBUNIT keyword. The value fieldshallshall contain a
character string describing the physical units in which the
quantities in the array, after application ofBSCALEand
BZEROBSCALE and BZERO, are expressed. These units
mustmustfollow the prescriptions of Sect.4.3.

BLANKBLANK keyword. This keywordshallshall be used only
in headers with positive values ofBITPIXBITPIX (i.e., in ar-
rays with integer data). Bytes 1 through 8 contain the string
`BLANK ' (ASCII spaces inbytesBytes 6 through 8). The
value fieldshallshall contain an integer that specifies the value
that is used within the integer array to represent pixels that have
an undefined physical value.

If the BSCALEand BZEROBSCALE and BZERO keywords
do not have the default values of1.0 and 0.01.0 and0.0, re-
spectively, then the value of theBLANK keyword mustBLANK
keyword must equal the actual value in theFITSFITS data
array that is used to represent an undefined pixel and not
the corresponding physical value (computed from Eq. 3). To
cite a specific, common example,unsigned16-bit integers
are represented in asigned integer FITSFITS array (with
BITPIXBITPIX = 1616) by settingBZEROBZERO =32768and
BSCALE 32768 and BSCALE =1 1. If it is desired to use
pixels that have anunsignedvalue (i.e., the physical value)
equal to 0 to represent undefined pixels in the array, then the
BLANK keywordmustBLANK keywordmustbe set to the value
−32768-32768 because that is the actual value of the undefined
pixels in theFITSFITSarray.

DATAMAXDATAMAX keyword. The value fieldshallshallalways
contain a floating-point number, regardless of the value of
BITPIXBITPIX. This numbershallshallgive the maximum valid

9 A more computationally efficient method of adding or subtracting
the BZEROBZERO values is to simply flip themost significantmost-
significantbit of the binary value. For example, using8-bit eight-bit
integers, the decimal value 248 minus theBZERO BZERO value of
128 128 equals 120. The binary representation of 248 is 11111000.
Flipping themost significantmost-significantbit gives the binary value
01111000, which is equal to decimal 120.

15

D
R

A
FT

16

Table 11: Usage ofBZEROBZERO to represent non-default integer data types.

BITPIX BITPIX Native Physical BZEROBZERO

data type data type
8 8 unsigned signed byte -128-128 (−27)

1616 signed unsigned 16-bit 3276832768 (215)
3232 signed unsigned 32-bit 21474836482147483648 (231)
6464 signed unsigned 64-bit 92233720368547758089223372036854775808 (263)

physical value represented by the array (from Eq. 3), exclusive
of any IEEE special values.

DATAMINDATAMIN keyword. The value fieldshallshall always
contain a floating-point number, regardless of the value of
BITPIXBITPIX. This numbershallshallgive the minimum valid
physical value represented by the array (from Eq. 3), exclusive
of any IEEE special values.

WCS keywords. An extensive set of keywords have been de-
fined to describe the world coordinates associated with an array.
These keywords are discussed separately in Sect.8.

4.4.2.6. Extension keywords

The next three keywords were originally defined for use
within the header of a conforming extension, however
they also maymay appear in the primary header with an
analogous meaning. If these keywords are present, it is
recommendedrecommendedthat they have a unique combina-
tion of values in each HDU of theFITSFITSfile.

EXTNAMEEXTNAME keyword. The value field shallshall
contain a character string to be used to distinguish among dif-
ferent extensions of the same type, i.e., with the same valueof
XTENSIONXTENSION, in aFITSFITSfile. Within this context,
the primary arrayshouldshouldbe considered as equivalent to
anIMAGEIMAGE extension.

EXTVEREXTVER keyword. The value fieldshallshall contain
an integer to be used to distinguish among different extensions
in a FITSFITSfile with the same type and name, i.e., the same
values forXTENSIONandEXTNAMEXTENSIONandEXTNAME.
The values need not start with1 1 for the first extension with a
particular value ofEXTNAMEEXTNAME and need not be in se-
quence for subsequent values. If theEXTVEREXTVER keyword
is absent, the fileshouldshouldbe treated as if the value were1.
1.

EXTLEVELEXTLEVEL keyword. The value field shallshall
contain an integer specifying the level in a hierarchy of extension
levels of the extension header containing it. The valueshallbe 1
shall be 1 for the highest level; levels with a higher value of
this keywordshallshall be subordinate to levels with a lower
value. If theEXTLEVELEXTLEVEL keyword is absent, the file
shouldshouldbe treated as if the value were1. 1.

The following keyword isoptionaloptional, but is reserved

for use by the convention described in Appendix K. If present
it shallshall appear in the extension header immediately after
the mandatory keywords, and be used as described in the
Appendixappendix.

INHERITINHERIT keyword. The value fieldshallshall contain
a logical value ofTor FT or F to indicate whether or not the cur-
rent extension should inherit the keywords in the primary header
of theFITS FITSfile.

4.4.2.7 Data Integrity KeywordsData-integrity keywords

The two keywords described here provide an integrity check
on the information contained inFITSFITSHDUs.

DATASUMKeywordDATASUM keyword. The value field of the
DATASUMkeyword shallDATASUM keyword shall consist of a
character string thatshouldcontain the unsigned integershould
contain the unsigned-integervalue of the 32-bit1’ s ones’
complement checksum of the data records in the HDU (i.e., ex-
cluding the header records). For this purpose, each 2880-byte
FITSlogical record shouldFITS logical recordshouldbe inter-
preted as consisting of 720 32-bit unsigned integers. The4 four
bytes in each integermustmustbe interpreted in order of de-
creasing significance where themost significantmost-significant
byte is first, and theleast significantleast-significantbyte is
last. Accumulate the sum of these integers using1’ s ones’
complement arithmetic in which any overflow of themost sig-
nificantmost-significantbit is propagated back into theleast sig-
nificantleast-significantbit of the sum.

The DATASUMDATASUM value is expressed as a character
string (i.e., enclosed insingle quotesingle-quotecharacters)
because support for the full range of 32-bitunsigned inte-
ger unsigned-integerkeyword values is problematic in some
software systems. This stringmay may be padded with non-
significant leading or trailing blank characters or leadingzeros.
A string containing only one or more consecutive ASCII blanks
may maybe used to represent an undefined or unknown value
for theDATASUMDATASUM keyword. TheDATASUMkeyword
may DATASUM keyword may be omitted in HDUs that have
no data records, but it is preferable to include the keyword
with a value of0. 0. Otherwise, a missingDATASUMDATASUM

keyword asserts no knowledge of the checksum of the data
records. Recording in the comment field the ISO-8601-formatted
Datetime(ISO 2004b)when the value of this keyword record is
created or updated isrecommendedrecommended.

CHECKSUMKeywordCHECKSUM keyword. The value field of
theCHECKSUMkeywordshallCHECKSUM keywordshallconsist

16

D
R

A
FT

17

of an ASCII character string whose value forces the 32-bit
1’ s ones’complement checksum accumulated over the entire
FITSFITSHDU to equal negative 0. (Note that1ones’s comple-
ment arithmetic has both positive and negative zero elements).
It is recommendedrecommendedthat the particular 16-character
string generated by the algorithm described in Appendix J be
used. A string containing only one or more consecutive ASCII
blanksmaymaybe used to represent an undefined or unknown
value for theCHECKSUMCHECKSUM keyword.

The CHECKSUMkeyword valuemustCHECKSUM keyword
value mustbe expressed in fixed format, when the algorithm
in Appendix J is used, otherwise the usage of fixed format is
recommendedrecommended. Recording in the comment field the
ISO-8601-formatted Datetime when the value of this keyword
record is created or updated isrecommendedrecommended.

If the CHECKSUMCHECKSUM keyword exists in the header
of the HDU and the accumulated checksum is not equal to-0−0,
or if the DATASUMDATASUM keyword exists in the header of
the HDU and its value does not match the data checksum, then
this provides a strong indication that the content of the HDU
has changed subsequent to the time that the respective keyword
value was computed. Such an invalid checksum may indicate
corruption during a prior file copy or transfer operation, ora
corruption of the physical media on which the file was stored.It
may alternatively reflect an intentional change to the data file by
subsequent data processing if theCHECKSUMCHECKSUM value
was not also updated.

Normally both keywords will be present in the header if ei-
ther is present, but this is notrequiredrequired. These key-
words applyonly to the HDU in which they are contained.
If these keywords are written in one HDU of a multi-HDU
FITSFITS file then it is strongly recommendedthat they also
be written to every other HDU in the file with values appro-
priate to each HDU in turn; in that case the checksum ac-
cumulated over the entire file will equal-0 −0 as well. The
DATASUMkeyword mustDATASUM keyword must be updated
before theCHECKSUMCHECKSUM keyword. In general updat-
ing the two checksum keywordsshould should be the final
step of any update to either data or header records in aFITS
FITS HDU. It is highly recommendedrecommendedthat if a
FITSFITSfile is intended for public distribution, then the check-
sum keywords, if present,shouldshouldcontain valid values.

4.4.3. Additional keywords

New keywordsmaymaybe devised in addition to those described
in this standardStandard, so long as they are consistent with the
generalized rules for keywords and do not conflict with manda-
tory or reserved keywords. Any keyword that refers to or de-
pends upon the existence of other specific HDUs in the same or
other filesshouldshouldbe used with caution because the per-
sistence of those HDUs cannot always be guaranteed.

5. Data Representation representation

Primary and extension datashallshall be represented in one of
the formats described in this section.FITSdatashallFITS data
shall be interpreted to be a byte stream. Bytes are in big-endian
order of decreasing significance. The byte that includes thesign

bit shallshallbe first, and the byte that has the ones bitshallshall
be last.

5.1. Characters

Each charactershallshall be represented by one byte. A charac-
ter shallshall be represented by its7-bit seven-bitASCII (ANSI
1977) code in thelow orderlow-orderseven bits in the byte. The
high-order bitshallshallbe zero.

5.2. Integers

5.2.1. Eight-bit

Eight-bit integersshallshall be unsigned binary integers, con-
tained in one byte with decimal values ranging from 0 to 255.

5.2.2. Sixteen-bit

Sixteen-bit integersshallshall be two’s complement signed bi-
nary integers, contained in two bytes with decimal values rang-
ing from-32768 to+−32768 to+32767.

5.2.3. Thirty-two-bit

Thirty-two-bit integersshallshall be two’s complement signed
binary integers, contained in four bytes with decimal values
ranging from-2147483648 to+−2147483648 to+2147483647.

5.2.4. Sixty-four-bit

Sixty-four-bit integersshallshallbe two’s complement signed bi-
nary integers, contained in eight bytes with decimal valuesrang-
ing from-9223372036854775808 to+−9223372036854775808
to +9223372036854775807.

5.2.5. Unsigned integers

The FITSFITS format does not support a native unsigned in-
teger data type (except for the unsigned 8-bit byte data type)
therefore unsigned 16-bit, 32-bit, or 64-bit binary integers can-
not be stored directly in aFITSFITSdata array. Instead, the ap-
propriate offsetmustmustbe applied to the unsigned integer to
shift the value into the range of the corresponding signed integer,
which is then stored in theFITSFITS file. TheBZERO keyword
shallBZERO keywordshallrecord the amount of the offset needed
to restore the original unsigned value. TheBSCALEBSCALE
keyword shallshall have the default value of1.0 1.0 in this
case, and the appropriateBZEROBZERO value, as a function of
BITPIXBITPIX, is specified in Table 11.

This same techniquemustmust be used when storing un-
signed integers in abinary tablebinary-tablecolumn of signed
integers (Sect. 7.3.2). In this case theTSCALnTSCALn key-
word (analogous toBSCALE) shallBSCALE) shall have the de-
fault value of1.01.0, and the appropriateTZEROnTZEROnvalue
(analogous toBZEROBZERO) is specified in Table 19.

5.3. IEEE-754 floating point

Transmission of 32- and 64-bit floating-point data within the
FITSformat shallFITS format shall use the ANSI/IEEE-754

17

D
R

A
FT

18

standard (IEEE 1985).BITPIXBITPIX = -32andBITPIX-32
andBITPIX= -64-64 signify 32- and 64-bit IEEE floating-point
numbers, respectively; the absolute value ofBITPIXBITPIX is
used for computing the sizes of data structures. The full IEEE set
of number forms is allowed forFITSFITSinterchange, including
all special values.

The BLANK BLANK keywordshould notshould notbe used
when BITPIXBITPIX = -32-32 or -64-64; rather, the IEEE
NaN shouldshouldbe used to represent an undefined value. Use
of theBSCALEandBZEROBSCALE andBZERO keywords isnot
recommendednot recommended.

Appendix E has additional details on the IEEE format.

5.4. Time

There is strictly no such thing as a data type fortime valueddata,
but rules to encode time values are given in Sect. 9 and in more
detail in Rots et al. (2015).

6. Random groups Random-groups structure

Therandom groupsrandom-groupsstructure allows a collection
of ‘groups’, where a group consists of a subarray of data and aset
of associated parameter values, to be stored within theFITSFITS
primary data array. Random groups have been used almost ex-
clusively for applications in radio interferometry; outside this
field, there is little support for reading or writing data in this for-
mat. Other than the existing use for radio interferometry data,
the random groupsrandom-groupsstructure is deprecated and
should notshould notbe further used. For other applications, the
binary tablebinary-tableextension (Sect.7.3) provides a more
extensible and better documented way of associating groupsof
data within a single data structure.

6.1. Keywords

6.1.1. Mandatory keywords

The SIMPLESIMPLE keyword is requiredrequired to be the
first keyword in the primary header of allFITSFITS files, in-
cluding those withrandom groupsrandom-groupsrecords. If
the random groupsrandom-groupsformat records follow the
primary header, the keyword records of the primary header
mustmust use the keywords defined in Table 12 in the order
specified. No other keywordsmaymay intervene between the
SIMPLESIMPLE keyword and the lastNAXISnNAXISn key-
word.

SIMPLESIMPLE keyword. The keyword record containing this
keyword is structured in the same way as if a primary data array
were present (Sect.4.4.1).

BITPIXBITPIX keyword. The keyword record containing this
keyword is structured as prescribed in Sect.4.4.1.

NAXISNAXIS keyword. The value fieldshallshall contain an
integer ranging from 1 to 999, representing one more than the
number of axes in each data array.

Table 12: Mandatory keywords in primary header preceding ran-
dom groups.

Position Keyword

1 SIMPLESIMPLE = TT
2 BITPIXBITPIX
3 NAXISNAXIS

4 NAXIS1 NAXIS1 = 00
5 NAXISn, nNAXISn, n = 2, . . . , value ofNAXISNAXIS

...

(other keywords, whichmustmustinclude . . .)
GROUPSGROUPS = TT
PCOUNTPCOUNT
GCOUNTGCOUNT
.
..

last ENDEND

NAXIS1NAXIS1 keyword. The value fieldshallshallcontain the
integer00, a signature ofrandom groupsrandom-groupsformat
indicating that there is no primary data array.

NAXISnNAXISn keywords (n=2n = 2, . . . , value of
NAXISNAXIS). The NAXISnkeywordsmustNAXISn keywords
mustbe present for all valuesn= 2, ..., NAXISn = 2, . . . ,NAXIS,
in increasing order ofnn, and for no larger values ofnn. The
value fieldshallshall contain an integer, representing the num-
ber of positions alongaxis n-1Axis n − 1 of the data array in
each group.

GROUPSGROUPS keyword. The value fieldshallshall contain
the logical constantTT. The valueTT associated with this key-
word implies thatrandom groupsrandom-groupsrecords are
present.

PCOUNTPCOUNT keyword. The value fieldshallshall contain
an integer equal to the number of parameters preceding each ar-
ray in a group.

GCOUNTGCOUNT keyword. The value fieldshallshall contain
an integer equal to the number of random groups present.

ENDEND keyword. This keyword has no associated value.
Bytes 9 through 80shallshallcontain ASCII spaces (decimal 32
or hexadecimal 20).

The total number of bits in therandom groupsrandom-groups
records exclusive of the fill described in Sect.6.2 is given by the
following expression:

NbitsNbits = |BITPIXBITPIX| × GCOUNTGCOUNT ×

(PCOUNTPCOUNT + NAXIS2NAXIS2 × NAXIS3NAXIS3 × · · ·

where Nbits isNbits is non-negative and the number of
bits excluding fill; mm is the value ofNAXISNAXIS; and
BITPIX, GCOUNT, PCOUNTBITPIX, GCOUNT, PCOUNT, and
the NAXISnNAXISn represent the values associated with those
keywords.

18

D
R

A
FT

19

6.1.2. Reserved keywords

PTYPEnPTYPEn keywords. The value fieldshallshall contain
a character string giving the name ofparameternParametern.
If the PTYPEnPTYPEn keywords for more than one value of
nn have the same associated name in the value field, then the
data value for the parameter of that name is to be obtained by
adding the derived data values of the corresponding parameters.
This rule provides a mechanism by which a random parameter
maymayhave more precision than the accompanying data array
elements; for example, by summing two 16-bit values with the
first scaled relative to the other such that the sum forms a number
of up to 32-bit precision.

PSCALnPSCALn keywords. This keywordshallshall be used,
along with thePZEROnPZEROn keyword, when thenth FITSnth

FITS group parameter value is not the true physical value, to
transform the group parameter value to the true physical values
it represents, using Eq. 5. The value fieldshallshall contain a
floating-point number representing the coefficient of the linear
term in Eq. 5, the scaling factor between true values and group
parameter values at zero offset. The default value for this key-
word is1.01.0.

PZEROnPZEROn keywords. This keywordshallshall be used,
along with thePSCALnPSCALn keyword, when thenth FITSnth

FITS group parameter value is not the true physical value, to
transform the group parameter value to the physical value. The
value fieldshallshallcontain a floating-point number, represent-
ing the true value corresponding to a group parameter value of
zero. The default value for this keyword is0.00.0. The transfor-
mation equation is as follows:

physicalvalue = PZEROnPZEROn+ PSCALnPSCALn× groupparmvaluegroupparamvalue.(5)

6.2. Data sequence

Random groups datashallRandom-groups datashall consist of
a set of groups. The number of groupsshallshallbe specified by
the GCOUNTGCOUNT keyword in the associated header. Each
groupshallshall consist of the number of parameters specified
by thePCOUNTPCOUNT keyword followed by an array with the
number of elementsNelem givenNelemgivenby the following ex-
pression:

NelemNelem = (NAXIS2NAXIS2 × NAXIS3NAXIS3 × · · · × NAXISmNAXISm),(6)

where Nelem Nelem is the number of elements in the data ar-
ray in a group,mm is the value ofNAXISNAXIS, and the
NAXISnNAXISn represent the values associated with those key-
words.

The first parameter of the first groupshallshallappear in the
first location of the first data block. The first element of eachar-
ray shallshall immediately follow the last parameter associated
with that group. The first parameter of any subsequent group
shallshall immediately follow the last element of the array of the
previous group. The arraysshallshall be organized internally in
the same way as an ordinary primary data array. If the groups

data do not fill the final data block, the remainder of the block
shallshall be filled with zero values in the same way as a pri-
mary data array (Sect.3.3.2). If random groupsrandom-groups
records are present, thereshallshallbe no primary data array.

6.3. Data representation

Permissible data representations are those listed in Sect.5.
Parameters and elements of associated data arraysshallshall
have the same representation. If more precision is requiredfor
an associated parameter than for an element of a data array, the
parametershallshall be divided into two or more addends, rep-
resented by the same value for thePTYPEnPTYPEn keyword.
The valueshallshall be the sum of the physical values, which
maymayhave been obtained from the group parameter values
using thePSCALnandPZEROnPSCALn andPZEROn keywords.

7. Standard extensions

A standard extension is a conforming extension whose or-
ganization and content are completely specified in this
standardStandard. The specifications for the3 threecurrently de-
fined standard extensions, namely,

1. ’IMAGE’ IMAGE extensions;

2. ’TABLE’ ASCII tableTABLE ASCII-tableextensions; and

3. ’BINTABLE’ binary table extensions ;BINTABLE binary-
table extensions

are given in the following sections. A list of other conforming
extensions is given in Appendix F.

7.1. Image extension

The FITSimage FITS IMAGE extension is nearly identical in
structure to the the primary HDU and is used to store an array of
data. MultipleimageIMAGE extensions can be used to store any
number of arrays in a singleFITSFITSfile. The first keywordin
an image extensionshallrecord in anIMAGE extensionshall be
XTENSION= 'IMAGE 'XTENSION= 'IMAGE '.

7.1.1. Mandatory keywords

The XTENSIONkeyword is requiredXTENSION keyword is
required to be the first keyword of allimageIMAGE extensions.
The keyword records in the header of an image extension
mustmust use the keywords defined in Table 13 in the order
specified. No other keywordsmaymay intervene between the
XTENSIONandGCOUNTXTENSION andGCOUNT keywords.

XTENSIONXTENSION keyword. The value field shallshall
contain the character string'IMAGE '.

BITPIXBITPIX keyword. The value fieldshallshall contain an
integer. The absolute value is used in computing the sizes of
data structures. Itshallshall specify the number of bits that rep-
resent a data value. The only valid values ofBITPIXBITPIX are
given in Table 8. Writers ofIMAGEextensionsshouldselect a

19

D
R

A
FT

20

Table 13: Mandatory keywords inimageIMAGE extensions.

Position Keyword

1 XTENSION= 'IMAGE '

2 BITPIXBITPIX
3 NAXISNAXIS

4 NAXISn, nNAXISn, n = 1, . . . ,NAXISNAXIS

5 PCOUNTPCOUNT = 00
6 GCOUNTGCOUNT = 11

..

.

(other keywords . . .)
...

last ENDEND

BITPIXIMAGE extensionsshouldselect aBITPIX data type ap-
propriate to the form, range of values, and accuracy of the data
in the array.

NAXISNAXIS keyword. The value fieldshallshall contain a
non-negative integer no greater than 999, representing thenum-
ber of axes in the associated data array. If the value is zero then
theimage extensionshall notIMAGE extensionshall nothave any
data blocks following the header.

NAXISnNAXISn keywords. The NAXISnkeywords
mustNAXISn keywords must be present for all valuesn =
1, ..., NAXISn = 1, . . . , NAXIS, in increasing order ofnn,
and for no other values ofnn. The value field of this indexed
keywordshallshall contain a non-negative integer, representing
the number of elements alongaxis nAxis n of a data array. If
the value of any of theNAXISnNAXISn keywords is zero, then
the image extensionshall notIMAGE extensionshall not have
any data blocks following the header. IfNAXISNAXIS is equal
to 0, thereshould notbe anyNAXISn0 thereshould notbe any
NAXISn keywords.

PCOUNTPCOUNT keyword. The value fieldshallshall contain
the integer00.

GCOUNTGCOUNT keyword. The value fieldshallshall contain
the integer11; eachimageIMAGE extension contains a single
array.

ENDEND keyword. This keyword has no associated value.
Bytes 9 through 80shallshallbe filled with ASCII spaces (deci-
mal 32 or hexadecimal 20).

7.1.2. Other reserved keywords

The reserved keywords defined in Sect.4.4.2 (except for
EXTENDand BLOCKED) mayEXTEND and BLOCKED) may
appear in animage extensionimage-extensionheader. The key-
wordsmustmustbe used as defined in that section.

7.1.3. Data sequence

The data formatshallshall be identical to that of a primary data
array as described in Sect.3.3.2.

7.2. The ASCII table ASCII-table extension

The ASCII table ASCII-table extension provides a means of
storing catalogs and tables of astronomical data inFITSFITS
format. Each row of the table consists of a fixed-length se-
quence of ASCII characters divided into fields that correspond
to the columns in the table. The first keywordin an ASCII ta-
ble extensionshallbe record in an ASCII-table extensionshall
beXTENSION= 'TABLE '.

7.2.1. Mandatory keywords

The header of anASCII table extensionmustASCII-table ex-
tension must use the keywords defined in Table 14. The
first keyword mustbe XTENSIONmust be XTENSION; the
seven keywords followingXTENSION(BITPIX. . .TFIELDS)
mustXTENSION (BITPIX . . .TFIELDS) mustbe in the order spec-
ified with no intervening keywords.

XTENSIONXTENSION keyword. The value field shallshall
contain the character stringvalue text'TABLE '.

BITPIXBITPIX keyword. The value fieldshallshall contain the
integer88, denoting that the array contains ASCII characters.

NAXISNAXIS keyword. The value fieldshallshall contain the
integer 22, denoting that the included data array is two-
dimensional: rows and columns.

NAXIS1NAXIS1 keyword. The value fieldshallshall contain a
non-negative integer, giving the number of ASCII characters in
each row of the table. This includes all the characters in thede-
fined fields plus any characters that are not included in any field.

NAXIS2NAXIS2 keyword. The value fieldshallshall contain a
non-negative integer, giving the number of rows in the table.

PCOUNTPCOUNT keyword. The value fieldshallshall contain
the integer00.

GCOUNTGCOUNT keyword. The value fieldshallshall contain
the integer11; the data blocks contain a single table.

TFIELDSTFIELDS keyword. The value fieldshallshall contain
a non-negative integer representing the number of fields in each
row. The maximum permissible value is 999.

TBCOLnTBCOLn keywords. The TBCOLnkeywords
mustTBCOLn keywords must be present for all valuesn =
1, ..., TFIELDSn = 1, . . . ,TFIELDS and for no other values of
nn. The value field of this indexed keywordshallshall contain

20

D
R

A
FT

21

Table 14: Mandatory keywords inASCII tableASCII-tableextensions.

Position Keyword

1 XTENSION= 'TABLE '

2 BITPIX BITPIX = 88
3 NAXIS NAXIS = 22
4 NAXIS1NAXIS1
5 NAXIS2NAXIS2
6 PCOUNTPCOUNT = 00
7 GCOUNTGCOUNT = 11
8 TFIELDSTFIELDS

.

..

(other keywords, including (ifTFIELDSTFIELDS is not zero) . . .)
TTYPEn, n=1, 2, . . . , k where kTTYPEn, n = 1, 2, . . . , k, wherek is the value ofTFIELDS(RecommendedTFIELDS (recommended)
TBCOLn, n=1, 2, . . . , k where kTBCOLn, n = 1, 2, . . . , k, wherek is the value ofTFIELDS(RequiredTFIELDS (required)
TFORMn, n=1, 2, . . . , k where kTFORMn, n = 1, 2, . . . , k, wherek is the value ofTFIELDS(RequiredTFIELDS (required)
...

last ENDEND

Table 15: Valid TFORMnTFORMn format values in
TABLETABLE extensions.

Field value Data type
Aw Aw Character

Iw Iw Decimal integer
Fw.dFw.d Floating-point, fixed decimal notation
Ew.dEw.d Floating-point, exponential notation
Dw.d Dw.d Floating-point, exponential notation

Notes.w is the width in characters of the field andd is the number of
digits to the right of the decimal.

an integer specifying the column in whichfield nField n starts.
The first column of a row is numbered 1.

TFORMnTFORMn keywords. The TFORMnkeywords
mustTFORMn keywords must be present for all valuesn =
1, ..., TFIELDSn = 1, . . . ,TFIELDS and for no other values of
nn. The value field of this indexed keywordshallshall contain
a character string describing the format in whichfield nField n
is encoded. Only the formats in Table 15, interpreted as Fortran
(ISO 2004) input formats and discussed in more detail in Sect.
7.2.5, are permitted for encoding. Format codesmustmustbe

specified in upper case. Other format editing codes common
to Fortran such as repetition, positional editing, scaling, and
field termination are not permitted. All values in numeric fields
have a number base of ten (i.e., they are decimal); binary, octal,
hexadecimal, and other representations are not permitted.The
TDISPnTDISPn keyword, defined in Sect.7.2.2, may 7.2.2,
maybe used torecommendthat a decimal integer value in an
ASCII table be displayed as the equivalent binary, octal, or
hexadecimal value.

ENDEND keyword. This keyword has no associated value.
Bytes 9 through 80shallshallcontain ASCII spaces (decimal 32
or hexadecimal 20).

7.2.2. Other reserved keywords

In addition to the reserved keywords defined in Sect.4.4.2 (ex-
cept for EXTENDand BLOCKEDEXTEND and BLOCKED), the
following other reserved keywordsmaymaybe used to describe
the structure of anASCII table ASCII-table data array. They
areoptionaloptional, but if they appear within anASCII table
ASCII-tableextension header, theymustmustbe used as defined
in this section of thisstandardStandard.

TTYPEnTTYPEn keywords. The value field for this indexed
keywordshallshall contain a character string giving the name
of field nField n. It is strongly recommendedthat every field of
the table be assigned a unique, case-insensitive name with this
keyword, and it isrecommendedrecommendedthat the charac-
ter string be composed only ofupper and lower caseupper-
and lower-caseletters, digits, and the underscore (‘ ’’ ’, dec-
imal 95, hexadecimal 5F) character. Use of other charactersis
not recommendednot recommendedbecause it may be difficult
to map the column names into variables in some languages (e.g.,
any hyphens,‘*’ or ‘ +’ ’*’ or ’+’ characters in the name may
be confused with mathematical operators). String comparisons
with the TTYPEnkeyword valuesshould notTTYPEn keyword
valuesshould notbe case sensitive (e.g.,’TIME’ and ’Time’
should’TIME’ and ’Time’ shouldbe interpreted as the same
name).

TUNITnTUNITn keywords. The value fieldshallshall contain
a character string describing the physical units in which the
quantity infield nField n, after any application ofTSCALnand
TZEROnTSCALn and TZEROn, is expressed. Unitsmustmust
follow the prescriptions in Sect.4.3.

TSCALnTSCALn keywords. This indexed keywordshallshall
be used, along with theTZEROnTZEROn keyword, to linearly
scale the values in the tablefield nFieldn to transform them into
the physical values that they represent using Eq. 7. The value
field shallshall contain a floating-point number representing the
coefficient of the linear term in the scaling equation. The default
value for this keyword is1.01.0. This keywordmust notmust not
be used for A-format fields.

21

D
R

A
FT

22

Table 16: ValidTDISPnTDISPn format values inTABLETABLE extensions.

Field value Data type
Aw Aw Character

Iw.m Iw.m Integer
Bw.mBw.m Binary, integers only
Ow.mOw.m Octal, integers only
Zw.mZw.m Hexadecimal, integers only
Fw.dFw.d Floating-point, fixed decimal notation

Ew.dEeEw.dEe Floating-point, exponential notation
ENw.dENw.d Engineering; E format with exponent multiple of three
ESw.dESw.d Scientific; same as EN but non-zero leading digit if not zero

Gw.dEeGw.dEe General; appears as F if significance not lost, else E.
Dw.dEeDw.dEe Floating-point, exponential notation

Notes.w is the width in characters of displayed values,m is the minimum number of digits displayed,d is the number of digits to right of decimal,
ande is number of digits in exponent. The.m andEe fields areoptional.

The transformation equation used to compute a true physical
value from the quantity infield nFieldn is

physicalvalue = TZEROnTZEROn+ TSCALnTSCALn× field value(7)

where field valuefield value is the value that is actually
stored in that table field in theFITSFITSfile.

TZEROnTZEROn keywords. This indexed keywordshallshall
be used, along with theTSCALnTSCALn keyword, to linearly
scale the values in the tablefield nField n to transform them
into the physical values that they represent using Eq. 7. The
value fieldshallshall contain a floating-point number represent-
ing the physical value corresponding to an array value of zero.
The default value for this keyword is0.00.0. This keywordmust
notmust notbe used for A-format fields.

TNULLnTNULLn keywords. The value field for this indexed
keywordshallshallcontain the character string that represents an
undefined value forfield nField n. The string is implicitly space
filled to the width of the field.

TDISPnTDISPn keywords. The value field of this indexed
keyword shallshall contain a character string describing the
format recommended for displaying anASCII text ASCII-
text representation of of the contents offield nField n. This
keyword overrides the default display format given by the
TFORMnTFORMn keyword. If the table value has been scaled,
the physical value, derived using Eq. 7,shallshall be displayed.
All elements in a fieldshallshall be displayed with a single, re-
peated format. Only the format codes in Table 16, interpreted as
Fortran (ISO 2004) output formats, and discussed in more de-
tail in Sect. 7.3.4, are permitted for encoding. The format codes
mustmustbe specified in upper case. If theBw.m, Ow.m, and
Zw.mBw.m, Ow.m, andZw.m formats are not readily available to
the reader, theIw.mdisplay formatmayIw.m display formatmay
be used instead, and if theENw.dandESw.dENw.d andESw.d
formats are not available,Ew.dmayEw.dmaybe used.

The following four keywordsmaymaybe used to specify mini-
mum and maximum values in numerical columns of aFITSFITS
ASCII or binary table. These keywordsmustmusthave the same
data type as the physical values in the associated column (ei-

ther an integer or afloating pointfloating-pointnumber). Any
undefined elements in the columnshallshall be excluded when
determining the value of these keywords.

TDMINnTDMINn keywords. The value fieldshallshall contain
a number giving the minimum physical value contained in
columnnColumnn of the table. This keyword is analogous to
the DATAMIN DATAMIN keyword that is defined for arrays in
Sect. 4.4.2.5.

TDMAXnTDMAXn keywords. The value fieldshallshall contain
a number giving the maximum physical value contained in
columnnColumnn of the table. This keyword is analogous to
the DATAMAX DATAMAX keyword that is defined for arrays in
Sect. 4.4.2.5.

TLMINnTLMINn keywords. The value fieldshallshall contain
a number that specifies the minimum physical value incolumn
nColumnn that has a valid meaning or interpretation. The col-
umn is notrequiredrequired to actually contain any elements
that have this value, and the columnmaymaycontain elements
with physical values less thanTLMINnTLMINn, however, the in-
terpretation of any such out-of-range column elements is not de-
fined.

TLMAXnTLMAXn keywords. The value fieldshallshall contain
a number that specifies the maximum physical value incolumn
nColumnn that has a valid meaning or interpretation. The col-
umn is notrequiredrequired to actually contain any elements
that have this value, and the columnmaymaycontain elements
with physical values greater thanTLMAXn TLMAXn, however,
the interpretation of any such out-of-range column elements is
not defined.

TheTLMINnandTLMAXn TLMINn andTLMAXn keywords are
commonly used when constructing histograms of the data values
in a column. For example, if a table contains columns that give
theX and Y X andY pixel location of a list of photons that were
detected by aphoton countingphoton-countingdevice, then the
TLMINnandTLMAXn TLMINn andTLMAXn keywords could be
usedrespectivelyto specify the minimum and maximum values

22

D
R

A
FT

23

that the detector is capable of assigning to theX and Y X andY
columns.

7.2.3. Data sequence

The table is constructed from a two-dimensional array of ASCII
characters. The row length and the number of rowsshallshall
be those specified, respectively, by theNAXIS1NAXIS1 and
NAXIS2NAXIS2 keywords of the associated header. The num-
ber of characters in a row and the number of rows in the ta-
ble shallshall determine the size of the character array. Every
row in the arrayshallshall have the same number of characters.
The first character of the first rowshallshall be at the start of
the data block immediately following the last header block.The
first character of subsequent rowsshallshall follow immediately
the character at the end of the previous row, independent of the
FITSFITS block structure. The positions in the last data block
after the last character of the last row of the tableshallshall be
filled with ASCII spaces.

7.2.4. Fields

Each row in the arrayshallshall consist of a sequence of from
0 to 999 fields, as specified by theTFIELDSTFIELDS key-
word, with one entry in each field. For every field, the Fortran
(ISO 2004) format of the information contained (given by the
TFORMnTFORMnkeyword), the location in the row of the begin-
ning of the field (given by theTBCOLnTBCOLn keyword), and
(optionally, butstrongly recommended) the field name (given by
theTTYPEnTTYPEn keyword),shallshall be specified in the as-
sociated header. The location and format of fieldsshallshall be
the same for every row. Fieldsmaymayoverlap, but this usage is
not recommendednot recommended. Only a limited set of ASCII
character valuesmaymayappear within any field, depending on
the field type as specified below. Theremaymaybe characters
in a table row that are not included in any field, (e.g., between
fields, or before the first field or after the last field). Any7-bit
seven-bitASCII charactermaymayoccur in characters of a table
row that are not included in a defined field. A common conven-
tion is to include a space character between each field for added
legibility if the table row is displayed verbatim. It is alsopermis-
sible to add control characters, such as a carriage return orline
feedline-feedcharacter, following the last field in each row as a
way of formatting the table if it is printed or displayed by atext
editingtext-editingprogram.

7.2.5. Entries

All data in anASCII table extension fieldshallASCII-table ex-
tension fieldshall be ASCII text in a format that conforms to
the rules for fixed field input in Fortran (ISO 2004) format, as
described below. The only possible formatsshallshall be those
specified in Table 15. If values of−0 and+0 need to be dis-
tinguished, then the sign charactershouldshould appear in a
separate field in character format.TNULLnTNULLn keywords
maymaybe used to specify a character string that represents an
undefined value in each field. The characters representing anun-
defined valuemaymaydiffer from field to field butmustmustbe
the same within a field. Writers of ASCII tablesshouldshould
select a format for each field that is appropriate to the form,
range of values, and accuracy of the data in that field. This

standardStandarddoes not impose an upper limit on the num-
ber of digits of precision, nor any limit on the range of numeric
values. Software packages that read or write data accordingto
thisstandardStandardcould be limited, however, in the range of
values and exponents that are supported (e.g., to the range that
can be represented by 32-bit or 64-bit binary numbers).

The value of each entryshallshallbe interpreted as described
in the following paragraphs.

Character fields. The value of a character-formatted (AwAw)
field is a character string of widthw w containing the characters
in columnsTBCOLnthroughTBCOLn+w − 1TBCOLn through
TBCOLn+ w − 1. The character stringshallshall be composed of
the restricted set ofASCII text ASCII-textcharacters with deci-
mal values in the range 32 through 126 (hexadecimal 20 through
7E).

Integer fields. The value of an integer-formatted (IwIw) field is
a signed decimal integer contained incolumnsTBCOLnthrough
TBCOLn+w − 1 Columns TBCOLn through TBCOLn+ w − 1
consisting of a singleoptionalsign (‘+’or ‘-’ optionalsign (’+’
or ’-’) followed by one or more decimal digits (‘0’ through
‘9’ ’0’ through’9’). Non-significant space charactersmaymay
precede and/or follow the integer value within the field. A blank
field has value 0. All characters other than leading and trailing
spaces, a contiguous string of decimal digits, and a single lead-
ing sign character are forbidden.

Real fields. The value of a real-formatted field (Fw.d, Ew.d,
Dw.dFw.d, Ew.d, Dw.d) is a real number determined from the
wcharacters from columnsTBCOLnthroughTBCOLn+w − 1w
characters from ColumnsTBCOLn throughTBCOLn+ w − 1. The
value is formed by

1. discarding any trailing space characters in the field and right-
justifying the remaining characters,

2. interpreting the first non-space characters as a numeric
string consisting of a singleoptionalsign (‘+’or ‘-’ optional
sign (’+’ or ’-’) followed by one or more decimal dig-
its (‘0’ through‘9’ ’0’ through’9’) optionallycontaining a
single decimal point (‘.’ ’.’). The numeric string is termi-
nated by the end of the right-justified field or by the occur-
rence of any character other than a decimal point (‘.’ ’.’)
and the decimal integers (‘0’ through‘9’ ’0’ through’9’).
If the string contains no explicit decimal point, then the im-
plicit decimal point is taken as immediately preceding the
rightmostd digits of the string, with leading zeros assumed
if necessary. The use of implicit decimal points isdepre-
catedand is strongly discouraged because of the possibility
that FITSreadingFITS-readingprograms will misinterpret
the data value. Therefore, real-formatted fieldsshouldshould
always contain an explicit decimal point.

3. If the numeric string is terminated by a

(a) ‘+’or ‘-’ ’+’ or ’-’, interpreting the following string as
an exponent in the form of a signed decimal integer, or

(b) ‘E’ , or ‘D’ ’E’, or ’D’, interpreting the following string
as an exponent of the formEor DE or D followed by an
optionallysigned decimal integer constant.

23

D
R

A
FT

24

4. The exponent string, if present, is terminated by the end of
the right-justified string.

5. Characters other than those specified above, including em-
bedded space characters, are forbidden.

The numeric value of the table field is then the value of
the numeric string multiplied by ten (10) to the power
of the exponent string, i.e., value= numericstring ×
10(exponentstring)10(exponentstring). The default exponent is zero and
a blank field has value zero. There is no difference between the
F, D, andEF, D, andE formats; the content of the string de-
termines its interpretation. Numbers requiring more precision
and/or range than the local computer can supportmaymay be
represented. It is good form to specify aDformat inTFORMnD
format inTFORMn for a column of an ASCII table when that col-
umn will contain numbers that cannot be accurately represented
in 32-bit IEEE binary format (see Appendix E).

7.3. Binary table Binary-table extension

Thebinary tablebinary-tableextension is similar to the ASCII
table in that it provides a means of storing catalogs and tables of
astronomical data inFITSFITS format, however, it offers more
features and provides more-efficient data storage than ASCII ta-
bles. The numerical values in binary tables are stored in more-
compact binary formats rather than coded into ASCII, and each
field of a binary table can contain an array of values rather than
a simple scalar as in ASCII tables. The first keywordin a binary
table extensionshallrecord in a binary-table extensionshall be
XTENSION= 'BINTABLE'XTENSION= 'BINTABLE'.

7.3.1. Mandatory keywords

The XTENSIONXTENSION keyword is the first keyword of all
binary tablebinary-tableextensions. The seven keywords fol-
lowing (BITPIX. . .TFIELDS) mustBITPIX . . .TFIELDS) must
be in the order specified in Table 17, with no intervening key-
words.

XTENSIONXTENSION keyword. The value field shallshall
contain the character string'BINTABLE''BINTABLE'.

BITPIXBITPIX keyword. The value fieldshallshall contain the
integer88, denoting that the array is an array of8-bit eight-bit
bytes.

NAXISNAXIS keyword. The value fieldshallshall contain the
integer 22, denoting that the included data array is two-
dimensional: rows and columns.

NAXIS1NAXIS1 keyword. The value fieldshallshall contain a
non-negative integer, giving the number of8-bit eight-bitbytes
in each row of the table.

NAXIS2NAXIS2 keyword. The value fieldshallshall contain a
non-negative integer, giving the number of rows in the table.

PCOUNTPCOUNT keyword. The value fieldshallshall contain
the number of bytes that follow the table in the supplemental
data area called the heap.

GCOUNTGCOUNT keyword. The value fieldshallshall contain
the integer11; the data blocks contain a single table.

TFIELDSTFIELDS keyword. The value fieldshallshall contain
a non-negative integer representing the number of fields in each
row. The maximum permissible value is 999.

TFORMnTFORMn keywords. The TFORMnkeywords
mustTFORMn keywords must be present for all valuesn =
1, ..., TFIELDSn = 1, . . . ,TFIELDS and for no other values of
nn. The value field of this indexed keywordshallshall contain
a character string of the formrTaTa. The repeat countr is the
ASCII representation of a non-negative integer specifyingthe
number of elements infield nField n. The default value ofr is
11; the repeat count need not be present if it has the default
value. A zero element count, indicating an empty field, is per-
mitted. The data typeTT specifies the data type of the contents
of field nField n. Only the data types in Table 18 are permitted.
The format codesmustmust be specified in upper case. For
fields of typePor QP or Q, the only permitted repeat counts are0
and 1.0 and1. The additional charactersa areoptionaloptional
and are not further defined in thisstandardStandard. Table 18
lists the number of bytes each data type occupies in a table row.
The first field of a row is numbered 1. The total number of bytes
nrow nrow in a table row is given by

nrowrow =
∑

i=1

TFIELDSTFIELDSr ibi (8)

wherer i is the repeat count forfield Field i, bi is the number of
bytes for the data type infield Field i, andTFIELDSTFIELDS
is the value of that keyword,mustmust equal the value of
NAXIS1NAXIS1.

ENDEND keyword. This keyword has no associated value.
Bytes 9 through 80shallshallcontain ASCII spaces (decimal 32
or hexadecimal 20).

7.3.2. Other reserved keywords

In addition to the reserved keywords defined in Sect.4.4.2 (ex-
cept for EXTENDand BLOCKEDEXTEND and BLOCKED), the
following other reserved keywordsmaymaybe used to describe
the structure of abinary tablebinary-tabledata array. They are
optionaloptional, but if they appear within abinary tablebinary-
tableextension header, theymustmustbe used as defined in this
section of thisstandardStandard.

TTYPEnTTYPEn keywords. The value field for this indexed
keywordshallshall contain a character string giving the name
of field nField n. It is strongly recommendedthat every field of
the table be assigned a unique, case-insensitive name with this
keyword, and it isrecommendedrecommendedthat the charac-
ter string be composed only ofupper and lower caseupper-

24

D
R

A
FT

25

Table 17: Mandatory keywords inbinary tablebinary-tableextensions.

Position Keyword

1 XTENSION= 'BINTABLE'

2 BITPIX BITPIX = 88
3 NAXIS NAXIS = 22
4 NAXIS1NAXIS1
5 NAXIS2NAXIS2
6 PCOUNTPCOUNT
7 GCOUNTGCOUNT = 11
8 TFIELDSTFIELDS

.

..

(other keywords, including (ifTFIELDSTFIELDS is not zero) . . .)
TTYPEn, n=1, 2, . . . , k where kTTYPEn, n = 1, 2, . . . , k, wherek is the value ofTFIELDS(RecommendedTFIELDS (recommended)
TFORMn, n=1, 2, . . . , k where kTFORMn, n = 1, 2, . . . , k, wherek is the value ofTFIELDS(RequiredTFIELDS (required)
...

last ENDEND

Table 18: Valid TFORMnTFORMn data types in
BINTABLEBINTABLE extensions.

TFORMnTFORMn value Description 8-bit Eight-bitBytes
L ’L’ Logical 1

X ’X’ Bit †
B ’B’ Unsigned byte 1
I ’I’ 16-bit integer 2
J’J’ 32-bit integer 4
K ’K’ 64-bit integer 8
A ’A’ Character 1
E ’E’ Single precisionSingle-precisionfloating point 4
D ’D’ Double precisionDouble-precisionfloating point 8
C ’C’ Single precisionSingle-precisioncomplex 8
M ’M’ Double precisionDouble-precisioncomplex 16
P’P’ Array Descriptor (32-bit) 8
Q ’Q’ Array Descriptor (64-bit) 16

Notes.(†) Number of eight-bit bytes needed to contain all bits.

and lower-caseletters, digits, and the underscore (‘ ’’ ’, dec-
imal 95, hexadecimal 5F) character. Use of other charactersis
not recommendednot recommendedbecause it may be difficult
to map the column names into variables in some languages (e.g.,
any hyphens,‘*’ or ‘ +’ ’*’ or ’+’ characters in the name may
be confused with mathematical operators). String comparisons
with the TTYPEnkeyword valuesshould notTTYPEn keyword
valuesshould notbe case sensitive (e.g.,’TIME’ and ’Time’
should’TIME’ and ’Time’ shouldbe interpreted as the same
name).

TUNITnTUNITn keywords. The value fieldshallshall contain
a character string describing the physical units in which the
quantity infield nField n, after any application ofTSCALnand
TZEROnTSCALn and TZEROn, is expressed. Unitsmustmust
follow the prescriptions in Sect.4.3.

TSCALnTSCALn keywords. This indexed keywordshallshall
be used, along with theTZEROnTZEROn keyword, to linearly
scale the values in the tablefield nField n to transform them
into the physical values that they represent using Eq. 7. Itmust
notmust notbe used if the format offield nis A, L, or XFieldn is
’A’, ’L’, or ’X’. For fields with all other data types, the value

field shallshall contain a floating-point number representing the
coefficient of the linear term in Eq. 7, which is used to compute
the true physical value of the field, or, in the case of the complex
data typesCandM’C’ and’M’, of the real part of the field, with
the imaginary part of the scaling factor set to zero. The default
value for this keyword is1.01.0. For fields of typePor Q’P’
or ’Q’, the values ofTSCALnandTZEROnTSCALnandTZEROn
are to be applied to the values in the data array in the heap area,
not the values of the array descriptor (see Sect.7.3.5).

TZEROnTZEROn keywords. This indexed keywordshallshall
be used, along with theTSCALnTSCALn keyword, to linearly
scale the values in the tablefield nField n to transform them
into the physical values that they represent using Eq. 7. Itmust
notmust notbe used if the format offield nis A, L, or XFieldn is
’A’, ’L’, or ’X’. For fields with all other data types, the value
field shallshall contain a floating-point number representing the
true physical value corresponding to a value of zero infield nof
theFITSField n of theFITSfile, or, in the case of the complex
data typesCandM’C’ and’M, in the real part of the field, with
the imaginary part set to zero. The default value for this keyword
is 0.00.0. Equation 7 is used to compute a true physical value
from the quantity infield nField n. For fields of typePor Q’P’
or ’Q’, the values ofTSCALnandTZEROnTSCALnandTZEROn
are to be applied to the values in the data array in the heap area,
not the values of the array descriptor (see Sect.7.3.5).

In addition to its use in representing floating-point valuesas
scaled integers, theTZEROnTZEROn keyword is also used when
storing unsigned integer values in the field. In this specialcase
the TSCALnkeywordshallTSCALn keywordshall have the de-
fault value of1.0 and theTZEROnkeywordshall1.0 and the
TZEROn keywordshall have one of the integer values shown in
Table 19.

Since thebinary tablebinary-tableformat does not support a
native unsigned integer data type (except for the unsigned8-bit
’B’ eight-bit’B’ column type), the unsigned values are stored in
the field as native signed integers with the appropriate integer
offset specified by theTZEROnTZEROn keyword value shown
in the table. For the byte column type, the converse technique
can be used to store signed byte values as native unsigned val-
ues with the negativeTZEROnTZEROn offset. In each case, the
physical value is computed by adding the offset specified by the

25

D
R

A
FT

26

Table 19: Usage ofTZEROnTZEROn to represent non-default integer data types.

TFORMnTFORMn Native Physical TZEROnTZEROn
data type data type

B ’B’ unsigned signed byte -128-128 (−27)

I’I’ signed unsigned 16-bit 3276832768 (215)
J’J’ signed unsigned 32-bit 21474836482147483648 (231)
K’K’ signed unsigned 64-bit 92233720368547758089223372036854775808 (263)

TZEROnTZEROn keyword to the native data type value that is
stored in the table field.

TNULLnTNULLn keywords. The value field for this indexed
keywordshallshall contain the integer that represents an unde-
fined value forfield nof data typeB, I, Jor K, or Por Qarray
descriptorField n of Data TypeB, I, J or K, or P or Q array-
descriptorfields (Sect.7.3.5) that point toB, I, Jor KB, I, J, or
K integer arrays. The keywordmust notmust notbe used iffield
nFieldn is of any other data type. The value of this keyword cor-
responds to the table column values before applying any trans-
formation indicated by theTSCALnand TZEROnTSCALn and
TZEROn keywords.

If the TSCALnandTZEROnTSCALn andTZEROn keywords
do not have the default values of1.0 and 0.01.0 and0.0, re-
spectively, then the value of theTNULLnkeywordmustTNULLn
keywordmustequal the actual value in theFITSFITS file that
is used to represent an undefined element and not the corre-
sponding physical value (computed from Eq. 7). To cite a spe-
cific, common example,unsigned16-bit integers are represented
in a signedinteger column (withTFORMn TFORMn =’I’ ’I’)
by settingTZEROnTZEROn =32768andTSCALn 32768 and
TSCALn =1 1. If it is desired to use elements that have an
unsignedvalue (i.e., the physical value) equal to 0 to repre-
sent undefined elements in the field, then theTNULLnkeyword
mustTNULLn keywordmustbe set to the value-32768-32768
because that is the actual value stored in theFITSFITS file for
those elements in the field.

TDISPnTDISPn keywords. The value field of this indexed key-
word shallshall contain a character string describing the for-
mat recommended for displaying anASCII text ASCII-text
representation of the contents offield nField n. If the table
value has been scaled, the physical value, derived using Eq.7,
shallshall be displayed. All elements in a fieldshallshall be dis-
played with a single, repeated format. For purposes of display,
each byte of bit (typeXTypeX) and byte (typeBTypeB) arrays
is treated as an unsigned integer. Arrays oftype AmayType A

maybe terminated with a zero byte. Only the format codes in
Table 20, interpreted as Fortran (ISO 2004) output formats,
and discussed in more detail in Sect.7.3.4, are permitted for
encoding. The format codesmustmust be specified in upper
case. If theBw.m, Ow.m, andZw.mBw.m, Ow.m, andZw.m for-
mats are not readily available to the reader, theIw.mdisplay for-
mat mayIw.m display formatmay be used instead, and if the
ENw.dand ESw.dENw.d and ESw.d formats are not available,
Ew.dmayEw.d maybe used. In the case of fields oftypePor Q,
the TDISPnType P or Q, theTDISPn value applies to the data
array pointed to by the array descriptor (Sect.7.3.5), not the
values in the array descriptor itself.

THEAPTHEAP keyword. The value field of this keyword
shallshall contain an integer providing the separation, in bytes,
between the start of the main data table and the start of a sup-
plemental data area called the heap. The default value, which is
also the minimum allowed value,shallshallbe the product of the
values ofNAXIS1NAXIS1 andNAXIS2NAXIS2. This keyword
shall notshall notbe used if the value ofPCOUNTis zeroPCOUNT
is 0. The use of this keyword is described in in Sect.7.3.5.

TDIMnTDIMn keywords. The value field of this indexed key-
word shallshall contain a character string describing how to in-
terpret the contents offield nField n as a multi-dimensional ar-
ray with a format of’(l,m, n. . .)’wherel, m, n’(l,m,n...)’,
wherel, m, n, . . . are the dimensions of the array. The data are
ordered such that the array index of the first dimension given
(ll) is the most rapidly varying, and that of the last dimension
given is the least rapidly varying. The total number of elements
in the array equals the product of the dimensions specified inthe
TDIMnTDIMn keyword. The sizemustmustbe less than or equal
to the repeat counton theTFORMnin theTFORMn keyword, or,
in the case of columns that have a’P’or ’Q’ TFORMn’P’ or ’Q’
TFORMn data type, less than or equal to the array length speci-
fied in the variable-length array descriptor (see Sect.7.3.5). In
the special case where the variable-length array descriptor has a
size of zero, then theTDIMnTDIMn keyword is not applicable.
If the number of elements in the array implied by theTDIMnis
lessTDIMn is fewer than the allocated size of the array in the
FITSFITS file, then the unused trailing elementsshouldshould
be interpreted as containing undefined fill values.

A character string is represented in a binary table by a
one-dimensional character array, as described under ‘Character’
in the list of data types in Sect. 7.3.3. For example, a
Fortran CHARACTER*20CHARACTER*20 variable could be
represented in a binary table as a character array declared
as TFORMn TFORMn = ’20A’. Arrays of strings, i.e., multi-
dimensional character arrays,maymaybe represented using the
TDIMnTDIMn notation. For example, ifTFORMnTFORMn=and
TDIMn = '(5,4,3)' ’60A’ and TDIMn = ’(5,4,3)’, then
the entry consists of a 4× 3 array of stringsof five charac-
terseacheach comprising five characters.

The following four keywordsmaymaybe used to specify mini-
mum and maximum values in numerical columns of aFITSFITS
ASCII or binary table. These keywordsmustmusthave the same
data type as the physical values in the associated column (either
an integer or afloating pointfloating-pointnumber). Any unde-
fined elements in the column or any other IEEE special values
in the case offloating point columnsshallfloating-point columns
shallbe excluded when determining the value of these keywords.

26

D
R

A
FT

27

Table 20: ValidTDISPnTDISPn format values inBINTABLEBINTABLE extensions.

Field Value Data type
Aw Aw Character

Lw Lw Logical
Iw.m Iw.m Integer

Bw.mBw.m Binary, integers only
Ow.mOw.m Octal, integers only
Zw.mZw.m Hexadecimal, integers only
Fw.dFw.d Floating-point, fixed decimal notation

Ew.dEeEw.dEe Floating-point, exponential notation
ENw.dENw.d Engineering; E format with exponent multiple of three
ESw.dESw.d Scientific; same as EN but non-zero leading digit if not zero

Gw.dEeGw.dEe General; appears as F if significance not lost, else E.
Dw.dEeDw.dEe Floating-point, exponential notation

Notes. w is the width in characters of displayed values,m is the minimum number of digits displayed,d is the number of digits to right of decimal,
ande is number of digits in exponent. The.m andEe fields areoptional.

TDMINnTDMINn keywords. The value fieldshallshall contain
a number giving the minimum physical value contained in
columnnColumnn of the table. This keyword is analogous to
the DATAMIN DATAMIN keyword that is defined for arrays in
Sect. 4.4.2.5.

TDMAXnTDMAXn keywords. The value fieldshallshall contain
a number giving the maximum physical value contained in
columnnColumnn of the table. This keyword is analogous to
the DATAMAX DATAMAX keyword that is defined for arrays in
Sect. 4.4.2.5.

TLMINnTLMINn keywords. The value fieldshallshall contain
a number that specifies the minimum physical value incolumn
nColumnn that has a valid meaning or interpretation. The col-
umn is notrequiredrequired to actually contain any elements
that have this value, and the columnmaymaycontain elements
with physical values less thanTLMINnTLMINn, however, the in-
terpretation of any such out-of-range column elements is not de-
fined.

TLMAXnTLMAXn keywords. The value fieldshallshall contain
a number that specifies the maximum physical value incolumn
nColumnn that has a valid meaning or interpretation. The col-
umn is notrequiredrequired to actually contain any elements
that have this value, and the columnmaymaycontain elements
with physical values greater thanTLMAXn TLMAXn, however,
the interpretation of any such out-of-range column elements is
not defined.

TheTLMINnandTLMAXn TLMINn andTLMAXn keywords are
commonly used when constructing histograms of the data values
in a column. For example, if a table contains columns that give
theX and Y X andY pixel location of a list of photons that were
detected by aphoton countingphoton-countingdevice, then the
TLMINnandTLMAXn TLMINn andTLMAXn keywords could be
usedrespectivelyto specify the minimum and maximum values
that the detector is capable of assigning to theX and Y X andY
columns.

7.3.3. Data sequence

The data in abinary table extensionshallbinary-table extension
shall consist of a main data tablewhich may, which may, but
need not, be followed by additional bytes in the supplemental
data area. The positions in the last data block after the lastaddi-
tional byte, or, if there are no additional bytes, the last character
of the last row of the main data table,shallshall be filled by set-
ting all bits to zero.

7.3.3.1. Main data table

The table is constructed from a two-dimensional byte ar-
ray. The number of bytes in a rowshallshall be specified by the
value of theNAXIS1NAXIS1 keyword and the number of rows
shallshall be specified by theNAXIS2NAXIS2 keyword of the
associated header. Within a row, fieldsshallshall be stored in
order of increasing column number, as determined from thenof
theTFORMnn of theTFORMn keywords. The number of bytes in
a row and the number of rows in the tableshallshall determine
the size of the byte array. Every row in the arrayshallshall
have the same number of bytes. The first rowshallshall begin
at the start of the data block immediately following the last
header block. Subsequent rowsshallshall begin immediately
following the end of the previous row, with no intervening bytes,
independent of theFITSFITS block structure. Words need not
be aligned along word boundaries.

Each row in the arrayshallshall consist of a sequence of
from 0 to 999 fields as specified by theTFIELDSTFIELDS key-
word. The number of elements in each field and their data type
shallshall be specified by theTFORMnTFORMn keyword in the
associated header. A separate format keywordmustmustbe pro-
vided for each field. The location and format of fieldsshallshall
be the same for every row. Fieldsmaymaybe empty, if the repeat
count specified in the value of theTFORMnTFORMn keyword of
the header is0. 0. Writers of binary tablesshouldshouldselect a
format appropriate to the form, range of values, and accuracy of
the data in the table. The following data types, and no others, are
permitted.

Logical. If the value of theTFORMnkeyword specifies data
typeLTFORMn keyword specifies Data Type’L’, the contents of

27

D
R

A
FT

28

field nshallField n shall consist of ASCIITT indicating true or
ASCII FF, indicating false. A 0 byte (hexadecimal 00) indicates
a NULL value.

Bit array. If the value of theTFORMnTFORMn keyword spec-
ifies data typeX’X’, the contents offield nshallField n shall
consist of a sequence of bits starting with themost significant
most-significantbit; the bits followingshallshall be in order of
decreasing significance, ending with the least significant bit. A
bit arrayshallshallbe composed of an integral number of bytes,
with those bits following the end of the data set to zero. No null
value is defined for bit arrays.

Character. If the value of theTFORMnkeyword specifies data
type A, field nshallTFORMn keyword specifies Data Type’A’,
Field n shall contain a character string ofzero or morezero-
or-moremembers, composed of the restricted set ofASCII text
ASCII-text characters. This character stringmaymaybe termi-
nated before the length specified by the repeat count by an ASCII
NULL (hexadecimal code 00). Characters after the first ASCII
NULL are not defined. A string with the number of charac-
ters specified by the repeat count is not NULL terminated. Null
strings are defined by the presence of an ASCII NULL as the
first character.

Unsigned 8-Bit integer. If the value of theTFORMnkeyword
specifies data typeBTFORMn keyword specifies Data Type’B’,
the data infield nshallField n shall consist of unsigned8-bit
eight-bit integers, withthe most significantthe most-significant
bit first, and subsequent bits in order of decreasing signifi-
cance. Null values are given by the value of the associated
TNULLnTNULLn keyword. Signed integers can be represented
using the convention described in Sect.5.2.5.

16-Bit integer. If the value of theTFORMnkeyword specifies
data typeITFORMn keyword specifies Data Type’I’, the data
in field nshallField n shall consist of two’s complement signed
16-bit integers, contained in two bytes. Themost significant byte
shallmost-significant byteshall be first (big-endian byte order).
Within each byte themost significant bitshallmost-significant
bit shall be first, and subsequent bitsshallshall be in order of
decreasing significance. Null values are given by the value of the
associatedTNULLnTNULLn keyword. Unsigned integers can be
represented using the convention described in Sect.5.2.5.

32-Bit integer. If the value of theTFORMnkeyword specifies
data typeJTFORMn keyword specifies Data Type’J’, the data in
field nshallFieldn shall consist of two’s complement signed 32-
bit integers, contained in four bytes. Themost significant byte
shallmost-significant byteshall be first, and subsequent bytes
shallshallbe in order of decreasing significance (big-endian byte
order). Within each byte, themost significant bitshallmost-
significant bitshall be first, and subsequent bitsshallshall be
in order of decreasing significance. Null values are given bythe
value of the associatedTNULLnTNULLn keyword. Unsigned in-
tegers can be represented using the convention described inSect.
5.2.5.

64-Bit integer. If the value of theTFORMnkeyword specifies
data typeKTFORMnkeyword specifies Data Type’K’, the data in
field nshallFieldn shall consist of two’s complement signed 64-
bit integers, contained in eight bytes. Themost significant byte
shallmost-significant byteshall be first, and subsequent bytes
shallshall be in order of decreasing significance. Within each
byte, themost significant bitshallmost-significant bitshall be
first, and subsequent bitsshallshallbe in order of decreasing sig-
nificance (big-endian byte order). Null values are given by the
value of the associatedTNULLnTNULLn keyword. Unsigned in-
tegers can be represented using the convention described inSect.
5.2.5.

Single precision Single-precision floating point. If the value
of theTFORMnkeyword specifies data typeETFORMn keyword
specifies Data Type’E’, the data infield nshallField n shall
consist of ANSI/IEEE-754 (IEEE 1985) 32-bit floating-point
numbers, in big-endian byte order, as described in AppendixE.
All IEEE special values are recognized. The IEEE NaN is used
to represent null values.

Double precision Double-precision floating point. If the value
of theTFORMnkeyword specifies data typeDTFORMn keyword
specifies Data Type’D’, the data infield nshallField n shall
consist of ANSI/IEEE-754 (IEEE 1985) 64-bitdouble precision
double-precisionfloating-point numbers, in big-endian byte or-
der, as described in Appendix E. All IEEE special values are
recognized. The IEEE NaN is used to represent null values.

Single precision complex. If the value of the
TFORMnkeyword specifies data typeCTFORMn keyword
specifies Data Type’C’, the data infield nshallField n shall
consist of a sequence of pairs of 32-bitsingle precisionsingle-
precisionfloating-point numbers. The first member of each pair
shallshall represent the real part of a complex number, and the
second membershallshall represent the imaginary part of that
complex number. If either member contains an IEEE NaN, the
entire complex value is null.

Double precision Double-precision complex. If the value of
the TFORMnkeyword specifies data typeMTFORMn keyword
specifies Data Type’M’, the data infield nshallField n shall
consist of a sequence of pairs of 64-bitdouble precisiondouble-
precisionfloating-point numbers. The first member of each pair
shallshall represent the real part of a complex number, and the
second member of the pairshallshall represent the imaginary
part of that complex number. If either member contains an IEEE
NaN, the entire complex value is null.

Array descriptor. The repeat count on thePandQarray descrip-
tor fields mustP andQ array-descriptor fieldsmusteither have a
value of0 0 (denoting an empty field of zero bytes) or1. 1. If
the value of theTFORMnkeyword specifies data type1PTFORMn
keyword specifies Data Type’1P’, the data infield nshallFieldn
shall consist of one pair of 32-bit integers. If the value of the
TFORMnkeyword specifies data type1QTFORMn keyword spec-
ifies Data Type’1Q’, the data infield nshallFieldn shallconsist
of one pair of 64-bit integers. The meaning of these integersis
defined in Sect.7.3.5.

28

D
R

A
FT

29

7.3.3.2. Bytes following main table

The main data tablemaymay be followed by a supplemen-
tal data area called the heap. The size of the supplemental data
area, in bytes, is specified by the value of thePCOUNTPCOUNT
keyword. The use of this data area is described in Sect.7.3.5.

7.3.4. Data display

The indexedTDISPnkeywordmayTDISPnkeywordmaybe used
to describe the recommended format for displaying anASCII
text ASCII-text representation of the contents offield nField n.
The permitted display format codes for each type of data (i.e.,
character strings, logical, integer, or real) are given in Table 20
and described below.

Character data. If the table column contains a character string
(with TFORMn TFORMn =’rA’ ’rA’) then theTDISPnformat
codemustbe ’Aw’ where wTDISPn format codemust be Aw,
wherew is the number of characters to display. If the charac-
ter datum has length less than or equal toww, it is represented on
output right-justified in a string ofww characters. If the charac-
ter datum has length greater thanww, the firstww characters of
the datum are represented on output in a string ofww characters.
Character data are not surrounded bysingle or double quotation
single- or double-quotationmarks unless those marks are them-
selves part of the data value.

Logical data. If the table column contains logical data (with
TFORMn TFORMn =’rL’ ’rL’) then theTDISPnformat code
mustbe ’Lw’ where wTDISPn format codemustbe Lw, where
w is the width in characters of the display field. Logical data are
represented on output with the characterTT for true orFF for
false right-justified in a space-filled string ofww characters. A
null valuemaymaybe represented by a string ofww space char-
acters.

Integer data. If the table column contains integer data (with
TFORMn TFORMn =’rX’, ’rB’, ’rI’, ’rJ’ , or ’rK’ ’rX’, ’rB’,
’rI’, ’rJ’, or ’rK’) then theTDISPnformat codemayTDISPn
format codemayhave any of these forms:Iw.m, Bw.m, Ow.m,
or Zw.mIw.m, Bw.m, Ow.m, or Zw.m. The default value ofmm

is one and the‘.m’ is optional’.m’ is optional. The first letter
of the code specifies the number base for the encoding withII
for decimal (10),BB for binary (2),OO for octal (8), andZZ for
hexadecimal (16). Hexadecimal format uses the upper-case let-
ters A through F to represent decimal values 10 through 15. The
output field consists ofwcharacters containing zero or morew
characters containing zero-or-moreleading spaces followed by
a minus sign if the internal datum is negative (only in the case
of decimal encoding with theII format code), followed by the
magnitude of the internal datum in the form of anunsigned inte-
gerunsigned-integerconstant in the specified number base, with
only as many leading zeros as are needed to have at leastmm

numeric digits. Note thatmm ≤ ww is allowed if all values are
positive, butmm < wis requiredw is required if any values are
negative. If the number of digits required to represent the integer
datum exceedsww, then the output field consists of a string of
wasterisk (*w asterisk (*) characters.

Real data. If the table column contains real data (with
TFORMnTFORMn=’rE’ , or ’rD’ ’rE’, or ’rD’) or contains in-
teger data (with any of theTFORMnTFORMn format codes listed
in the previous paragraph)which are recommended, which are
recommendedto be displayed as real values (i.e., especially in
cases where the integer values represent scaled physical values
using Eq. 7), then theTDISPnformat codemayTDISPn format
code may have any of these forms:Fw.d, Ew.dEe, Dw.dEe,
ENw.d, or ESw.dFw.d, Ew.dEe, Dw.dEe, ENw.d, or ESw.d. In
all cases, the output is a string ofww characters including the
decimal point, any sign characters, and any exponent including
the exponent’s indicators, signs, and values. If the numberof
digits required to represent the real datum exceedsww, then the
output field consists of a string ofwasterisk (*w asterisk (*) char-
acters. In all cases,dd specifies the number of digits to appear to
the right of the decimal point.

TheFF format code output field consists ofw− d− 1 charac-
ters containing zero or more leading spacesw − d − 1 characters
containing zero-or-more leading spaces,followed by a minus
sign if the internal datum is negative, followed by the absolute
magnitude of the internal datum in the form of anunsigned inte-
gerunsigned-integerconstant. These characters are followed by
a decimal point (‘.’) andd’.’) andd characters giving the frac-
tional part of the internal datum, rounded by the normal rules of
arithmetic todd fractional digits.

For theEandDE andD format codes, an exponent is taken
such that the fraction0.1 ≤ |datum|/10exponent < 1.00.1 ≤
|datum|/10exponent< 1.0. The fraction (with appropriate sign) is
output with anFF format of widthw − e − 2 characters with
dw − e − 2 characters withd characters after the decimal fol-
lowed by anEor DE or D followed by the exponent as a signed
e + 1 e + 1 character integer with leading zeros as needed. The
default value ofeis 2 when theEee is 2 when theEe portion of
the format code is omitted. If the exponent value will not fit in
e+1 e+1 characters but will fit ine+2 then theE(or De+2 then
theE (or D) is omitted and the wider field used. If the exponent
value will not fit (with a sign character) ine+2e+2 characters,
then the entireww-character output field is filled with asterisks
(**).

The ESES format code is processed in the same manner as
theEE format code except that the exponent is taken so that1.0 ≤
fraction< 101.0 ≤ fraction< 10.

TheENEN format code is processed in the same manner as
theEE format code except that the exponent is taken to be an in-
teger multiple of three and so that1.0 ≤ fraction< 1000.01.0 ≤
fraction< 1000.0. All real format codes have number base 10.
There is no difference betweenEandDE andD format codes on
input other than an implication with the latter of greater preci-
sion in the internal datum.

The Gw.dEeformat codemayGw.dEe format codemay be
used with data of any type. For data of type integer, logical,or
character, it is equivalent toIw, Lw, orAwIw, Lw, orAw, respec-
tively. For data of type real, it is equivalent to anFF format (with
different numbers of characters after the decimal) when that for-
mat will accurately represent the value and is equivalent toan
EE format when the number (in absolute value) is either very
small or very large. Specifically, for real values outside the range
0.1− 0.5×10−d−1 ≤ value< 10d − 0.50.1− 0.5×10−d−1 ≤ value<
10d − 0.5, it is equivalent toEw.dEeEw.dEe. For real values
within the above range, it is equivalent toFw′.d′ followed by 2+e
Fw′.d′ followed by 2+e spaces, wherew′ = w−e−2 andd′ = d−k

29

D
R

A
FT

30

for k = 0, 1, . . . , d w′ = w−e−2 andd′ = d−k for k = 0, 1, . . . , d
if the real datum value lies in the range10k−1

(

1 − 0.5×10−d
)

≤

value ≤ 10k
(

1 − 0.5×10−d
)

10k−1
(

1 − 0.5×10−d
)

≤ value ≤

10k
(

1 − 0.5×10−d
)

.

Complex data. If the table column contains complex data (with
TFORMnTFORMn=’rC’ , or ’rM’) then themay’rC’, or ’rM’)
then theymay be displayed with any of the real data formats
as described above. The same format is used for the real and
imaginary parts. It isrecommendedrecommendedthat the two
values be separated by a comma and enclosed in parentheses
with a total field width of2w + 32w + 3.

7.3.5. Variable-length arrays

One of the most attractive features of binary tables is that any
field of the table can be an array. In the standard case this is
a fixed-size array, i.e., a fixed amount of storage is allocated in
each row for the array data—whether it is used or not. This is fine
so long as the arrays are small or a fixed amount of array data
will be stored in each field, but if the stored array length varies
for different rows, it is necessary to impose a fixed upper limit
on the size of the array that can be stored. If this upper limitis
made too large excessive wasted space can result and thebinary
tablebinary-tablemechanism becomes seriously inefficient. If
the limit is set too low then storing certain types of data in the
table could become impossible.

The variable-length array construct presented here was de-
vised to deal with this problem. Variable-length arrays areimple-
mented in such a way that, even if a table contains such arrays, a
simple reader program that does not understand variable-length
arrays will still be able to read the main data table (in otherwords
a table containing variable-length arrays conforms to the basic
binary tablebinary-tablestandard). The implementation chosen
is such that the rows in the main data table remain fixed in size
even if the table contains a variable-length array field, allowing
efficient random access to the main data table.

Variable-length arrays are logically equivalent to regular
static arrays, the only differences being 1) the length of the stored
array can differ for different rows, and 2) the array data are not
stored directly in the main data table. Since a field of any data
type can be a static array, a field of any data type can also be
a variable-length array (excluding thetype PandQType P and
Q variable-length array descriptors themselves, which are not a
data type so much as a storage-class specifier). Other established
FITSFITSconventions that apply to static arrays will generally
apply as well to variable-length arrays.

A variable-length array is declared in the table header with
one of the following two special fielddata type specifiersdata-
type specifiers

rPt(emax)rPt(emax)

rQt(emax)rQ t(emax)

where the‘P’or ‘Q’ ’P’ or’Q’ indicates the presence of an array
descriptor (described below), the element countrshouldbe 0, 1r
shouldbe0, 1, or absent,tt is a character denoting the data type
of the array data (L, X, B, I, J, KL, X, B, I, J, K, etc., but not
Por QP or Q), andemax emax is a quantity guaranteed to be equal
to or greater than the maximum number of elements of typett

actually stored in any row of the table. There is no built-in upper
limit on the size of a stored array (other than the fundamental
limit imposed by the range of the array descriptor, defined be-
low); emax emax merely reflects the size of the largest array ac-
tually stored in the table, and is provided to avoid the need to
preview the table when, for example, reading a table contain-
ing variable-length elements into a database that supportsonly
fixed-size arrays. Theremaymaybe additional characters in the
TFORMnTFORMn keyword following theemaxemax.

For example,

TFORM8 = ’PB(1800)’ / Variable byte arrayTFORM8 = ’PB(1800)’

indicates thatfieldField 8 of the table is a variable-length array
of type byte, with a maximum stored array length not to exceed
1800 array elements (bytes in this case).

The data for the variable-length arrays in a table are not
stored in the main data table; they are stored in a supplemental
data area, the heap, following the main data table. What is stored
in the main data table field is anarray descriptor. This consists
of two 32-bit signed integer values in the case of‘P’’P’ array
descriptors, or two 64-bit signed integer values in the caseof
‘Q’ ’Q’ array descriptors: the number of elements (array length)
of the stored array, followed by the zero-indexed byte offset of
the first element of the array, measured from the start of the heap
area. The meaning of a negative value for either of these integers
is not defined by thisstandardStandard. Storage for the array is
contiguous. The array descriptor forfield FieldN as it would ap-
pear embedded in a table row is illustrated symbolically below:
.

. . . [field Field N–1] [(nelem,offset)] [field Field N+1] . . .

If the stored array length is zero, there is no array data, and
the offset value is undefined (itshouldshouldbe set to zero). The
storage referenced by an array descriptormustmustlie entirely
within the heap area; negative offsets are not permitted.

A binary table containing variable-length arrays consistsof
three principal segments, as follows: .

[table header] [main data table] (optional gap) [heap area]

The table header consists of one or more 2880-byte header
blocks with the last block indicated by the keywordENDEND
somewhere in the block. The main data table begins with the
first data block following the last header block and isNAXIS1 ×

NAXIS2 NAXIS1 × NAXIS2 bytes in length. The zeroindexed
-indexedbyte offset to the start of the heap, measured from
the start of the main data table,may may be given by the
THEAPTHEAP keyword in the header. If this keyword is miss-
ing then the heap begins with the byte immediately following
main data table (i.e., the default value ofTHEAPis NAXIS1 ×

NAXIS2THEAP is NAXIS1 × NAXIS2). This default value is the
minimum allowed value for theTHEAPTHEAP keyword, be-
cause any smaller value would imply that the heap and the main
data table overlap. If theTHEAPTHEAP keyword has a value
larger than this default value, then there is a gap between the end
of the main data table and the start of the heap. The total length
in bytes of the supplemental data area following the main data
table (gap plus heap) is given by thePCOUNTPCOUNT keyword
in the table header.

For example, suppose a table contains five rowswhich that
are each 168 bytes long, with a heap area 3000 bytes long, be-
ginning at an offset of 2880, thereby aligning the main data table

30

D
R

A
FT

31

and heap areas on data block boundaries (this alignment is not
necessarily recommended but is useful for this example). The
data portion of the table consists of three 2880-byte data blocks:
the first block contains the 840 bytes from the five rows of the
main data table followed by 2040 fill bytes; the heap completely
fills the second block; the third block contains the remaining 120
bytes of the heap followed by 2760 fill bytes.PCOUNTPCOUNT
gives the total number of bytes from the end of the main data
table to the end of the heap, and in this example has a value of
2040+ 2880+ 120= 5040. This is expressed in the table header
as: shown below.

NAXIS1 = 168 / Width of table row in bytes

NAXIS2 = 5 / Number of rows in table

PCOUNT = 5040 / Random parameter count

...

THEAP = 2880 / Byte offset of heap area

The values ofTSCALnandTZEROnTSCALnandTZEROn for
variable-length array column entries are to be applied to the val-
ues in the data array in the heap area, not the values of the array
descriptor. These keywords can be used to scale data values in
either static or variable-length arrays.

7.3.6. Variable-length-array guidelines

While the above description is sufficient to define the required
features of the variable-length array implementation, some hints
regarding usage of the variable-length array facility might also
be useful.

Programs that read binary tables should take care to not as-
sume more about the physical layout of the table than isrequired
requiredby the specification. For example, there are no require-
ments on the alignment of data within the heap. If efficient run-
time access is a concern one might want to design the table
so that data arrays are aligned to the size of an array element.
In another case one might want to minimize storage and forgo
any efforts at alignment (by careful design it is often possible
to achieve both goals). Variable-length array datamaymay be
stored in the heap in any order, i.e., the data for rowN+1 are not
necessarily stored at a larger offset than that for rowN. There
maymaybe gaps in the heap where no data are stored. Pointer
aliasing is permitted, i.e., the array descriptors for two or more
arraysmaymaypoint to the same storage location (this could be
used to save storage if two or more arrays are identical).

Byte arrays are a special case because they can be used to
store a ‘typeless’ data sequence. SinceFITSFITS is a machine-
independent storage format, some form of machine-specific data
conversion (byte swapping, floating-point format conversion) is
implied when accessing stored data with types such as integer
and floating, but byte arrays are copied to and from external stor-
age without any form of conversion.

An important feature of variable-length arrays is that it is
possible that the stored array lengthmaymaybe zero. This makes
it possible to have a column of the table for which, typically, no
data are present in each stored row. When data are present, the
stored array can be as large as necessary. This can be useful when
storing complex objects as rows in a table.

Accessing a binary table stored on arandom accessrandom-
accessstorage medium is straightforward. Since the rows of data
in the main data table are fixed in size they can be randomly

accessed given the row number, by computing the offset. Once
the row has been read in, any variable-length array data can be
directly accessed using the element count and offset given by the
array descriptor stored in that row.

Reading a binary table stored on asequential access
sequential-accessstorage medium requires that a table of array
descriptors be built up as the main data table rows are read in.
Once all the table rows have been read, the array descriptorsare
sorted by the offset of the array data in the heap. As the heap
data are read, arrays are extracted sequentially from the heap and
stored in the affected rows using the back pointers to the row and
field from the table of array descriptors. Since array aliasing is
permitted, it might be necessary to store a given array in more
than one field or row.

Variable-length arrays are more complicated than regular
static arrays and might not be supported by some software sys-
tems. The producers ofFITSFITSdata products should consider
the capabilities of the likely recipients of their files whende-
ciding whether or not to use this format, and as a general rule
should use it only in cases where it provides significant advan-
tages over the simpler fixed-length array format. In particular,
the use of variable-length arrays might present difficulties for
applications that ingest theFITSFITSfile via a sequential input
stream, because the application cannot fully process any rows in
the table until after the entire fixed-length table, and potentially
the entire heap has been transmitted as outlined in the previous
paragraph.

8. World coordinate World-coordinate systems

Representations of the mapping between image coordinates and
physical (i.e., world) coordinate systems (WCSs)may maybe
represented withinFITSFITSHDUs. The keywords that are used
to express these mappings are now rigorously defined in a se-
ries of papers onworld coordinateworld-coordinatesystems
(Greisen & Calabretta 2002),celestial coordinatecelestial-
coordinatesystems (Calabretta & Greisen 2002),spectral co-
ordinatespectral-coordinatesystems (Greisen et al. 2006), and
time coordinatetime-coordinatesystems (Rots et al. 2015).
An additional spherical projection, called HEALPix, is defined
in reference (Calabretta & Roukema 2007). These WCS pa-
pers have been formally approved by the IAUFWG and there-
fore are incorporated by referenceas an official part of this
Standard. The reader should refer to these papers for additional
details and background information that cannot be includedhere.
Various updates and corrections to the primary WCS papers have
been compiled by the authors, and are reflected in this section.
Therefore, where conflicts exist, the description in this Standard
will prevail.

8.1. Basic concepts

Rather than store world coordinates separately for each datum,
the regular lattice structure of aFITSFITS image offers the pos-
sibility of defining rules for computing world coordinates at each
point. As stated in Sect.3.3.2 and depicted in Fig. 1, image ar-
ray data are addressed viaintegral array indicesthat range in
value from 1 toNAXISj on axisAxis j. Recognizing that image
data values may have an extent, for example an angular separa-
tion, spectral channel width or time span, and thus that it may
make sense to interpolate between them, these integral array

31

D
R

A
FT

32

Pixel

Coordinates

Linear transformation:

translation, rotation,

skew, scale

Rescale to

physical units

Intermediate Pixel

Coordinates

Intermediate World

Coordinates

Coordinate

projection, offset

World

Coordinates

CRPIXj,

PCi_j or

CDi_j

CDELTi

CTYPEi,

CRVALi

PVi_m

Fig. 2: A schematic view of converting pixel coordinates to
world coordinates.

indicesmay maybe generalized to floating-pointpixel coordi-
nates. Integralpixel coordinatepixel-coordinatevalues coincide
with the corresponding array indices, while fractionalpixel coor-
dinatepixel-coordinatevalues lie between array indices and thus
imply interpolation.Pixel coordinatePixel-coordinatevalues are
defined at all points within the image lattice and outside it (ex-
cept alongconventionalaxes, see Sect.8.5). They form the basis
of theworld coordinate formalism inFITSworld-coordinate for-
malism inFITSdepicted schematically in Fig. 2.

The essence of representingworld coordinate systems in
FITSworld-coordinate systems inFITS is the association of var-
ious reserved keywords with elements of a transformation (or
a series of transformations), or with parameters of a projection
function. The conversion from pixel coordinates in the dataarray
to world coordinates is simply a matter of applying the specified
transformations (in order) via the appropriate keyword values;
conversely, defining a WCS for an image amounts to solving
for the elements of the transformation matrix(es) or coefficients
of the function(s) of interest and recording them in the form
of WCS keyword values. The description of the WCS systems
and their expression inFITSFITS HDUs is quite extensive and
detailed, but is aided by a careful choice of notation. Key ele-
ments of the notation are summarized in Table 21, and are used
throughout this section. The formal definitions of the keywords
appear in the following subsections.

The conversion of image pixel coordinates to world coordi-
nates is a multi-step process, as illustrated in Fig. 2.

For all coordinate types, the first step is a linear transfor-
mation applied via matrix multiplication of the vector ofpixel
coordinatepixel-coordinateelements,p j :

qi =

N
∑

j=1

mi j (p j − r j) (9)

wherer j are thepixel coordinatepixel-coordinateelements of
the reference point,j indexes the pixel axis, andi the world
axis. Themi j matrix is a non-singular, square matrix of di-
mensionN × N, whereN is the number ofworld coordinate
world-coordinateaxes. The elementsqi of the resultinginterme-
diate pixel coordinatevector are offsets, in dimensionless pixel
units, from the reference point along axes coincident with those
of the intermediate world coordinates. Thus, the conversion of
qi to the correspondingintermediate world coordinate element
Intermediate-world-coordinate Elementxi is a simple scale:

xi = siqi . (10)

There are three conventions for associatingFITSFITS
keywords with the above transformations. In the first formal-
ism, the matrix elementsmi j are encoded in thePCi j keywords
and the scale factorssi are encoded in theCDELTi keywords,
which mustmusthave non-zero values. In the second formalism
Eqs. (9) and (10) are combined as

xi =

N
∑

j=1

(simi j)(p j − r j) (11)

and theCDi j keywords encode the productsimi j . The third
convention was widely used before the development of the
two previously described conventions and uses theCDELTi key-
words to define the image scale and theCROTA2keyword to
defineCROTA2 keyword to specifya bulk rotation of the im-
age plane. Use of theCROTA2CROTA2 keyword is now dep-
recated, and instead the newerPCi j or CDi j keywords are
recommendedrecommendedbecause they allow for skewed axes
and fully general rotation of multi-dimensional arrays. The
CDELTi andCROTA2keywordsmayCROTA2 keywordsmayco-
exist with theCDi j keywords (but theCROTA2must notCROTA2
must not occur with the PCi j keywords) as an aid to old
FITSFITS interpreters, but these keywordsmustmustbe ignored
by software that supports theCDi j keyword convention. In all
these formalisms the reference pixel coordinatesr j are encoded
in theCRPIXi keywords, and the world coordinates at the refer-
ence point are encoded in theCRVALi keywords. For additional
details, see Greisen & Calabretta (2002).

The third step of the process, computing the final world co-
ordinates, depends on the type of coordinate system, which is
indicated with the value of theCTYPEi keyword. For some sim-
ple, linear cases an appropriate choice of normalization for the
scale factors allows the world coordinates to be taken directly
(or by applying a constant offset) from thexi (e.g., some spec-
tra). In other cases it is more complicated, and may require the
application of some non-linear algorithm (e.g., a projection, as
for celestial coordinates), which may require the specification of
additional parameters. Where necessary, numeric parameter val-
ues for non-linear algorithmsmustmustbe specified viaPVi m
keywords and character-valued parameters will be specifiedvia
PSi m keywords, wherem is the parameter number.

The application of these formalisms to coordinate systems of
interest is discussed in the following sub-sections: Sect.8.2 de-
scribes general WCS representations (see Greisen & Calabretta
2002), Sect.8.3 describes celestial coordinate8.3 describes
celestial-coordinatesystems (see Calabretta & Greisen 2002)),
Sect.8.4 describes spectral coordinate8.4 describes spectral-
coordinatesystems (see Greisen et al. 2006), and Sect.9 de-
scribes the representation of time coordinates (see Rots etal.
2015).

32

D
R

A
FT

33

Table 21: WCS and celestial coordinates notation.

Variable(s) Meaning RelatedFITSFITSkeywords

i Index variable for world coordinates
j Index variable for pixel coordinates
a Alternative WCS version code
pj Pixel coordinates
r j Reference pixel coordinates CRPIXja
mi j Linear transformationLinear-transformationmatrix CDi ja or PCi ja
si Coordinate scales CDELTia
(x, y) Projection plane coordinates
(φ, θ) Native longitude and latitude
(α, δ) Celestial longitude and latitude
(φ0, θ0) Native longitude and latitude of the fiducial point PVi 1a† , PVi 2a†

(α0, δ0) Celestial longitude and latitude of the fiducial pointCRVALia
(αp, δp) Celestial longitude and latitude of the native pole
(φp, θp) Native longitude and latitude of the celestial pole LONPOLEa (=PVi 3a†),

LATPOLEa (=PVi 4a†)

Notes. † Associated withLongitudeAxis i.

8.2. World coordinate system World-coordinate-system
representations

A variety of keywords have been reserved for computing the
coordinate values that are to be associated with any pixel lo-
cation within an array. The full set is given in Table 22; those in
most common usage are defined in detail below for convenience.
Coordinate system specifications mayCoordinate-system speci-
ficationsmayappear in HDUs that contain simple images in the
primary array or in animageIMAGE extension. Imagesmaymay
also be stored in a multi-dimensional vector cell of a binaryta-
ble, or as a tabulated list of pixel locations (and optionally, the
pixel value) in a table. In these last two types of image represen-
tations, the WCS keywords have a different naming convention,
which reflects the needs of the tabular data structure and the8-
charactereight-characterlimit for keyword lengths, but other-
wise follow exactly the same rules for type, usage, and default
values. See reference Calabretta & Greisen (2002) for example
usage of these keywords. All forms of these reserved keywords
mustmustbe used only as specified in this Standard.

In the case of thebinary tablebinary-tablevector representa-
tion, it is possible that the images contained in a given column of
the table have different coordinate transformation values. Table
9 of Calabretta & Greisen (2002) illustrates a technique (com-
monly known as the “Green Bank Convention10”) , which utilizes
additional columns in the table to record thecoordinate transfor-
mationcoordinate-transformationvalues that apply to the corre-
sponding image in each row of the table. More information is
provided in Appendix L.

The keywords given below constitute a complete set of fun-
damental attributes for a WCS description. Although their in-
clusion in an HDU is optional,FITSwritersshouldFITSwriters
should include a complete set of keywords when describing a
WCS. In the event that some keywords are missing, default val-
uesmustmustbe assumed, as specified below.

WCSAXES – [integer; default:NAXIS, or larger of WCSindexes
indicesi or j]. Number of axes in the WCS description. This
keyword, if present,mustmustprecede all WCS keywords

10 Named after a meeting held in Green Bank, West Virginia, USA
in 1989 to develop standards for the interchange ofsingle dish radio
astronomysingle-dish radio-astronomydata.

exceptNAXIS in the HDU. The value ofWCSAXES maymay
exceed the number of pixel axes for the HDU.

CTYPEi – [string; indexed; default:' ' (i.e. a linear, un-
defined axis)]. Type for theintermediate coordinate axis
Intermediate-coordinate Axisi. Any coordinate type that is
not covered by thisstandardStandardor an officially recog-
nizedFITSconventionshallFITSconventionshallbe taken to
be linear. All non-linear coordinate system namesmustmust
be expressed in ‘4–3’ form: the first four characters spec-
ify the coordinate type, the fifth character is a hyphen (‘--’),
and the remaining three characters specify an algorithm code
for computing the world coordinate value. Coordinate types
with names oflessfewerthan four characters are padded on
the right with hyphens, and algorithm codes withlessfewer
than three characters are padded on the right with blanks11.
Algorithm codesshouldshouldbe three characters.

CUNITi – [string; indexed; default:' ' (i.e., undefined)].
Physical units ofCRVAL andCDELT for axisiAxis i. Note that
unitsshouldshouldalways be specified (see Sect.4.3). Units
for celestial coordinate systems defined in this Standard
mustmustbe degrees.

CRPIXj – [floating point; indexed; default:0.00.0]. Location of
the reference point in the image foraxisAxis j correspond-
ing to r j in Eq. (9). Note that the reference pointmaymay
lie outside the image and that the first pixel in the image has
pixel coordinates (1.0, 1.0, . . .).

CRVALi – [floating point; indexed; default:0.00.0]. World
CoordinateWorld-coordinatevalue at the reference point of
axisAxis i.

CDELTi – [floating point; indexed; default:1.01.0]. Increment
of the world coordinate at the reference point foraxisAxis i.
The valuemust notmust notbe zero.

CROTAi – [floating point; indexed; default:0.00.0]. The amount
of rotation from the standard coordinate system to a different
coordinate system. Further use of this of this keyword is dep-
recated, in favor of the newer formalisms that use theCDi j
or PCi j keywords to define the rotation.

PCi j – [floating point; defaults:1.0 1.0 when i = j, 0.0 0.0

otherwise]. Linear transformation matrix betweenpixel axes
Pixel Axes j andintermediate coordinate axesIntermediate-

11 Example:‘RA---UV ’’RA---UV ’.

33

D
R

A
FT

34

Table 22: Reserved WCS keywords (continues on next page)

BINTABLE vector Pixel list
Keyword Description Global Image Primary Alternative Primary Alternative

Coordinate dimensionality WCSAXESa WCAXna . . .
Axis type CTYPEia iCTYPn iCTYna TCTYPn TCTYna
Axis units CUNITia iCUNIn iCUNna TCUNIn TCUNna
Reference value CRVALia iCRVLn iCRVna TCRVLn TCRVna
Coordinate increment CDELTia iCDLTn iCDEna TCDLTn TCDEna
Reference point CRPIXja jCRPXn jCRPna TCRPXn TCRPna
Coordinate rotation1 CROTAi iCROTn TCROTn
Transformation matrix2 PCi ja ijPCna TPCn kaor TPn ka
Transformation matrix2 CDi ja ijCDna TCDn kaor TCn ka
Coordinate parameter PVi ma iPVn maor iVn ma TPVn maor TVn ma
Coordinate parameter array . . . iVn Xa ...
Coordinate parameter PSi ma iPSn maor iSn ma TPSn maor TSn ma
Coordinate name WCSNAMEa WCSNna WCSnaor TWCSna
Coordinate axis name CNAMEia iCNAna TCNAna
Random error CRDERia iCRDna TCRDna
Systematic error CSYERia iCSYna TCSYna
WCS cross-reference target . . . WCSTna ...
WCS cross reference . . . WCSXna ...
Coordinate rotation LONPOLEa LONPna LONPna
Coordinate rotation LATPOLEa LATPna LATPna
Coordinate epoch EQUINOXa EQUIna EQUIna
Coordinate epoch3 EPOCH EPOCH EPOCH

Reference frame RADECSYSRADECSYS4 RADESYSa RADEna RADEna
Line rest frequency (Hz) RESTFREQ4 RESTFRQa RFRQna RFRQna
Line rest vacuum wavelength (m) RESTWAVa RWAVna RWAVna
Spectral reference frame SPECSYSa SPECna SPECna
Spectral reference frame SSYSOBSa SOBSna SOBSna
Spectral reference frame SSYSSRCa SSRCna SSRCna
Observation X (m) OBSGEO-X5 OBSGXn OBSGXn
Observation Y (m) OBSGEO-Y5 OBSGYn OBSGYn
Observation Z (m) OBSGEO-Z5 OBSGZn OBSGZn
Radial velocity (m s−1) VELOSYSa VSYSna VSYSna
Redshift of source ZSOURCEa ZSOUna ZSOUna
Angle of true velocity VELANGLa VANGna VANGna

Date-time related keywords (see Sect.9)

Date of HDU creation DATE

Date/time of observation DATE-OBS DOBSn DOBSn
MJD-OBS MJDOBn MJDOBn
BEPOCH

JEPOCH

Average date/time of observation DATE-AVG DAVGn DAVGn
MJD-AVG MJDAn MJDAn

Start date/time of observation DATE-BEG

MJD-BEG

TSTART

End date/time of observation DATE-END

MJD-END

TSTOP

Net exposure duration XPOSURE Wall clock
Wall-clockexposure duration TELAPSE

Time scale TIMESYS CTYPEia iCTYPn iCTYna TCTYPn TCTYna
Time zero-pointzero point(MJD) MJDREF6

Time zero-pointzero point(JD) JDREF6

Time zero-pointzero point(ISO) DATEREF

Reference position TREFPOS TRPOSn TRPOSn
Reference direction TREFDIR TRDIRn TRDIRn
SolarsystemSystemephemeris PLEPHEM

Time unit TIMEUNIT CUNITia iCUNIn iCUNna TCUNIn TCUNna
Time offset TIMEOFFS

Time absolute error TIMSYER CSYERia iCSYEn iCSYna TCSYn TCSYna
Time relative error TIMRDER CRDERia iCRDEn iCRDna TCRDn TCRDna
Time resolution TIMEDEL

Time location in pixel TIMEPIXR

Phase axisPhase-axiszero point CZPHSia iCZPHn iCZPna TCZPHn TCZPna
Phase axisPhase-axisperiod CPERIia iCPERn iCPRna TCPERn TCPRna

34

D
R

A
FT

35

Table 22 (continued)

Notes.The indicesj andi are pixel and intermediate-world-coordinate axis numbers, respectively. Within a table, the indexn refers to a column
number, andmrefers to a coordinate parameter number. The indexk also refers to a column number. The indicatora is either blank (for the primary
coordinate description) or a characterA throughZ that specifies the coordinate version. See the text.
(1) CROTAi form is deprecated but still in use. Itmust notbe used withPC i j, PV i m, andPS i m. (2) PCi j andCDi j forms of the transformation matrix
are mutually exclusive, andmust notappear together in the same HDU.(3) EPOCH is deprecated. UseEQUINOX instead.(4) These eight-character
keywords are deprecated; the seven-character forms, whichcan include an alternate version code letter at the end,shouldbe used instead.(5) For
the purpose of time reference position, geodetic latitude/longitude/elevationOBSGEO-B, OBSGEO-L, OBSGEO-H or an orbital-ephemeris keyword
OBSORBIT can be also used (see Sect. 9.2.3).(6) [M]JDREF can be split in integer and fractional values[M]JDREFI and[M]JDREFF as explained
in Sect. 9.2.2.

coordinate Axesi. ThePCi j matrixmust notmust notbe sin-
gular.

CDi j – [floating point; defaults:0.00.0, but see below].
Linear transformation matrix (with scale) betweenpixel axes
Pixel Axes j andintermediate coordinate axesIntermediate-
coordinate Axesi. This nomenclature is equivalent toPCi j
whenCDELTi is unity. TheCDi j matrix must notmust notbe
singular. Note that theCDi j formalism is an exclusive al-
ternative toPCi j, and theCDi j and PCi j keywordsmust
notmust notappear together within an HDU.

In addition to the restrictions noted above, if anyCDi j key-
words are present in the HDU, all other unspecifiedCDi j key-
wordsshallshalldefault to zero. If noCDi j keywords are present
then the headershallshall be interpreted as being inPCi j form
whether or not anyPCi j keywords are actually present in the
HDU.

Some non-linear algorithms that describe the transforma-
tion between pixel andintermediate coordinateintermediate-
coordinateaxes require parameter values. A few non-linear al-
gorithms also require character-valued parameters, e.g.,table
lookups require the names of the table extension and the columns
to be used. Where necessary parameter valuesmustmustbe spec-
ified via the following keywords: .

PVi m – [floating point]. Numeric parameter values for
intermediate world coordinate axisIntermediate-world-
coordinate Axisi, wherem is the parameter number. Leading
zerosmust notmust notbe used, andm may mayhave only
values in the range 0 through 99, and that are defined for the
particular non-linear algorithm.

PSi m – [string]. Character-valued parameters forintermediate
world coordinate axisIntermediate-world-coordinate Axisi,
where m is the parameter number. Leading zerosmust
notmust notbe used, andm may may have only values in
the range 0 through 99, and that are defined for the particular
non-linear algorithm.

The following keywords, while not essential for a complete
specification of an image WCS, can be extremely useful for read-
ers to interpret the accuracy of the WCS representation of the
image.

CRDERi – [floating point; default:0.00.0]. Random error in
coordinateCoordinatei, whichmustmustbe non-negative.

CSYERi – [floating point; default:0.00.0]. Systematic error in
coordinateCoordinatei, whichmustmustbe non-negative.

These valuesshouldshouldgive a representative average value
of the error over the range of the coordinate in the HDU. The
total error in the coordinates would be given by summing the
individual errors in quadrature.

8.2.1. Alternative WCS axis descriptions

In some cases it is useful to describe an image with more than
one coordinate type12. Alternative WCS descriptionsmaymaybe
added to the header by adding the appropriate sets of WCS key-
words, and appending to all keywords in each set an alphabetic
code in the rangeAthroughZA throughZ. Keywords that may be
used in this way to specify a coordinate system version are in-
dicated in Table 22 with the suffix a. All implied keywords with
this encoding arereserved keywords, andmustonly mustonlybe
used inFITSFITSHDUs as specified in this Standard. The axis
numbersmustmustlie in the range 1 through 99, and the coor-
dinate parametermmustmustlie in the range 0 through 99, both
with no leading zeros.

Theprimaryversion of the WCS description is that specified
with aa as the blank character13. Alternative axis descriptions
are optional, butmust notmust notbe specified unless the pri-
mary WCS description is also specified. If an alternative WCS
description is specified, all coordinate keywords for that version
mustmustbe given even if the values do not differ from those of
the primary version. Rules for the default values of alternative
coordinate descriptions are the same as those for the primary de-
scription. The alternative descriptions are computed in the same
fashion as the primary coordinates. The type of coordinate de-
pends on the value ofCTYPEia, and may be linear in one of the
alternative descriptions and non-linear in another.

The alternative version codes are selected by theFITSFITS
writer; there is no requirement that the codes be used in alpha-
betic sequence, nor that one coordinate version differ in its pa-
rameter values from another. An optional keywordWCSNAMEa is
also defined to name, and otherwise document, the various ver-
sions of WCS descriptions: .

WCSNAMEa – [string; default foraa: ' ' (i.e., blank, for the
primary WCS, else a characterAthroughZA throughZ that
specifies the coordinate version]. Name of theworld coordi-
nateworld-coordinatesystem represented by the WCS key-
words with the suffix aa. Its primary function is to provide
a means by which to specify a particular WCS if multiple
versions are defined in the HDU.

12 Examples include the frequency, velocity, and wavelength along a
spectral axis (only one of which, of course, could be linear), or the po-
sition along an imaging detector in both meters and degrees on the sky.

13 There are a number of keywords (e.g.ijPCna) where theaa could
be pushed off the 8-chareight-characterkeyword name for plausible
values ofii, jj, kk, nn, andmm. In such casesaa is still said to be ‘blank’
although it is not the blank character.

35

D
R

A
FT

36

Table 23: Reservedcelestial coordinate algorithmcelestial-coordinate-algorithmcodes.

Default
Code φ0 θ0 Properties1 Projection name

Zenithal (azimuthal) projections
AZP 0◦ 90◦ Sect. 5.1.1 Zenithal perspective
SZP 0◦ 90◦ Sect. 5.1.2 Slant zenithal perspective
TAN 0◦ 90◦ Sect. 5.1.3 Gnomonic
STG 0◦ 90◦ Sect. 5.1.4 Stereographic
SIN 0◦ 90◦ Sect. 5.1.5 Slant orthographic
ARC 0◦ 90◦ Sect. 5.1.6 Zenithal equidistant
ZPN 0◦ 90◦ Sect. 5.1.7 Zenithal polynomial
ZEA 0◦ 90◦ Sect. 5.1.8 Zenithal equal-area
AIR 0◦ 90◦ Sect. 5.1.9 Airy

Cylindrical projections
CYP 0◦ 0◦ Sect. 5.2.1. Cylindrical perspective
CEA 0◦ 0◦ Sect. 5.2.2 Cylindrical equal area
CAR 0◦ 0◦ Sect. 5.2.3 Plate carrée
MER 0◦ 0◦ Sect. 5.2.4 Mercator

Pseudo-cylindrical and related projections
SFL 0◦ 0◦ Sect. 5.3.1 Samson-Flamsteed
PAR 0◦ 0◦ Sect. 5.3.2 Parabolic
MOL 0◦ 0◦ Sect. 5.3.3 Mollweide
AIT 0◦ 0◦ Sect. 5.3.4 Hammer-Aitoff

Conic projections
COP 0◦ θa Sect. 5.4.1 Conic perspective
COE 0◦ θa Sect. 5.4.2 Conic equal-area
COD 0◦ θa Sect. 5.4.3 Conic equidistant
COO 0◦ θa Sect. 5.4.4 Conic orthomorphic

Polyconic and pseudoconic projections
BON 0◦ 0◦ Sect. 5.5.1 Bonne’s equal area
PCO 0◦ 0◦ Sect. 5.5.2 Polyconic

Quad-cube projections
TSC 0◦ 0◦ Sect. 5.6.1 Tangential spherical cube
CSC 0◦ 0◦ Sect. 5.6.2 COBE quadrilateralized spherical cube
QSC 0◦ 0◦ Sect. 5.6.3 Quadrilateralized spherical cube

HEALPix grid projection
HPX 0◦ 0◦ Sect. 62 HEALPix grid

(1) Refer to the indicated section in Calabretta & Greisen (2002) for a detailed description.(2) This projection is defined in Calabretta & Roukema
(2007).

8.3. Celestial coordinate system Celestial-coordinate-system
representations

The conversion from intermediate world coordinates (x, y) in the
plane of projection to celestial coordinates involves two steps: a
spherical projection to native longitude and latitude (φ, θ), de-
fined in terms of a convenient coordinate system (i.e.,native
spherical coordinates), followed by a spherical rotation of these
native coordinates to the required celestial coordinate system
(α, δ). The algorithm to be used to define the spherical projec-
tion mustmustbe encoded in theCTYPEi keyword as the three-
letter algorithm code, the allowed values for which are speci-
fied in Table 23 and defined in references Calabretta & Greisen
(2002) and Calabretta & Roukema (2007). The targetcelestial
coordinatecelestial-coordinatesystem is also encoded into the
left-most portion of theCTYPEi keyword as the coordinate type.

For the final step, the parameterLONPOLEa must mustbe
specified, which is the native longitude of the celestial pole,φp.
For certain projections (such as cylindricals and conics, which

are less commonly used in astronomy), the additional keyword
LATPOLEa mustmustbe used to specify the native latitude of the
celestial pole. See Calabretta & Greisen (2002) for the transfor-
mation equations and other details.

The accepted celestial coordinatecelestial-coordinate
systems are: the standard equatorial (RA-- and DEC-RA--

and DEC-), and others of the formxLONLON and xLATLAT
for longitude-latitude pairs, wherex is GG for Galactic, EE
for ecliptic, HH for helioecliptic and SS for supergalactic
coordinates. Since the representation ofplanetary, lunar, and
solar coordinateplanetary-, lunar-, and solar-coordinatesystems
could exceed the 26 possibilities afforded by the single character
x, pairs of the formyzLNLN and yzLTmayLT may be used as
well.

RADESYSa – [string; default:’FK4’, ’FK5’, or ’ICRS’’FK4’,
’FK5’, or’ICRS’: see below]. Name of the reference frame
of equatorial or ecliptic coordinates, whose valuemustmust
be one of those specified in Table 24. The default value is

36

D
R

A
FT

37

FK4 ’FK4’ if the value ofEQUINOXa< 1984.0,FK5 if ’FK5’
if ’EQUINOX’a≥ 1984.0, orICRS if ’ICRS’ if ’EQUINOX’a
is not given.

EQUINOXa – [floating point; default: see below]. Epoch of the
mean equator and equinox in years, whose valuemustmust
be non-negative. The interpretation of epoch depends upon
the value ofRADESYSa if present:Besselianif the value is
FK4 or FK4-NO-E’FK4’ or ’FK4-NO-E’, Julian if the value
is FK5; ’FK5’; and not applicableif the value isICRS or
GAPPT’ICRS’ or ’GAPPT’.

EPOCH – [floating point]. This keyword is deprecated and
should notshould notbe used in newFITSFITSfiles. It is re-
served primarily to prevent its use with other meanings. The
EQUINOXEQUINOX keywordshallshallbe used instead. The
value field of this keyword was previously defined to contain
a floating-point number giving the equinox in years for the
celestial coordinatecelestial-coordinatesystem in which po-
sitions are expressed.

DATE-OBS – [floating point]. This reserved keyword is defined
in Sect. 4.4.2.

MJD-OBS – [floating point; default:DATE-OBS if given, other-
wise no default]. Modified Julian Date (JD–− 2,400,000.5)
of the observation, whose value corresponds (by default) to
the start of the observation, unless another interpretation is
explained in the comment field. No specific time system (e.g.
UTC, TAI, etc.) is defined for this or any of the other time-
related keywords. It isrecommendedrecommendedthat the
TIMESYS keyword, as defined in Sect. 9.2.1 be used to spec-
ify the time system. See also Sect. 9.5.

LONPOLEa – [floating point; default:φ0 if δ0 ≥ θ0, φ0 + 180◦

otherwise]. Longitude in the native coordinate system of the
celestial system’s north pole. Normally,φ0 is zero unless a
non-zero value has been set forPVi 1aPVi 1a, which is as-
sociated with thelongitudeaxis. This default applies for all
values ofθ0, includingθ0 = 90◦, although the use of non-
zero values ofθ0 are discouraged in that case.

LATPOLEa – [floating point; default: 90◦, or no default if
(θ0, δ0, φp − φ0) = (0, 0,±90◦)]. Latitude in the native co-
ordinate system of the celestial system’s north pole, or
equivalently, the latitude in thecelestial coordinatecelestial-
coordinatesystem of the native system’s north pole.May
This keywordmay be ignored or omitted in cases where
LONPOLEa completely specifies the rotation to the target ce-
lestial system.

8.4. Spectral coordinate system Spectral-coordinate-system
representations

This section discusses the conversion of intermediate world co-
ordinates to spectral coordinates with common axes such as fre-
quency, wavelength, and apparent radial velocity (represented
here with the coordinate variablesν, λ, or v). The key point for
constructing spectral WCS inFITSFITSis that one of these coor-
dinatesmustmustbe sampled linearly in the dispersion axis; the
others are derived from prescribed, usually non-linear transfor-
mations. Frequency and wavelength axesmaymayalso be sam-
pled linearly in their logarithm.

Following the convention for theCTYPEia keyword, when
i is the spectral axis the first four charactersmustmustspecify
a code for the coordinate type; for non-linear algorithms the
fifth charactermustmustbe a hyphen, and the next three char-

Table 24: Allowed values ofRADESYSa.

Value Definition

’ICRS’ International Celestial Reference System
’FK5’ Mean place, new (IAU 1984) system
’FK4’1 Mean place, old (Bessel-Newcomb) system
’FK4-NO-E’1 Mean place: but without eccentricity terms
’GAPPT’ Geocentric apparent place, IAU 1984 system

(1) New FITSfilesshouldavoid using these older reference systems.

actersmustmustspecify a predefined algorithm for computing
the world coordinates from the intermediate physical coordi-
nates. The coordinate typemustmustbe one of those specified
in Table 25. When the algorithm is linear, the remainder of the
CTYPEia keyword mustmustbe blank. When the algorithm is
non-linear, the3-letter algorithm codemustthree-letter algorithm
codemustbe one of those specified in Table 26. The relation-
ships between the basic physical quantitiesν, λ, andv, as well as
the relationships between various derived quantities are given in
reference Greisen et al. (2006).

The generality of the algorithm for specifying thespectral
coordinatespectral-coordinatesystem and its representation
suggests that some additional description of the coordinate may
be helpful beyond what can be encoded in the first four charac-
ters of theCTYPEia keyword;CNAMEia is reserved for this pur-
pose. Note that this keyword provides a name for an axis in a
particular WCS, while theWCSNAMEa keyword names the partic-
ular WCS as a whole. In order to convert between some form of
radial velocity and either frequency or wavelength, the keywords
RESTFRQa andRESTWAVa, respectively, are reserved.

CNAMEia – [string; default: default:' ' (i.e. a linear, un-
defined axis)].Spectral coordinate description whichmust
notSpectral-coordinate description thatmust notexceed 68
characters in length.

RESTFRQa – [floating point; default: none]. Rest frequency
of the of the spectral feature of interest. The physical unit
mustmustbe Hz.

RESTWAVa – [floating point; default: none]. Vacuum rest wave-
length of the of the spectral feature of interest. The physical
unit mustmustbe m.

One or the other ofRESTFRQa or RESTWAVa shouldshouldbe
given when it is meaningful to do so.

8.4.1. Spectral coordinate Spectral-coordinate reference
frames

Frequencies, wavelengths, and apparent radial velocitiesare al-
ways referred to some selected standard of rest (i.e., reference
frame). While the spectra are obtained they are, of necessity, in
the observer’s rest frame. The velocity correction from topocen-
tric (the frame in which the measurements are usually made)
to standard reference frames (whichmustmustbe one of those
given in Table 27) are dependent on the dot product with time-
variable velocity vectors. That is, the velocity with respect to
a standard reference frame depends upon direction, and the ve-
locity (and frequency and wavelength) with respect to the lo-
cal standard of rest is a function of the celestial coordinate
within the image. The keywordsSPECSYSa andSSYSOBSa are
reserved and, if used,mustmustdescribe the reference frame in
use for thespectral axisspectral-axiscoordinate(s) and the spec-

37

D
R

A
FT

38

Table 25: Reservedspectral coordinatespectral-coordinatetype codes.

Code1 Type Symbol Assoc. variableAssociated Default units
variable

FREQ Frequency ν ν Hz
ENER Energy E ν J
WAVN Wavenumber κ ν m−1

VRAD Radio velocity2 V ν m s−1

WAVE Vacuum wavelength λ λ m
VOPT Optical velocity2 Z λ m s−1

ZOPT Redshift z λ ...
AWAV Air wavelength λa λa m
VELO Apparent radial velocity v v m s−1

BETA Beta factor (v/c) β v ...

(1) Characters 1 through 4 of the value of the keywordCTYPEia. (2) By convention, the ‘radio’ velocity is given byc(ν0 − ν)/ν0 and the ‘optical’
velocity is given byc(λ − λ0)/λ0.

tral reference frame that was held constant during the observa-
tion, respectively. In order to compute the velocities it isneces-
sary to have the date and time of the observation; the keywords
DATE-AVG andMJD-AVG are reserved for this purpose. See also
Sect. 9.5.

DATE-AVG – [string; default: none]. Calendar date of the mid-
point of the observation, expressed in the same way as the
DATE-OBS keyword.

MJD-AVG – [floating point; default: none]. Modified Julian Date
(JD –− 2,400,000.5) of the mid-point of the observation.

SPECSYSa – [string; default: none]. The reference frame in use
for thespectral axisspectral-axiscoordinate(s). Valid values
are given in Table 27.

SSYSOBSa – [string; default:’TOPOCENT’’TOPOCENT’]. The
spectral reference frame that is constant over the range of
the non-spectral world coordinates. Valid values are givenin
Table 27.

The transformation from the rest frame of the observer to a
standard reference frame requires a specification of the location
on Earth14 of the instrument used for the observation in order to
calculate the diurnal Doppler correction due to the Earth’sro-
tation. The location, if specified,shallshall be represented as a
geocentric Cartesian triple with respect to a standard ellipsoidal
geoid at the time of the observation. While the position can of-
ten be specified with an accuracy of a meter or better, for most
purposes positional errors of several kilometers will haveneg-
ligible impact on the computed velocity correction. For details,
see reference Greisen et al. (2006).

OBSGEO-X – [floating point; default: none].X−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinatemustmust
be valid at the epochMJD-AVG or DATE-AVG.

OBSGEO-Y – [floating point; default: none].Y−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinatemustmust
be valid at the epochMJD-AVG or DATE-AVG.

14 The specification of location for an instrument on a spacecraft in
flight requires an ephemeris; keywords that might be required in this
circumstance are not defined here.

Table 26: Non-linear spectral algorithm codes.

Code1 Regularly sampled in Expressed as

F2W Frequency Wavelength
F2V Apparent radial velocity
F2A Air wavelength
W2F Wavelength Frequency
W2V Apparent radial velocity
W2A Air wavelength
V2F Apparent radial vel. Frequency
V2W Wavelength
V2A Air wavelength
A2F Air wavelength Frequency
A2W Wavelength
A2V Apparent radial velocity

LOG Logarithm Any four-letter type code
GRI Detector Any type code from Table 25
GRA Detector Any type code from Table 25
TAB Not regular Any four-letter type code
(1) Characters 6 through 8 of the value of the keywordCTYPEia.

OBSGEO-Z – [floating point; default: none].Z−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinatemustmust
be valid at the epochMJD-AVG or DATE-AVG.

Information on the relative radial velocity between the ob-
server and the selected standard of rest in the direction of the
celestial reference coordinatemaymay be provided, and if so
shallshallbe given by theVELOSYSa keyword. The frame of rest
defined with respect to the emitting source may be represented
in FITSFITS; for this reference frame it is necessary to define
the velocity with respect to some other frame of rest. The key-
wordsSPECSYSa andZSOURCEaare used to document the choice
of reference frame and the value of the systemic velocity of the
source, respectively.

SSYSSRCa – [string; default: none]. Reference frame for the
value expressed in theZSOURCEa keyword to document the
systemic velocity of the observed source. Valuemustmustbe
one of those given in Table 27exceptfor SOURCE’SOURCE’.

VELOSYSa – [floating point; default: none]. Relative radial ve-
locity between the observer and the selected standard of rest
in the direction of the celestial reference coordinate. Units

38

D
R

A
FT

39

Table 27: Spectral reference systems.

Value Definition

’TOPOCENT’ Topocentric
’GEOCENTR’ Geocentric
’BARYCENT’ Barycentric
’HELIOCEN’ Heliocentric
’LSRK’ Local standard of rest (kinematic)
’LSRD’ Local standard of rest (dynamic)
’GALACTOC’ Galactocentric
’LOCALGRP’ Local Group
’CMBDIPOL’ Cosmic microwave backgroundCosmic-microwave-backgrounddipole
’SOURCE’ Source rest frame

Notes.These are the allowed values of theSPECSYSa, SSYSOBSa, and
SSYSSRCa keywords.

mustmustbe m s−1. TheCUNITia keyword is not used for
this purpose since the WCSversionVersiona might not be
expressed in velocity units.

ZSOURCEa – [floating point; default: none]. Radial velocity
with respect to an alternative frame of rest, expressed as a
unitless redshift (i.e., velocity as a fraction of the speedof
light in vacuum). Used in conjunction withSSYSSRCa to
document the systemic velocity of the observed source.

VELANGLa – [floating point; default:+90.+90.]. In the case of
relativistic velocities (e.g., a beamed astrophysical jet) the
transverse velocity component is important. This keyword
may may be used to express the orientation of the space
velocity vector with respect to the plane of the sky. See
Appendix A of reference Greisen et al. (2006) for further de-
tails.

8.5. Conventional coordinate Conventional-coordinate types

The first FITSFITS paper (Wells et al. 1981) listed a number
of ‘suggested values’ for theCTYPEi keyword. Two of these
have the attribute the associated world coordinates can assume
only integer values and that the meaning of these integers is
only defined by convention. The first ‘conventional’ coordinate
is CTYPEia =’COMPLEX’ ’COMPLEX’ to specify that complex
values (i.e., pairs of real and imaginary components) are stored
in the data array (along with an optional weight factor). Thus, the
complex axis of the data array will contain two values (or three if
the weight is specified). By convention, the real component has
a coordinate value of 1, the imaginary component has a coordi-
nate value of 2, and the weight, if any, has a coordinate valueof
3. Table 28 illustrates the required keywords for an array of100
complex values (without weights).

The second conventional coordinate is
CTYPEia =’STOKES’ ’STOKES’ to specify the polariza-
tion of the data. Conventional values, their symbols, and
polarizations are given in Table 29.

9. Representations of time coordinates

Time as a dimension in astronomical data presents challenges
for its representation inFITSFITSfiles. This section formulates
the representation of the time axis, or possibly multiple time
axes, into theWorld Coordinate Systemworld-coordinate sys-
tem(WCS) described in Sect. 8. Much of the basic structure is

Table 28: Examplekeywordskeyword recordsfor a100 element
100-elementarray of complex values.

Keywordrecords

SIMPLE = T

BITPIX = -32

NAXIS = 2

NAXIS1 = 2

NAXIS2 = 100

CTYPE1 = 'COMPLEX'

CRVAL1 = 0.

CRPIX1 = 0.

CDELT1 = 1.

END

Table 29: Conventional Stokes values.

Value Symbol Polarization

1 I ’I’ Standard Stokes unpolarized
2 Q ’Q’ Standard Stokes linear
3 U ’U’ Standard Stokes linear
4 V ’V’ Standard Stokes circular
−1 RR’RR’ Right-right circular
−2 LL ’LL’ Left-left circular
−3 RL ’RL’ Right-left cross-circular
−4 LR ’LR’ Left-right cross-circular
−5 XX ’XX’ X X parallel linear
−6 YY ’YY’ Y Y parallel linear
−7 XY ’XY’ XY XY cross linear
−8 YX ’YX’ YX YXcross linear

employed, while extensions are developed to cope with the dif-
ferences between time and spatial dimensions; notable amongst
these differences is the huge dynamic range, covering the highest
resolution timing relative to the age of theUniverseuniverse.

The precision with which any time stamp conforms to any
conventional time scale is highly dependent on the character-
istics of the acquiring system. The definitions of many conven-
tional time scales vary over their history along with the precision
that can be attributed to any time stamp. The meaning of any
time stamp may be ambiguous if a time scale is used for dates
prior to its definition by a recognized authority, or for dates af-
ter that definition is abandoned. However, common sense should
prevail: the precision in the description of the time coordinate
shouldshouldbe appropriate to the accuracy of the temporal in-
formation in the data.

9.1. Time values

The three most common ways to specify time are: ISO-8601
(ISO 2004b), Julian Date (JD), or Modified Julian Date (MJD
= JD− 2, 400, 000.5; see IAU 1997). Julian Dates are counted
from Julian proleptic calendar date 1 January 4713 BCE at noon,
or Gregorian proleptic calendar date 24 November 4714 BCE,
also at noon. For an explanation of the calendars, see Rots etal.
(2015). Even though it is common to think of certain representa-
tions of time as absolute, time values inFITSFITSfilesshallall
be considered relative: elapsed time since a particular reference
point in time. It may help to view the “absolute” values as merely
relative to a globally accepted zero point. For a discussionof
the precision required to represent time values in floating-point
numbers, see Rots et al. (2015).

39

D
R

A
FT

40

9.1.1. ISO-8601 datetimedatetime strings

FITS FITS datetime strings conform to a subset of ISO-8601
(which in itself does not imply a particular time scale) for several
time-related keywords (Bunclark & Rots 1997), such as. Here
datetimeDATE-xxxx. Here datetimewill be used as a pseudo
data type to indicate its use, although its valuesmustmustbe
written as a character string in’A’ format. The full specification
for the format of thedatetimedatetimestring has been:

CCYY-MM-DD[Thh:mm:ss[.s...]]

All in which all of the time partmaybe omitted (just leaving
the date) or the decimal secondsmaybe omitted. Leadingzeroes
must notzerosmust notbe omitted and timezone designators are
not allowed. This definition is extended to allow five-digit years
with a mandatorysign, in accordance with ISO-8601. That is,
oneshall use either theunsignedfour-digit year format, or the
signedfive-digit year format: shown below.

[±C]CCYY-MM-DD[Thh:mm:ss[.s...]]

Note the following: .

– In counting years, ISO-8601 follows the convention of in-
cludingyear zeroYear Zero. Consequently, for negative year
numbers there is an offset of one from BCE dates, which do
not recognize ayear zero. Thus yearYear Zero. Thus Year1
corresponds to 1 CE,yearYear0 to 1 BCE,yearYear−1 to
2 BCE, and so on.

– The earliest date that may be represented in the
four-digit year format is 0000-01-01T00:00:00

’0000-01-01T00:00:00’ (in the year 1 BCE); the latest
date is9999-12-31T23:59:59’9999-12-31T23:59:59’.
This representation of time is tied to the Gregorian calen-
dar. In conformance with the present ISO-8601:2004(E)
standard (ISO 2004b) dates prior to 1582mustmust be
interpreted according to the proleptic application of the
rules of Gregorius XIII. For dates not covered by that range
the use of Modified Julian Date (MJD) or Julian Date (JD)
numbers or the use of the signed five-digit year format is
recommendedrecommended.

– In the five-digit year format the earliest and latest dates are
-99999-01-01T00:00:00 ’-99999-01-01T00:00:00’

(i.e.,−100 000 BCE) and
+99999-12-31T23:59:59’+99999-12-31T23:59:59’.

– The origin of JD can be written as:
-04713-11-24T12:00:00’-04713-11-24T12:00:00’.

– In time scale UTCthe UTC time scalethe integer part of the
seconds field runs from 00 to 60 (in order to accommodate
leap seconds); in all other time scales the range is 00 to 59.

– The ISO-8601datetimedatetimedata type isnot allowedin
image axis descriptions sinceis requiredimage-axis descrip-
tions sinceCRVAL is requiredto be afloating pointfloating-
pointvalue.

– ISO-8601datetimedatetimedoes not imply the use of any
particular time scale (seeSectionSect.9.2.1).

– As specified by Bunclark & Rots (1997), time zones are ex-
plicitly not supported inFITS FITS and, consequently, ap-
pending the letter‘Z’ to a FITS’Z’ to a FITS ISO-8601
string is not allowed. The rationale for this rule is that its
role in the ISO standard is that of atime zonetime-zone

indicator, not atime scaletime-scaleindicator. As the con-
cept of a time zone is not supported inFITSFITS, the use of
time zonetime-zoneindicator is inappropriate.

9.1.2. Julian and Besselian epochs

In a variety of contextsepochsare provided with astronomical
data. Until 1976 these were commonly based on the Besselian
year (see Sect. 9.3), with standard epochs B1900.0 and B1950.0.
After 1976 the transition was made to Julian epochs based on
the Julian year of 365.25 days, with the standard epoch J2000.0.
They are tied totime scalesthe ET and TDBtime scales, re-
spectively. Note that the Besselian epochs are scaled by thevari-
able length of the Besselian year (see Sect. 9.3 and its cautionary
note, which also applies to this context). The Julian epochsare
easier to calculate, as long as one keeps track of leap days.

9.2. Time coordinate frame

9.2.1. Time scale

Thetime scaledefines the temporal reference frame, and is spec-
ified in the header in one of a few ways, depending upon the con-
text. When recorded as a global keyword, the time scaleshallbe
specified by: the following keyword.

TIMESYS – [string; default: ’UTC’ ’UTC’]. The value field
of this keywordshallcontain a character stringcontain a
character-stringcode for the time scale of the time-related
keywords. Therecommendedrecommendedvalues for this
keyword in Table30 have well defined30 have well-defined
meanings, but other valuesmaybe used. If this keyword is
absent,’UTC’ mustmustbe assumed.

In relevant contexts (e.g., time axes in image arrays, table
columns, or random groups)TIMESYS may be overridden by
a time scale recorded inCTYPEia, its binary tablebinary-table
equivalents, orPTYPEi (see Table 22).

The keywordsTIMESYS, CTYPEia, TCTYPn, andTCTYna or
binary tablebinary-tableequivalentmayassume the values listed
in Table 30. In addition, for backward compatibility, all except
TIMESYS andPTYPEi mayalso assume the value’TIME’ (case-
insensitive), whereupon the time scaleshall be that recorded in
TIMESYS or, in its absence, its default value,’UTC’. As noted
above, local time scales other than those listed in Table 30may
be used, but their useshouldbe restricted to alternate coordi-
nates in order that the primary coordinates will always refer to a
properly recognized time scale.

See Rots et al. (2015), Appendix A, for a detailed discus-
sion of the various time scales. In cases where high-precision
timing is important onemaymayappend a specific realization,
in parentheses, to the values in the table; e.g.,, , ’TT(TAI)’,
’TT(BIPM08)’, ’UTC(NIST)’. Note that linearity is not pre-
served across all time scales. Specifically, if the reference posi-
tion remains unchanged (seeSectionSect.9.2.3), the first ten,
with the exception of’UT1’, are linear transformations of each
other (excepting leap seconds), as areand’TDB’ and’TCB’.
On average’TCB’ runs faster than’TCG’ by approximately
1.6×10−8, but the transformation fromor’TT’ or’TCG’ (which
are linearly related) is to be achieved through a time ephemeris
as provided by Irwin & Fukushima (1999).

The relations between coordinate time scales and their dy-
namical equivalents have been defined as:

40

D
R

A
FT

41

T(TCG)= T(TT) + LG × 86400× (JD(TT) − JD0)
T(TDB) = T(TCB)−LB×86400×(JD(TCB)−JD0)+T DB0,

where:
T is in seconds
LG = 6.969290134× 10−10

LB = 1.550519768× 10−8

JD0 = 2443144.5003725
T DB0 = −6.55× 10−5 s.

Linearity is virtually guaranteed since images and individual ta-
ble columns do not allow more than one reference position to be
associated with them, and since there is no overlap between ref-
erence positions that are meaningful for the first nine time scales
on the one hand, and for the barycentric ones on the other. All
use of thetime scale GMT in FITSGMT time scale inFITS
files shall be taken to have its zero point at midnight, confor-
mant with UT, including dates prior to 1925. For high-precision
timing prior to 1972, see Rots et al. (2015), Appendix A.

Some time scales in use are not listed in Table 30 because
they are intrinsically unreliable or ill-defined. When used, they
shouldbe tied to one of the existing scales with appropriate spec-
ification of the uncertainties; the same is true for free-running
clocks. However, a local time scale such as MET (Mission
Elapsed Time) or OET (Observation Elapsed Time)maybe de-
fined for practical reasons. In those cases the time reference
value (seeSection 9.2.2)shall notSect. 9.2.2)shall notbe ap-
plied to the values, and it is stronglyrecommendedthat such
timescalesrecommendedthat such time scalesbe provided as
alternate time scales, with a defined conversion to a recognized
time scale.

It is useful to note that while UT1 is, in essence, an angle (of
the Earth’s rotation –i.e.,aclock), the others are SI-second coun-
ters (chronometers); UTC, by employing leap seconds, serves as
a bridge between the two types of time scales.

9.2.2. Time reference value

The time reference value isnot requirednot required to be
present in an HDU. However, if the time reference point is spec-
ified explicitly it mustmustbe expressed in one of ISO-8601,
JD, or MJD. These reference valuesmustonly only be applied
to time values associated with one of the recognized time scales
listed in Table 30, and that time scalemustmustbe specified ex-
plicitly or implicitly as explained in Sect. 9.2.1.

The reference point in time, to which all times in the HDU
are relative,shall be specified through one of three keywords:
specified below.

MJDREF – [floating-point]; default:0.00.0] The value field of
this keywordshall contain the value of the reference time in
MJD.

JDREF – [floating-point; default: none] The value field of this
keywordshallcontain the value of the reference time in JD.

DATEREF – [datetime; default: none] The value field of this
keywordshallcontain a character stringcontain a character-
string representation of the reference time in ISO-8601 for-
mat.

MJDREF andJDREF maymay, for clarity or precision reasons, be
split into two keywords holding the integer and fractional parts
separately: .

Table 30: Recognized Time Scale Values

Value Meaning

’TAI’ (International Atomic Time):atomic timeatomic-
time standard maintained on the rotating geoid

’TT’ (Terrestrial Time; IAU standard): defined on the ro-
tating geoid, usually derived as TAI+ 32.184 s

’TDT’ (Terrestrial Dynamical Time): synonym for TT (dep-
recated)

’ET’ (Ephemeris Time): continuous with TT;should not
should notbe used for data taken after 1984-01-01

’IAT’ synonym for TAI (deprecated)
’UT1’ (Universal Time): Earth rotation time
’UTC’ (Universal Time, Coordinated; default): runs syn-

chronously with TAI, except for the occasional in-
sertion of leap seconds intended to keep UTC within
0.9 s of UT1; as of2015 -07-012015-07-01UTC =
TAI − 36 s

’GMT’ (Greenwich Mean Time): continuous with UTC; its
use is deprecated for dates after 1972-01-01

UT()1 UT()1 (Universal Time, with qualifier): for high-precision
use ofradio signalradio-signaldistributions between
1955 and 1972; see Rots et al. (2015), Appendix A

’GPS’ (Global Positioning System): runs (approximately)
synchronously with TAI; GPS≈ TAI − 19 s

’TCG’ (Geocentric Coordinate Time): TT reduced to the
geocenter, corrected for the relativistic effects of
the Earth’s rotation and gravitational potential; TCG
runs faster than TT at a constant rate

’TCB’ (Barycentric Coordinate Time): derived from TCG
by a4-dimensionalfour-dimensionaltransformation,
taking into account the relativistic effects of the grav-
itational potential at the barycenter (relative to that
on the rotating geoid) as well as velocitytime dila-
tion time-dilationvariations due to the eccentricity
of the Earth’s orbit, thus ensuring consistency with
fundamental physical constants; Irwin & Fukushima
(1999) provide a time ephemeris

’TDB’ (Barycentric Dynamical Time): runs slower than
TCB at a constant rate so as to remain approximately
in step with TT; runs therefore quasi-synchronously
with TT, except for the relativistic effects intro-
duced by variations in the Earth’s velocity relative
to the barycenter. When referring to celestial ob-
servations, a pathlength correction to the barycenter
may be needed, which requires the Time Reference
Direction used in calculating the pathlength correc-
tion.

’LOCAL’ for simulation data and for free-running clocks.

1Specific realization codesmaybe appended to these values, in
parentheses; see the text. For a more-detailed discussion of time
scales, see Rots et al. (2015), Appendix A.

MJDREFI– [integer; default:00] The value field of this keyword
shallcontain the integer part of reference time in MJD.

MJDREFF – [floating-point; default:0.00.0] The value field of
this keywordshall contain the fractional part of reference
time in MJD.

JDREFI – [integer; default: none] The value field of this key-
wordshallcontain the integer part of reference time in JD.

JDREFF – [floating-point; default: none] The value field of this
keywordshallcontain the fractional part of reference time in
JD.

41

D
R

A
FT

42

If [M]JDREF and both[M]JDREFI and [M]JDREFF are
present, the integer and fractional valuesshallshall have prece-
dence over the single value. If the single value is present with one
of the two parts, the single valueshallshall have precedence. In
the following,MJDREFandJDREF refer to their literal meaning or
the combination of their integer and fractional parts. If a header
contains more than one of these keywords,JDREF shall have
precedence overDATEREF and MJDREF shall have precedence
over both the others. If none of the three keywords is present,
there is no problem as long as all times in the HDU are expressed
in ISO-8601; otherwiseMJDREF =0.0 must 0.0 must be as-
sumed. IfTREFPOS =’ ’ (Section 9.2.3)’CUSTOM’ (Sect. 9.2.3),
it is legitimate for none of thereference timereference-time
keywords to be present, as one may assume the data are from
a simulation. Note that thevalueof the reference time has global
validity for all time values, but it does not have a particular time
scale associated with it.

9.2.3. Time reference position

An observation is an event in space-time. The reference position
specifies the spatial location at which the time is valid, either
where the observation was made or the point in space for which
light-time corrections have been applied. When recorded asa
global keyword, the time reference positionshall be specified
by : the following keyword.

TREFPOS – [string; default:’TOPOCENTER’’TOPOCENTER’].
The value field of this keywordshallcontain a character
string contain a character-stringcode for the spatial loca-
tion at which the observation time is valid. The valueshould
be one of those given in Table 31. This keywordshallapply
to time coordinateapply to time-coordinateaxes in images
as well.

In binary tables, different columnsmayrepresent completely
different Time Coordinate Frames. However, each column can
have only one time reference position, thus guaranteeing linear-
ity (seeSectionSect.9.2.1).

TRPOSn– [string; default:’TOPOCENTER’’TOPOCENTER’] The
value field of this keywordshallcontain a character string
contain a character-stringcode for the spatial location at

which the observation time is valid. This table keywordshall
overrideTREFPOS.

The reference position valuemay be a standard location
(such asor’GEOCENTER’ or’TOPOCENTER’) or a point in space
defined by specific coordinates. In the latter case one shouldbe
aware that a (3-D) spatial coordinatethree-dimensional) spatial-
coordinateframe needs to be defined that is likely to be different
from the frame(s)that with which the data are associatedwith.
Note that’TOPOCENTER’ is only moderately informative if no
observatory location is provided or indicated. The commonly
allowed standard values are shown in Table 31. Note that for
the gaseous planets the barycenters of their planetary systems,
including satellites, are used for obvious reasons. While it is
preferable to spell the location names out in full, in order to be
consistent with the practice of Greisen et al. (2006) the values
are allowed to be truncated to eight characters. Furthermore, in
order to allow for alternative spellings, only the first three char-
acters of all these valuesshall be considered significant. The
value of the keywordshallbe case-sensitive.

Table 31: Standard Time Reference Position Values

Value1 Meaning

’TOPOCENTER’ Topocenter: the location from where the ob-
servation was made (default)

’GEOCENTER’ Geocenter
’BARYCENTER’ Barycenter of the Solar System
’RELOCATABLE’ Relocatable: to be used for simulation data

only
’CUSTOM’ A position specified by coordinates that is

not the observatory location

Less-common, but allowed standard values

’HELIOCENTER’ Heliocenter
’GALACTIC’ Galactic center

’EMBARYCENTER’ Earth-Moon barycenter
’MERCURY’ Center of Mercury

’VENUS’ Center of Venus
’MARS’ Center of Mars

’JUPITER’ Barycenter of the Jupiter system
’SATURN’ Barycenter of the Saturn system
’URANUS’ Barycenter of the Uranus system

’NEPTUNE’ Barycenter of the Neptune system

Notes.(1)Recognized values forTREFPOS, TRPOSn; only the first three
characters of the values are significant and Solar System locations are
as specified in the ephemerides.

The reader is cautioned that time scales and reference posi-
tions cannot be combined arbitrarily if one wants a clock that
runs linearly atTREFPOS. Table 32 provides a summary of com-
patible combinations.’BARYCENTER’ shouldonly be used in
conjunction with time scalesand’TDB’ and’TCB’, andshould
be the only reference position used with these time scales.
With proper care, , and ’GEOCENTER’, ’TOPOCENTER’, and
’EMBARYCENTER’ are appropriate for the first ten time scales
in Table 30. However, relativistic effects introduce a (generally
linear) scaling in certain combinations; highly eccentricspace-
craft orbits are the exceptions. Problems will arise when using
a reference position on anothersolar systemSolar Systembody
(including’HELIOCENTER’). Thereforeit is recommended, it is
recommendedto synchronize the local clock with one of the time
scales defined on the Earth’s surface,, , , or’TT’, ’TAI’, ’GPS’,
or ’UTC’ (in the last case: beware of leap seconds). This is com-
mon practice for spacecraft clocks. Locally, such a clock will
not appear to run at a constant rate, because of variations inthe
gravitational potential and in motions with respect to Earth, but
the effects can be calculated and are probably small compared
with errors introduced by the alternative: establishing a local
time standard.

In order to provide a complete description,’TOPOCENTER’

requires the observatory’s coordinates to be specified. There
are three options:(a)(a) the ITRS Cartesian coordinates defined
in Sect. 8.4.1 (OBSGEO-X, OBSGEO-Y, OBSGEO-Z), which are
strongly preferred; (b)(b) a geodetic latitude/longitude/elevation
triplet (defined below); or(c)(c)a reference to anorbit ephemeris
orbit-ephemerisfile. A set of geodetic coordinates is recognized
: by the following keywords.

OBSGEO-B – [floating-point] The value field of this keyword
shall contain the latitude of the observation in deg, with
North positive.

42

D
R

A
FT

43

Table 32: Compatibility of Time Scales and Reference Positions

Reference Time scale1

Position TT, TDT TCG TDB TCB LOCAL
TAI, IAT

GPS
UTC, GMT

’TOPOCENTER’ t ls
’GEOCENTER’ ls c
’BARYCENTER’ ls c
’RELOCATABLE’ c
Other2 re re

Notes.(1)Legend (combination isnot recommendedif there is no entry);
c: correct match; reference position coincides with the spatial origin of
the space-time coordinates;t: correct match on Earth’s surface, other-
wise usually linear scaling;ls: linear relativistic scaling;re: non-linear
relativistic scaling.(2)All other locations in the Solar System.

OBSGEO-L – [floating-point] The value field of this keyword
shall contain the longitude of the observation in deg, with
East positive.

OBSGEO-H – [floating-point] The value field of this keyword
shall contain the altitude of the observation in meters.

An orbital ephemerisorbital-ephemerisfile can instead be
specified: .

OBSORBIT – [string] The value field of this keywordshall
contain the character-string URI, URL, or the name of an
orbit ephemerisorbit-ephemerisfile.

Beware that only one set of coordinates is allowed in a given
HDU. Cartesian ITRS coordinates are the preferred coordinate
system; however, when using these in an environment requir-
ing nanosecond accuracy, one should take care to distinguish
between meters consistent with TCG or with TT. If one uses
geodetic coordinates, the geodetic altitudeOBSGEO-H is mea-
sured with respect to the IAU 1976 ellipsoid, which is defined
as having a semi-major axis of 6 378 140 m and an inverse flat-
tening of 298.2577.

A non-standard location indicated bymust’CUSTOM’ must
be specified in a manner similar to the specification of the obser-
vatory location (indicated by’TOPOCENTER’). One should be
careful with the use of the’CUSTOM’ value and not confuse it
with ’TOPOCENTER’, as use of the latter imparts additional in-
formation on the provenance of the data.

ITRS coordinates (X,Y,ZX,Y,Z) may be derived from geode-
tic coordinates (L,B,HL,B,H) through:

X = (N(B) + H) cos(L) cos(B)

Y = (N(B) + H) sin(L) cos(B)

Z = (N(B)(1− e2) + H) sin(B)

where:

N(B) =
a

√

1− e2 sin2(B)

e2 = 2 f − f 2

a is the semi-major axis, andf is the inverse of the in-
verse flattening. Nanosecond precision in timing requires that
OBSGEO-[BLH] be expressed in a geodetic reference frame de-
fined after 1984 in order to be sufficiently accurate.

9.2.4. Time reference direction

If any pathlength corrections have been applied to the time
stamps (i.e., if the reference position is not’TOPOCENTER’ for
observational data), the reference direction that is used in calcu-
lating the pathlength delayshouldbe provided in order to main-
tain a proper analysis trail of the data. However, this is useful
only if there is also information available on the location from
where the observation was made (the observatory location).The
direction will usually be provided in aspatial coordinatespatial-
coordinateframe that is already being used for the spatial meta-
data, although it is conceivable that multiple spatial frames are
involved, e.g., spherical ICRS coordinates for celestial positions,
and Cartesian FK5 for spacecraft ephemeris. The time reference
direction does not by itself provide sufficient information to per-
form a fully correct transformation; however, within the context
of a specific analysis environment it should suffice.

The uncertainty in the reference direction affects the errors
in the time stamps. A typical example is provided by barycentric
corrections where the time error is related to the position error:

terrerr(ms)≤ 2.4 poserrerr(arcsec).

The reference direction is indicated through a reference tospe-
cific keywords. These keywordsmayhold the reference direction
explicitly or (for data inBINTABLEsBINTABLE extensions) in-
dicate columns holding the coordinates. In event lists where the
individual photons are tagged with a spatial position, those co-
ordinatesmayhave been used for the reference direction and the
reference will point to the columns containing these coordinate
values. The time reference directionshall be specified by the
keyword:following keyword.

TREFDIR – [string] The value field of this keywordshall
contain a character string composed of: the name of the key-
word containing the longitudinal coordinate, followed by a
comma, followed by the name of the keyword containing the
latitudinal coordinate. This reference directionshallapply to
time coordinateapply to time-coordinateaxes in images as
well.

In binary tables, different columnsmayrepresent completely
different Time Coordinate Frames. However, also in that situ-
ation the condition holds that each column can have only one
Time Reference Direction. Hence, the following keywordmay
mayoverrideTREFDIR: .

TRDIRn – [string] The value field of this keywordshallcontain
a character string consisting of the name of the keyword or
column containing the longitudinal coordinate, followed by
a comma, followed by the name of the keyword or column
containing the latitudinal coordinate. This reference direc-
tion shallapply to time coordinateapply to time-coordinate
axes in images as well.

9.2.5. Solar System Ephemerisephemeris

If applicable, the Solar System ephemeris used for calculating
pathlength delaysshouldbe identified. This is particularly perti-
nent when the time scale isor’TCB’ or’TDB’. The ephemerides
that are currently most often used are those from JPL (2014a,b).

The Solar System ephemeris used for the data (if required)
shallbe indicated by the following keyword: .

43

D
R

A
FT

44

PLEPHEM – [string; default: ’DE405’] The value field of
this keywordshall contain a character string thatshould
represent a recognized designation for the Solar System
ephemeris. Recognized designations for JPL Solar System
ephemerides that are often used are listed in Table 33.

Table 33: Validsolar systemSolar System ephemerides

Value Reference

’DE200’ Standish (1990); considered obsolete, but still in use
’DE405’ Standish (1998); default
’DE421’ Folkner, et al. (2009)
’DE430’ Folkner, et al. (2014)
’DE431’ Folkner, et al. (2014)
’DE432’ Folkner, et al. (2014)

Future ephemerides in this seriesshall be accepted and rec-
ognized as they are released. Additional ephemerides designa-
tionsmaymaybe recognized by the IAUFWG upon request.

9.3. Time unit

When recorded as a global keyword, the unit used to express
timeshall be specified by: the following keyword.

TIMEUNIT – [string; default:’s’’s’] The value field of this
keyword shall contain a character string that specifies the
time unit; the valueshouldbe one of those given in Table 34.
This time unitshallapply to all time instances and durations
that do not have an implied time unit (such as is the case
for JD, MJD, ISO-8601, J and B epochs). If this keyword is
absent,’s’ shallbe assumed.

In an appropriate context, e.g., when an image has a time axis,
TIMEUNIT may be overridden by theCUNITia keywords and
theirbinary tablebinary-tableequivalents (see Table 22).

The specification of the time unit allows the values defined
in Greisen & Calabretta (2002), shown in Table 34, with the ad-
dition of the century. See also Sect. 4.3 for generalities about
units.

Table 34: Recommended time units

Value Definition

’s’ second (default)
’d’ day (= 86,400 s)
’a’ (Julian) year (= 365.25 d)
’cy’ (Julian) century (= 100 a)

The following values are also acceptable.

’min’ minute (= 60 s)
’h’ day (= 86,400 s)
’yr’ (Julian) year (= ’a’ = 365.25

d)
’ta’ tropical year
’Ba’ Besselian year

The use ofand’ta’ and’Ba’ is not encouraged, but there
are data and applications that require the use of tropical years
or Besselian epochs (seeSectionSect.9.1.2). The length of the

tropical year,’ta’, in days is:

1 ta = 365.24219040211236− 0.00000615251349T

−6.0921× 10−10 T2 + 2.6525× 10−10 T3 (d)

whereT is in Julian centuries since J2000, using time scale TDB.
The length of the Besselian year in days is:

1Ba= 365.2421987817− 0.00000785423T (d)

whereT is in Julian centuries since J1900, using time scale ET,
although for these purposes the difference with TDB is negligi-
ble.

Readers are cautioned that the subject of tropical and
Besselian years presents a particular quandary for the specifi-
cation of standards. The expressions presented here are themost
accurate available, but are applicable for use when creating data
files (which is strongly discouraged), rather than for interpreting
existing data that are based upon these units.But However,there
is no guarantee that the authors of the data applied these particu-
lar definitions. Users are therefore advised to pay close attention
and attempt to ascertain what the authors of the data really used.

9.4. Time offset, binning, and errors

9.4.1. Time offset

A uniform clock correctionmaymaybe applied in bulk with the
following single keyword.

TIMEOFFS – [floating-point; default:0.00.0] The value field
of this keywordshall contain the value of the offset in time
that shall be added to the reference time, given by one of:
MJDREF, JDREF, or DATEREF.

The time offset may serve to set a zero-point offset to a rela-
tive time series, allowing zero-relative times, or just higher pre-
cision, in the time stamps. Its default value is zero. The value of
this keyword affects the values ofTSTART, andTSTOP, as well
as any time pixel values in a binary table. However, this con-
structmayonly be used in tables andmust notmust notbe used
in images.

9.4.2. Time resolution and binning

The resolution of the time stamps (the width of the time sam-
pling function)shall be specified by: the following keyword.

TIMEDEL – [floating-point] The value field of this keyword
shall contain the value of the time resolution in the units
of TIMEUNIT. This construct, when present,shall onlyshall
only be used in tables andmust notmust notbe used in im-
ages.

In tables this may, for instance, be the size of the bins fortime
seriestime-seriesdata or the bit precision of thetime stamptime-
stampvalues.

When data are binned in time bins (or, as a special case,
events are tagged with a time stamp of finite precision) it is im-
portant to know to the position within the bin (or pixel) to which
the time stamp refers. Coordinate values normally correspond
to the center of all pixels (see Sect. 8.2); yet clock readings are
effectively truncations, not rounded values, and therefore corre-
spond to the lower bound of the pixel.

44

D
R

A
FT

45

TIMEPIXR – [floating-point; default:0.50.5] The value field of
this keywordshall contain the value of the position within
the pixel, from 0.0 to 1.0, to which the time-stamp refers.
This construct, when present,shall onlyshallonlybe used in
tables andmust notmust notbe used in images.

A value of 0.0 0.0 may be more common in certain contexts,
e.g. when truncated clock readings are recorded, as is the case
for almost all event lists.

9.4.3. Time errors

The absolute time error is the equivalent of a systematic error,
shallbe given by the following keyword: .

TIMSYER – [floating-point; default:0.0.] The value field of this
keywordshallcontain the value of the absolute time error, in
units ofTIMESYS.

This keywordmaybe overridden, in appropriate context (e.g.,
time axes in image arrays or table columns; by theCSYERia key-
words and theirbinary tablebinary-tableequivalents (see Table
22).

The relative time error specifies accuracy of the time stamps
relative to each other. This error will usually be much smaller
than the absolute time error. This error is equivalent to a random
error, andshallbe given by the following keyword: .

TIMRDER – [floating-point; default:0.0.] The value field of this
keywordshallcontain the value of the relative time error, i.e.
the random error between time stamps, in units ofTIMESYS.

This keywordmaybe overridden, in appropriate context (e.g.,
time axes in image arrays or table columns; by theCRDERia key-
words and theirbinary tablebinary-tableequivalents (see Table
22).

9.5. Global time keywords

The time keywords in Table 35 are likely to occur in headers
even when there are no time axes in the data. Except forDATE,
they provide the top-level temporal bounds of the data in the
HDU. As noted before, they may also be implemented as table
columns. Keywords not previously described are defined below;
all are included in the summary Table 22.

DATE-BEG – [datetime] The value field of this keywordshall
contain a character string in ISO-8601 format that specifies
the start time of data acquisition in the time system specified
by theTIMESYS keyword.

DATE-END – [datetime] The value field of this keywordshall
contain a character string in ISO-8601 format that specifies
the stop time of data acquisition in the time system specified
by theTIMESYS keyword.

MJD-BEG – [floating-point] The value field of this keyword
shallcontain the value of the MJD start time of data acquisi-
tion in the time system specified by theTIMESYS keyword.

MJD-END – [floating-point] The value field of this keyword
shallcontain the value of the MJD stop time of data acquisi-
tion in the time system specified by theTIMESYS keyword.

TSTART – [floating-point] The value field of this keywordshall
contain the value of the start time of data acquisition in units

Table 35: Keywords for global time values

Keyword Notes

DATE Defined in Sect. 4.4.2.
DATE-OBS Defined in Sect. 4.4.2. Keyword value was not re-

stricted to mean the start time of an observation, and
has historically also been used to indicate some form
of mean observing date and time. To avoid ambiguity
useDATE-BEG instead.

DATE-BEG Defined in this section.
DATE-AVG Defined in Sect. 8.4.1. The method by which aver-

age times should be calculated is not defined by this
Standard.

DATE-END Defined in this section.
MJD-OBS Defined in Sect. 8.3.
MJD-BEG Defined in this section.
MJD-AVG Defined in Sect. 8.4.1. The method by which aver-

age times should be calculated is not defined by this
Standard.

MJD-END Defined in this section.
TSTART Defined in this section.
TSTOP Defined in this section.

of TIMEUNIT, relative toMJDREF, JDREF, or DATEREF and
TIMEOFFS, in the time system specified by theTIMESYS key-
word.

TSTOP – [floating-point] The value field of this keywordshall
contain the value of the stop time of data acquisition in units
of TIMEUNIT, relative toMJDREF, JDREF, or DATEREF and
TIMEOFFS, in the time system specified by theTIMESYS key-
word.

The alternate-axis equivalent keywords for
BINTABLEsBINTABLE extensions, DOBSn, MJDOBn, DAVGn, and
MJDAn, as defined in Table 22, are also allowed. Note that of the
above onlyTSTART andTSTOP are relative to the time reference
value. As in the case of the time reference value (seeSection
Sect.9.2.2), the JD values supersede DATE values, and MJD
values supersede both, in cases where conflicting values are
present.

It should be noted that, although they do not represent global
time values within an HDU, theCRVALia andCDELTia keywords,
and theirbinary tablebinary-tableequivalents (see Table 22),
also represent (binary) time values. They should be handledwith
the same care regarding precision when combining them with the
time reference value, as any other time value.

Finally, Julian and Besselian epochs (seeSections 9.1.2and
Sects. 9.1.2 and9.3) maybe expressed by these two keywords
– to be used with great caution, as their definitions are more
complicated and hence their use more prone to confusion: .

JEPOCH – [floating-point] The value field of this keywordshall
contain the value of the Julian epoch, with an implied time
scale of’TDB’.

BEPOCH – [floating-point] The value field of this keywordshall
contain the value of the Besselian epoch, with an implied
time scale of’ET’.

When these epochs are used as time stamps in a table
column, their interpretation will be clear from the context. When
the keywords appear in the header without obvious context,
theymustmustbe regarded as equivalents ofandDATE-OBS and
MJD-OBS, i.e., with no fixed definition as to what part of the
dataset they referto.

45

D
R

A
FT

46

9.6. Other time coordinate time-coordinate axes

There are a few coordinate axes that are related to time and that
are accommodated in thisstandardStandard: (temporal)phase,
timelag, andfrequency. Phase results from folding a time series
on a given period, and can appear in parallel withtime as an
alternate description of the same axis. Timelag is the coordinate
of cross- and auto-correlation spectra. The temporalfrequency
is the Fourier transform equivalent of time and, particularly, the
coordinate axis of power spectra; spectra where the dependent
variable is the electromagnetic field are excluded here, butsee
Greisen et al. (2006). These coordinate axesshall be specified
by giving CTYPEi and itsbinary tablebinary-tableequivalents
one of the values:, , or’PHASE’, ’TIMELAG’, or’FREQUENCY’.

Timelag units are the regular time units, and the basic unit
for frequency is’Hz’. Neither of these two coordinates is a lin-
ear or scaled transformation of time, and therefore cannot appear
in parallel with time as an alternate description. That is, agiven
vector of values for an observable can be paired with a coordi-
nate vector of time, or timelag, or frequency, but not with more
than one of these; the three coordinates are orthogonal.

Phase can appear in parallel with time as an alternate descrip-
tion of the same axis. Phaseshall be recorded in the following
keywords: .

CZPHSia – [floating-point] The value field of this keywordshall
contain the value of the time at the zero point of a phase axis.
Its unitsmaybe, , or be’deg’, ’rad’, or ’turn’.

CPERIia – [floating-point] The value field of this keyword, if
presentshall contain the value of the period of a phase axis.
This keyword can be used only if the period is a constant; if
that is not the case, this keywordshouldeither be absent or
set to zero.

CZPHSia may may instead appear inbinary tablebinary-table
forms TCZPHn, TCZPna, iCZPHn, and iCZPna. CPERIia may
may instead appear inbinary tablebinary-tableformsTCPERn,
TCPRna, iCPERn, and iCPRna. The Phase, periodphase, period,
and zero pointshall be expressed in the globally valid time ref-
erence frame and unit as defined by the global keywords (or their
defaults) in the header.

9.7. Durations

There is an extensive collection of header keywords that indi-
cate time durations, such as exposure times, but there are many
pitfalls and subtleties that make this seemingly simple concept
treacherous. Because of their crucial role and common use, key-
words are defined below to record exposure and elapsed time.

XPOSURE – [floating-point] The value field of this keyword
shall contain the value for the effective exposure duration
for the data, corrected for dead time and lost time in the units
of TIMEUNIT. If the HDU contains multiple time slices, this
valueshall be the total accumulated exposure time over all
slices.

TELAPSE – [floating-point] The value field of this keyword
shall contain the value for the amount of time elapsed, in
the units ofTIMEUNIT, between the start and the end of the
observation or data stream.

Durationsmust notmust notbe expressed in ISO-8601 for-
mat, but only as actual durations (i.e., numerical values) in the
units of the specified time unit.

Good-Time-Interval (GTI) tables are common for exposures
with gaps in them, particularly photon-event files, as they make
it possible to distinguish time intervals with “no signal de-
tected” from “no data taken.” GTI tables inBINTABLE exten-
sions mustBINTABLE extensionsmust contain two mandatory
columns,andSTART andSTOP, andmaycontain one optional col-
umn, contain oneoptionalcolumn,WEIGHT. The first two define
the interval, the third, with a value between 0 and 1, the quality
of the interval;i.e.,a weight of 0 indicates aBad-Time-Interval.
WEIGHT has a default value of 1. Any time interval not covered
in the tableshallshallbe considered to have a weight of zero.

9.8. Recommended best practices

The following guidelines should be helpful in creating dataprod-
ucts with a complete and correct time representation.

– The presence of the informationalDATE keyword isstrongly
recommendedin all HDUs.

– One or more of the informational keywordsDATE-xxxx
and/or MJD-xxxx shouldbe present in all HDUs whenever a
meaningful value can be determined. This also applies, e.g.,
to catalogs derived from data collected over a well-defined
time range.

– The global keywordTIMESYS is strongly recommended.
– The global keywordsMJDREF or JDREF or DATEREF are

recommendedrecommended.
– The remaining informational and global keywordsshouldbe

present whenever applicable.
– All context-specific keywordsshallbe present as needed and

requiredrequiredby the context of the data.

9.8.1. Global keywords and overrides

For reference to the keywords that are discussed here, see
Table 22. The globally applicable keywords listed insection
Sect.B of the table serve as default values for the correspond-
ing C* andTC* keywords in that same section, but only when
axis and column specifications (including alternate coordinate
definitions) use a time scale listed in Table30 30, or when the
correspondingCTYPE or TTYPE keywords are set to the value
’TIME’. Any alternate coordinate specified in a non-recognized
time scale assumes the value of the axis pixels or the column
cells, optionally modified by applicable scaling and/or reference
value keywords; see alsoSectionSect.9.2.1.

9.8.2. Restrictions on alternate descriptions

An image will have at most one time axis as identified by hav-
ing theCTYPEi value of’TIME’ or one of the values listed in
Table 30. Consequently, as long as the axis is identified through
CTYPEi, there is no need to haveaxis numberaxis-number
identification on the global time-related keywords. It is expressly
prohibited to specify more than one time reference positionon
this axis for alternatetime coordinatetime-coordinateframes,
since this would give rise to complicated model-dependent non-
linear relations between these frames. Hence, time scalesand
(or ’TDB’ and’TCB’ (or ’ET’, to its precision)may may be
specified in the same image, but cannot be combined with any
of the first nine time scales in Table 30; those first nine can be
expressed as linear transformations of each other, too, provided
the reference position remains unchanged. Time scale’LOCAL’

46

D
R

A
FT

47

is by itself, intended for simulations, andshould notshould not
be mixed with any of the others.

9.8.3. Image time axes

SectionSect.8.2 requires keywordsCRVALia to be numeric and
they cannot be expressed in ISO-8601 format. Therefore it is
requiredrequiredthatCRVALia contain the elapsed time in units
of TIMEUNIT or CUNITia, even if the zero point of time is speci-
fied byDATEREF. If the image does not use a matrix for scaling,
rotation, and shear (Greisen & Calabretta 2002),CDELTia pro-
vides the numeric value for the time interval. If thePC form of
scaling, rotation, and shear (Greisen & Calabretta 2002) is used,
CDELTia provides the numeric value for the time interval, and
PCi j, wherei = j = the index of the time axis (in the typical case
of an image cube withaxisAxis 3 being time,i = j = 3) would
take the exact value 1, the default (Greisen & Calabretta 2002).
When theCDi j form of mapping is used,CDi j provides the nu-
meric value for the time interval. If one of the axes is time and the
matrix form is used, then the treatment of thePCi ja (or CDi ja)
matrices involves at least a Minkowsky metric and Lorentz trans-
formations (as contrasted with Euclidean and Galilean).

10. Representations of compressed data

Minimizing data volume is important in many contexts, partic-
ularly for publishers of large astronomical data collections. The
following sections describe compressed representations of data
in FITS images and BINTABLESFITS images andBINTABLE
extensionsthat preserve metadata and allow for full or partial
extraction of the original data as necessary. The resultingFITS
FITS file structure is independent of the specificdata compres-
sion data-compressionalgorithm employed. The implementa-
tion details for some compression algorithms that are widely
used in astronomy are defined in Sect. 10.4, but other com-
pression techniques could also be supported. See theFITS FITS
convention by White et al. (2013) for details of the compression
techniques, but beware that the specifications in this Standard
shallsupersede those in the registered convention.

Compression of FITSCompression ofFITSfiles can be ben-
eficial for sites that store or distribute large quantities of data;
the present section provides a standard framework that addresses
such needs. As implementation of compression/decompression
codes can be quite complex, not allFITS software forreading
and writing softwareFITS is necessarily expected to support
these capabilities. External utilities are available to compress and
uncompress FITSdecompressFITSfiles15.

10.1. Tiled Image Compressionimage compression

The following describes the process for compressing
n−dimensional FITS FITS images and storing the result-
ing byte stream in a variable-length column in aFITS FITS
binary table, and for preserving the image header keywords
in the table header. The general principle is to first divide the
n−dimensional image into a rectangular grid of subimages or
“tiles.” Each tile is then compressed as a block of data, and

15 e.g. fpack/funpack, seehttps://heasarc.gsfc.nasa.gov/
fitsio/fpack/

the resulting compressed byte stream is stored in a row of a
variable lengthvariable-lengthcolumn in aFITS FITS binary
table (seeSectionSect.7.3). By dividing the image into tiles it
is possible to extract anduncompressdecompresssubsections
of the image without having touncompressdecompressthe
whole image. The default tiling pattern treats each row of a
2-dimensionaltwo-dimensionalimage (orhigher dimensional
higher-dimensionalcube) as a tile, such that each tile contains
NAXIS1 pixels. This default may not be optimal for some ap-
plications or compression algorithms, so any other rectangular
tiling pattern may may be defined using keywords that are
defined below. In the case of relatively small images it may
suffice to compress the entire image as a single tile, resulting
in an output binary tablewith containinga single row. In the
case of3-dimensionalthree-dimensionaldata cubes, it may be
advantageous to treat each plane of the cube as a separate tile
if application software typically needs to access the cube on a
plane-by-plane basis.

10.1.1. Required Keywordskeywords

In addition to the mandatory keywords forBINTABLE
BINTABLE extensions (see Sect. 7.3.1) the following keywords
are reserved for use in the header of aFITS binary tableFITS
binary-tableextension to describe the structure of a valid com-
pressedFITSFITS image. All are mandatory.

ZIMAGE – [logical; value’T’T] The value field of this key-
word shall contain the logical value’T’ T to indicate that
theFITS binary tableFITSbinary-tableextension contains a
compressed image, and that logically this extensionshould
be interpreted as an image rather than a table.

ZCMPTYPE – [string; default: none] The value field of this key-
word shall contain a character string giving the name of the
algorithm that was used to compress the image. Only the val-
ues given in Table 36 are permitted; the corresponding algo-
rithms are described in Sect. 10.4. Other algorithms may be
added in the future.

ZBITPIX – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
BITPIX keyword in the uncompressedFITS FITS image.

ZNAXIS – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
NAXIS keyword (i.e., the number of axes) in the uncom-
pressedFITS FITS image.

ZNAXISn – [integer; indexed; default: none) The value field of
these keywordsshallcontain a positive integer that gives the
value of the correspondingNAXISn keywords (i.e., the size
of axisnAxis n) in the uncompressedFITS FITS image.

The comment fields for theBITPIX, NAXIS, and NAXISn
keywords in the uncompressed imageshouldbe copied to the
corresponding fields in theZBITPIX, ZNAXIS, and ZNAXISn
keywords.

10.1.2. Other Reserved Keywordsreserved keywords

The compressed image tilesmustmustbe stored in the binary ta-
ble in the same order that the first pixel in each tile appears in the
FITS FITS image; the tile containing the first pixel in the image

47

https://heasarc.gsfc.nasa.gov/fitsio/fpack/
https://heasarc.gsfc.nasa.gov/fitsio/fpack/

D
R

A
FT

48

mustmustappear in the first row of the table, and the tile contain-
ing the last pixel in the imagemustmustappear in the last row of
the binary table. The following keywords are reserved for use in
describing compressed images stored inBINTABLE BINTABLE

extensions; theymaybe present in the header, and their values
depend upon the type of image compression employed.

ZTILEn – [integer; indexed; default:1 1 for n > 1] The value
field of these keywords (wheren is a positive integer index
that ranges from 1 toZNAXIS) shall contain a positive inte-
ger representing the number of pixels alongaxisnAxis n of
the compressed tiles. Each tile of pixelsmustmustbe com-
pressed separately and stored in a row of a variable-length
vector column in the binary table. The size of each image di-
mension (given byZNAXISn) need not be an integer multiple
of ZTILEn, and if it is not, then the last tile along that dimen-
sion of the image will contain fewer image pixels than the
other tiles. If theZTILEn keywords are not present then the
default “row-by-row” tiling will be assumed, i.e.,ZTILE1
ZTILE1 =ZNAXIS1 ZNAXIS1, and the value of all the other
ZTILEn keywordsmustequal 1.mustequal1.

ZNAMEi – [string; indexed; default: none] The value field
of these keywords (wherei is a positive integer index
starting with 1) shall supply the names of up to 999
algorithm-specific parameters that are needed to compress
or uncompressdecompressthe image. The order of the com-
pression parametersmaybe significant, andmaybe defined
as part of the description of the specific decompression algo-
rithm.

ZVALi – [string; indexed; default: none] The value field of these
keywords (wherei is a positive integer index starting with
1) shall contain the values of up to 999 algorithm-specific
parameters with the same indexi. The value ofZVALi may
mayhave any validFITS FITSdata type.

ZMASKCMP – [string; default: none] The value field of this key-
wordshallcontain the name of the image compression algo-
rithm that was used to compress the optional null-pixel data
mask. This keywordmaymaybe omitted if no null-pixel data
masks appear in the table. See Sect. 10.2.2 for details.

ZQUANTIZ – [string; default:’NO DITHER’] The value field of
this keywordshallcontain the name of the algorithm that was
used to quantize floating-point image pixels into integer val-
ues, which were then passed to the compression algorithm as
discussed further in Sect. 10.2. If this keyword is not present,
the default is to assume that no dithering was applied during
quantization.

ZDITHER0 – [integer; default: none] The value field of this key-
word shall contain a positive integer (that may range from 1
to 10000 inclusive) that gives the seed value for the random
dithering pattern that was used when quantizing the floating-
point pixel values. This keywordmaybe absent if no dither-
ing was applied. See Sect. 10.2 for further discussion.

The following keywords are reserved to preserve a verbatim
copy of thevalue and comment fieldsfor keywords in the orig-
inal uncompressedFITS FITS image that were used to describe
its strructurestructure. These optional keywords, when present,
shallshall be used when reconstructing an identical copy of the
original FITS FITS HDU of the uncompressed image. They
should notshould notappear in the compressed image header

unless the corresponding keywords were present in the uncom-
pressed image.

ZSIMPLE – [logical; value’T’T] The value field of this key-
wordmustmustcontain the value of the originalSIMPLE key-
word in the uncompressed image.

ZEXTEND – [string] The value field of this keywordmustmust
contain the value of the originalEXTEND keyword in the un-
compressed image.

ZBLOCKED – [logical] The value field of this keywordmustmust
contain the value of the originalBLOCKED keyword in the
uncompressed image.

ZTENSION – [string] The value field of this keywordmustmust
contain the originalXTENSION keyword in the uncompressed
image.

ZPCOUNT – [integer] The value field of this keywordmustmust
contain the originalPCOUNT keyword in the uncompressed
image.

ZGCOUNT – [integer] The value field of this keywordmustmust
contain the originalGCOUNT keyword in the uncompressed
image.

ZHECKSUM – [string] The value field of this keywordmustmust
contain the originalCHECKSUM keyword (see Sect. 4.4.2.7) in
the uncompressed image.

ZDATASUM – [string] The value field of this keywordmustmust
contain the originalDATASUM keyword (see Sect. 4.4.2.7) in
the uncompressed image.

The ZSIMPLE, ZEXTEND, and ZBLOCKED keywords must
notmust notbe used unless the original uncompressed image
was contained in the primary array of aFITS FITS file. The
ZTENSION, ZPCOUNT, andZGCOUNT keywordsmust notmust not
be used unless the original uncompressed image was contained
in anIMAGE IMAGE extension.

TheFITSFITSheader of the compressed imagemaycontain
other keywords. If aFITSFITSprimary array orIMAGE IMAGE

extension is compressed using the procedure described here, it
is strongly recommendedthat all the keywords (including com-
ment fields) in the header of the original image, except for the
mandatory keywords mentioned above, be copied verbatim and
in the same order into the header of thebinary tablebinary-table
extension that contains the compressed image. All these key-
words will have the same meaning and interpretation as they did
in the original image, even in cases where the keyword is not nor-
mally expected to occur in the header of abinary tablebinary-
tableextension (e.g., theBSCALE andBZERO keywords, or the
World Coordinate Systemworld-coordinate-systemkeywords
such asCTYPEn, CRPIXn, andCRVALn).

10.1.3. Table Columnscolumns

Two columns in theFITSFITSbinary table are defined below to
contain the compressed image tiles; the order of the columnsin
the table is not significant. One of the table columns describes
optional content; but when this column appears itmustmustbe
used as defined in this section. The column names (given by the
TTYPEn keyword) are reserved; they are shown here inupper
caseupper-caseletters, but case is not significant.

48

D
R

A
FT

49

COMPRESSEDDATACOMPRESSED DATA – [required;
variable-length; required] Each row of this column
mustmust contain the byte stream that is generated as a
result of compressing the corresponding image tile. The
data type of the column (as given by theTFORMn keyword)
mustmust be one of’1PB’, ’1PI’ , or ’1PJ’’1PB’, ’1PI’,
or ’1PJ’ (or the equivalent’1QB’, ’1QI’ , or ’1QJ’’1QB’,
’1QI’, or ’1QJ’), depending on whether the compression
algorithm generates an output stream of 8-bit bytes, or
integers of16-, or 32-bits16, or 32 bits respectively.

When using the quantization method to compress floating-
point images that is described in Sect. 10.2, it sometimes may
not be possible to quantize some of the tiles (e.g., if the range of
pixels values is too large or if most of the pixels have the same
value and hence the calculated RMS noise level in the tile is
close to zero). There also may be other rare cases where the nom-
inal compression algorithm cannot be applied to certain tiles. In
these cases, an alternate techniquemay be used in which the
raw pixel values are losslessly compressed with theGZIP Gzip
algorithm.

GZIP COMPRESSEDDATAGZIP COMPRESSED DATA

[optional;variable-length; optional] If the raw pixel values
in an image tile are losslessly compressed with theGZIP
Gzip algorithm, the resulting byte streammustmust be
stored in this column (with a’1PB’or ’1QB’’1PB’ or’1QB’
variable-lengtharray columnarray-columnformat). The
corresponding COMPRESSEDDATACOMPRESSED DATA

column for these tilesmustmustcontain a null pointer (i.e.,
the pair of integers that constitute the descriptor for the
columnmustboth have the value zero: see Sect. 7.3.5).

The compressed data columns described abovemayuse ei-
ther the’1P’ or ’1Q’ variable-length arrayFITS FITScolumn
format if the size of the heap in the compressedFITS FITSfile
is < 2.1 GB. If the the heap is larger than 2.1 GB, then the’1Q’

format (which uses 64-bit pointers)mustmustbe used.
When using theoptionaloptional quantization method de-

scribed in Sect. 10.2 to compress floating-point images, thefol-
lowing columns arerequiredrequired.

ZSCALE – [floating-point;optionaloptional] This columnshall
be used to contain linear scale factors that, along withZZERO,
transform the floating-point pixel values in each tile to inte-
gers via,

Formula− ok− gives− latexdi f f − errors (12)

whereI i andFi are the integer and (original) floating-point
values of the image pixels, respectivelyand theround, and
the round function rounds the result to the nearest integer
value.

ZZERO – [floating-point; optional] This columnshallbe used to
containzero pointzero-pointoffsets that are used to scale the
floating-point pixel values in each tile to integers via Eq.??.

Do not confuse theZSCALE andZZEROZSCALE andZZERO
columns with theBSCALE and BZERO keywords (defined in
Sect. 4.4.2)which that may be present in integerFITS FITS
images. Any such integer imagesshould shouldnormally be
compressed without any further scaling, and theBSCALEand

BZEROBSCALE andBZERO keywordsshouldbe copied verba-
tim into the header of the binary table containing the compressed
image.

Some images contain undefined pixel values; in uncom-
pressed floating-point images these pixels have an IEEE NaN
value. However, these pixel values will be altered when using
the quantization method described in Sect. 10.2 to compress
floating-point images. The value of the undefined pixelsmaybe
preserved in the following way.

ZBLANK ZBLANK – [integer; optionaloptional] When
present, this columnshall be used to store the inte-
ger value that represents undefined pixels in the scaled
integer array. Therecommendedvalue for ZBLANK is
−2147483648recommended value for ZBLANK is
−2147483648, the largest negative 32-bit integer. If
the same null value is used in every tile of the image, then
ZBLANK ZBLANKmaybe given in a header keyword instead
of a table column; if both a keyword and a table column
namedZBLANK ZBLANK are present, the values in the table
columnmustmustbe used. If there are no undefined pixels
in the image thenis not requiredZBLANK is not requiredto
be present either as a table column or a keyword.

If the uncompressed image has an integer data type
(ZBITPIX > 0) then the value of undefined pixels is given by the
BLANK keyword (see Sect. 5.3), whichshouldbe used instead of
ZBLANK . ZBLANK.

When using some compression techniques that do not ex-
actly preserve integer pixel values, it may be necessary to store
the location of the undefined pixels prior to compressing theim-
age. The locationsmaybe stored in an image mask, whichmust
itself be compressed and stored in a table column with the fol-
lowing definition. See Sect. 10.2.2 for more details.

NULL PIXEL MASKNULL PIXEL MASK – [integer array;
optionaloptional] When present, this columnshall be used
to store, in compressed form, an image mask with the same
original dimensions as the uncompressed image, that records
the location of the undefined pixels. The process defined in
Sect. 10.2.2shall be used to construct the compressed pixel
mask.

Additional columnsmay be present in the table to supply
other parameters that relate to each image tile. However, these
parametersshould notshould notbe recorded in the image HDU
when the uncompressed image is restored.

10.2. Quantization of Floating-Point Datafloating-point data

While floating-point format images may be losslessly com-
pressed, noisy images often do not compress very well. Higher
compression can only be achieved by removing some of this
noise without losing the useful information content. One com-
monly used technique for reducing the noise is to scale the
floating-point values into quantized integers using Eq.??, and
using theZSCALEandZZEROZSCALE andZZERO columns to
record the two scaling coefficients that are used for each tile.
Note that the absence of these two columns in a tile-compressed
floating-point image is an indication that the image was not
scaled, and was instead losslessly compressed.

49

D
R

A
FT

50

An effective scaling algorithm for preserving a speci-
fied amount of noise in each pixel value is described by
White & Greenfield (1999) and by Pence et al. (2009). With this
method, theZSCALEZSCALE value (which is numerically equal
to the spacing between adjacent quantization levels) is calculated
to be some fraction,QQ, of the RMS noise as measured in back-
ground regions of the image. Pence et al. (2009) shows that the
number of binary bits of noise that are preserved in each pixel
value is given bylog2(Q) + 1.792.Q results directly related to
The Q value directly affectsthe compressed file size: decreas-
ing Q Q by a factor of2 two will decrease the file size by about
1 bit /one bit perpixel. In order to achieve the greatest amount
of compression, one should use the smallest value ofQ Q that
still preserves the required amount of photometric and astromet-
ric precision in the image.Image quality will remain comparable
regardless of the noise level.

A potential problem when applying this scaling method to
astronomical images, in particular, is that it can lead to a system-
atic bias in the measured intensities in faint parts of the image:
. As the image is quantized more coarsely, the measured inten-
sity of the background regions of the sky will tend to be biased
towards the nearest quantize level. One very effective technique
for minimizing this potential bias is todither the quantized pixel
values by introducing random noise during the quantizationpro-
cess. So instead of simply scaling every pixel value in the same
way using Eq.??, the quantized levels are randomized by using
this slightly modified equation:

Formula− ok− gives− latexdi f f − errors (13)

whereRi is a random number between 0.0 and 1.0, and 0.5 is
subtracted so that the mean quantity equals 0. Then restoring the
floating-point value, the sameRi is used with the inverse for-
mula:

Fi = ((I i − Ri + 0.5) ∗ ZSCALEZSCALE) + ZZEROZZERO. (14)

This “subtractive dithering” technique has the effect of dithering
thezero-pointzero pointof the quantization grid on apixel by
pixel pixel-by-pixelbasis without adding any actual noise to the
image. The net effect of this is that the mean (and median) pixel
value in faint regions of the image more closely approximatethe
value in the original unquantized image than if all the pixels are
scaled without dithering.

The key requirement when using thissubtractive dithering
subtractive-ditheringtechnique is thatthe exact samerandom
number random-numbersequencemust must be used when
quantizing the pixel values to integers, and when restoringthem
to floating pointfloating-pointvalues. While most computer lan-
guages supply a function for generating random numbers, these
functions are not guaranteed to generate the same sequence of
numbers every time. An algorithm for generating a repeatable
sequence ofpseudo randompseudo-randomnumbers is given in
Appendix I; this algorithmmustbe used when applying a sub-
tractive dither.

10.2.1. Dithering Algorithmsalgorithms

The ZQUANTIZ keyword, if present,mustmusthave one of the
following values to indicate the type of quantization, if any, that
was applied to the floating-point image for compression: .

NO DITHER’NO DITHER’ – No dithering was performed; the
floating-point pixels were simply quantized using Eq.??.
This optionshall be assumed if theZQUANTIZ keyword is
not present in the header of the compressed floating-point
image.

SUBTRACTIVE DITHER 1’SUBTRACTIVE DITHER 1’ –
The basic subtractive dithering was performed, the algo-
rithm for which is described below. Note that an image
quantized using this technique can still be unquantized using
the simple linear scaling function given by Eq.??, at the
cost of introducing slightly more noise in the image than if
the full subtractive ditheringsubtractive-ditheringalgorithm
were applied.

SUBTRACTIVE DITHER 2’SUBTRACTIVE DITHER 2’

– This dithering algorithm is identical to that for
’SUBTRACTIVE DITHER 1’, except that any pixels in
the floating-point image that are exactly equal to 0.0 are
represented by the reserved value−2147483647 in the
quantized integer array. When the image is subsequently
uncompresseddecompressedand unscaled, these pixels
must bemustberestored to their original value of 0.0. This
dithering option is useful if the zero-valued pixels have
special significance to the data analysis software, so that the
value of these pixelsmust notmust notbe dithered.

The process for generating a subtractive dither for a floating-
point image is the following: .

1. Generate a sequence of 10000 single-precision floating-point
random numbers, RN, with a value between 0.0 and 1.0.
Since it could be computationally expensive to generate a
unique random number for every pixel of large images, sim-
ply cycle through this look-up table of random numbers.

2. Choose an integer in the range 1 to 10000 to serve as an
initial seed value for creating a unique sequence of random
numbers from the array that was calculated in the previous
step. The purpose of this is to reduce the chances of apply-
ing the same dithering pattern to two images that are sub-
sequently subtracted from each other (or co-added), because
the benefits of randomized dithering are lost if all the pixels
are dithered in phase with each other. The exact method for
computing this seed integer is not important as long as the
value is chosen more or less randomly.

3. Write the integer seed value that was selected in the previous
step as the value of theZDITHER0ZDITHER0keyword in the
header of the compressed image. This value is required to
recompute the same dithering pattern whenuncompressing
decompressingthe image.

4. Before quantizing each tile of thefloating point floating-
point image, calculate an initial value for two offset parame-
ters,I0 andI1, with the following formulae:

I0 = modmod(Ntile tile − 1+ ZDITHER0ZDITHER0, 10000)(15)

I1 = INT(RN(I0) ∗ 500.)(16)

where Ntile Ntile is the row number in the binary table
that is used to store the compressed bytes for that tile,
ZDITHER0ZDITHER0 is that value of that keyword, and
RN(I0) is the value of theI th

0 I th
0 random number in the se-

quence that was computed in the first step. Note thatI0 has a

50

D
R

A
FT

51

value in the range 0 to 9999 andI1 has a value in the range 0
to 499. This method for computingI0 andI1 was chosen so
that a different sequence of random numbers is used to com-
press successive tiles in the image, and so that the sequence
of I1 values has a length of order100 million 100-million
elements before repeating.

5. Now quantize each floating-point pixel in the tile using
Eq. ?? and using random number RN(I1) for the first pixel.
Increment the value ofI1 for each subsequent pixel in the
tile. If I1 reaches the upper limit of 500, then increment the
value ofI0 and recomputeI1 from Eq. 16. IfI0 also reaches
the upper limit of 10000, then resetI0 to 0.
If the floating-point pixel has an IEEE NaN value, then it is
not quantized or dithered but instead is set to the reserved
integer value specified by theZBLANK ZBLANK keyword.
For consistency, the value ofI1 shouldshouldalso be in-
cremented in this case even though it is not used.

6. Compress the array of quantized integers using the lossless
algorithm that is specified by theZCMPTYPEZCMPTYPE
keyword (useRICE 1’RICE 1’ by default).

7. Write the compressed bytestream into the
COMPRESSEDDATAbyte stream into the
COMPRESSED DATA column in the appropriate row of
the binary table corresponding to that tile.

8. Write the linear scaling andzero pointzero-pointvalues
that were used in Eq.?? for that tile into theZSCALEand
ZZEROZSCALE and ZZERO columns, respectively, in the
same row of the binary table.

9. Repeat Steps 4 through 8 for each tile of the image.

10.2.2. Preserving undefined pixels with lossy compression

The undefined pixels in integer images are flagged by a re-
servedBLANK value and will be preserved if a lossless com-
pression algorithm is used. (ZBLANK is used for undefined pix-
els in floating-point images.) If the image is compressed with
a lossy algorithm, then some other techniquemust must be
used to identify the undefined pixels in the image. In this case
it is recommendedrecommendedthat the undefined pixels be
recorded with the following procedure: .

1. Create an integer data mask with the same dimensions as the
image tile.

2. For each undefined pixel in the image, set the corresponding
mask pixels to 1 and all the other pixels to 0.

3. Compress the mask array using a lossless algorithm such as
PLIO or GZIPGzip, and record the name of that algorithm
with the keywordZMASKCMP.

4. Store the compressed byte stream in avariable-length array
column called’NULL PIXEL MASK’ variable-length-array
column calledNULL PIXEL MASK in the table row corre-
sponding to that image tile.

The data mask array pixelsshould have the shortest in-
teger data type that is supported by the compression algo-
rithm (i.e., usually8-bit eight-bit bytes). Whenuncompressing
decompressingthe image tile, the softwaremustmustcheck if
the corresponding compressed data mask exists with a length
greater than 0, and if so,uncompressdecompressthe mask and
set the corresponding undefined pixels in the image array to the
value given by theBLANK keyword.

10.3. Tiled Table Compressiontable compression

The following section describes the process for compressing the
content ofBINTABLE BINTABLE columns. Some additional de-
tails of BINTABLE BINTABLE compression may be found in
Pence et al. (2013), but the specifications in this Standardshall
supersede those in the registered convention. The uncompressed
tablemaymaybe subdivided into tiles, each containing a subset
of rows, then each column of data within each tile is extracted,
compressed, and stored as a variable-length array of bytes in the
output compressed table. The header keywords from the uncom-
pressed table, with only a few limited exceptions,shallbe copied
verbatim to the header of the compressed table. The compressed
tablemust itself be a validFITS FITS binary table (albeit one
where the contents cannot be interpreted withoutuncompressing
decompressingthe contents) that contains the same number and
order of columns as in the uncompressed table, and that contains
one row for each tile of rows in the uncompressed table. Only the
compression algorithms specified in Sect. 10.3.5 are permitted.

10.3.1. Required Keywordskeywords

With only a few exceptions noted below, all the keywords and
corresponding comment fields from the uncompressed table
mustmustbe copied verbatim, in order, into the header of the
compressed table. Note in particular that the values of the re-
served column descriptor keywordsTTYPEn, TUNITn, TSCALn,
TZEROn, TNULLn, TDISPn, andTDIMn, as well as all the column-
specific WCS keywords defined in theFITS standard,mustFITS
Standard,musthave the same values and data types in both the
original and in the compressed table, with the understanding that
these keywords apply to the uncompressed data values.

The only keywords thatmust notmust notbe copied verba-
tim from the uncompressed table header to the compressed ta-
ble header are the mandatoryNAXIS1, NAXIS2, PCOUNT, and
TFORMn keywords, and the optionalCHECKSUM, DATASUM (see
Sect. 4.4.2.7), andTHEAP keywords. These keywords must nec-
essarily describe the contents and structure of the compressed
table itself. The original values of these keywords in the uncom-
pressed tablemustmustbe stored in a new set of reserved key-
words in the compressed table header. Note that there is no need
to preserve a copy of theGCOUNT keyword because the value
is always equal to1 for BINTABLES1 for BINTABLE exten-
sions. The complete set of keywords that have a reserved mean-
ing within a tile-compressed binary table are given below: .

ZTABLE – [logical; value:’T’T] The value field of this key-
word shallbe ’T’ be T to indicate that theFITS bi-
nary table FITS binary-tableextension contains a com-
pressedBINTABLEBINTABLE, and that logically this exten-
sionshouldbe interpreted as a tile-compressed binary table.

ZNAXIS1 – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
NAXIS1 keyword in the original uncompressedFITS FITS
table header. This represents the width in bytes of each row
in the uncompressed table.

ZNAXIS2 – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
NAXIS2 keyword in the original uncompressedFITS FITS
table header. This represents the number of rows in the un-
compressed table.

51

D
R

A
FT

52

ZPCOUNT – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
PCOUNT keyword in the original uncompressedFITS FITS
table header.

ZFORMn – [string; indexed; default: none] The value field of
these keywordsshallcontain the character stringcontain the
character-stringvalues of the correspondingTFORMn key-
words that defines the data type ofcolumnColumnn in the
original uncompressedFITS FITStable.

ZCTYPn – [string; indexed; default: none] The value field of
these keywordsshallcontain the character stringcontain the
character-stringvalue mnemonic name of the algorithm that
was used to compresscolumnnColumnn of the table. The
only permitted values are given in Sect. 10.3.5, and the cor-
responding algorithms are described in Sect. 10.4.

ZTILELEN – [integer; default: none] The value field of this key-
word shall contain an integer representing the number of
rows of data from the original binary table that are contained
in each tile of the compressed table. The number of rows in
the last tile may belessfewerthan in the previous tiles. Note
that if the entire table is compressed as a single tile, then
the compressed table will only contains a single row, and the
ZTILELEN andZNAXIS2 keywords will have the same value.

10.3.2. Procedure for Table Compressiontable compression

The procedure for compressing aFITS FITS binary table con-
sists of the following sequence of steps: .

1. Divide table into tiles (optional)
In order to limit the amount of data that must be managed at
one time, largeFITS FITS tablesmaybe divided into tiles,
each containing the same number of rows (except for the
last tile, which may contain fewer rows). Each tile of the
table is compressed in order, and each is stored in a single
row in the output compressed table. There is no fixed upper
limit on the allowed tile size, but for practical purposes itis
recommendedrecommendedthat it not exceed 100 MB.

2. Decompose each tile into the component columns

FITSFITSbinary tables are physically stored in row-by-row
sequential order, such that the data values for the first row
in each column are followed by the values in the second
row, and so on (see Sect. 7.3.3). Because adjacent columns
in binary tables can contain very non-homogeneous types of
data, it can be challenging to efficiently compress the na-
tive stream of bytes in theFITSFITStables. For this reason,
the table is first decomposed into its component columns,
and then each column of data is compressed separately. This
also allows one to choose themost efficient most-efficient
compression algorithm for each column.

3. Compress each column of data
Each column of datamustbe compressed with one of the
lossless compression algorithms described in Sect. 10.4. If
the table is divided into tiles, then the same compression al-
gorithmmustbe applied to a given column in every tile. In
the case of variable-length array columns (where the data
are stored in the table heap: see Sect. 7.3.5), each individ-
ual variable length vectormustvariable-length vectormust
be compressed separately.

4. Store the compressed bytes
The compressed stream of bytes for each columnmustmust
be written into the corresponding column in the output ta-
ble. The compressed tablemustmusthave exactly the same
number and order of columns as the input table, however,
the data type of the columns in the output table will
all have a variable-length byte data type, withTFORMn =

’1QB’TFORMn = ’1QB’. Each row in the compressed table
corresponds to a tile of rows in the uncompressed table.
In the case of variable-length array columns, the array of de-
scriptors that point to each compressed variable-length ar-
ray, as well as the array of descriptors from the input un-
compressed table,mustmustalso be compressed and written
into the corresponding column in the compressed table. See
Sect. 10.3.6 for more details.

10.3.3. Compression Directive Keywordsdirective keywords

The following compression-directive keywords, if presentin the
header of the table to be compressed, are reserved to provide
guidance to the compression software on how the table shouldbe
compressed. The compression softwareshouldattempt to obey
these directives, but if that is not possible the softwaremaymay
disregard them and use an appropriate alternative. These key-
words are optional, butmustmustbe used as specified below.

– FZTILELN – [integer] The value field of this keywordshall
contain an integer that specifies the requested number of ta-
ble rows in each tilewhich that are to be compressed as a
group.

– FZALGOR – [string] The value field of this keywordshall
contain a character string giving the mnemonic name of the
algorithm that is requested to be used by default to compress
every column in the table. The permitted values are given in
Sect. 10.3.5.

– FZALGn – [string; indexed] The value fields of these key-
wordsshall contain a character string giving the mnemonic
name of the algorithm that is requested to compress
column nColumn n of the table. The current allowed val-
ues are the same as for theFZALGORFZALGOR key-
word. TheFZALGnFZALGn keyword takes precedence over
FZALGORFZALGOR in determining which algorithm to use
for a particular column if both keywords are present.

10.3.4. Other Reserved Keywordsreserved keywords

The following keywords are reserved to store a verbatim copy
of the value and comment fields for specific keywords in the
original uncompressedBINTABLEBINTABLE. These keywords,
if present, should be used to reconstruct an identical copy
of the uncompressedBINTABLE, and should notBINTABLE,
and should notappear in the compressed table header unless
the corresponding keywords were present in the uncompressed
BINTABLEBINTABLE.

ZTHEAP – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
THEAP keyword if present in the original uncompressedFITS
FITStable header.

ZHECKSUM – [string; default: none] The value field of this key-
word shall contain a character string that gives the value of

52

D
R

A
FT

53

theCHECKSUM keyword (see Sect. 4.4.2.7) in the original un-
compressedFITS FITSHDU.

ZDATASUM – [string; default: none] The value field of this key-
word shall contain a characterstring that gives the value of
theDATASUM keyword (see Sect. 4.4.2.7) in the original un-
compressedFITS FITSHDU.

10.3.5. Supported Compression Algorithms compression
algorithms for Tablestables

The permitted algorithms for compressingBINTABLE columns
are, , and(plusBINTABLE columns are’RICE 1’, ’GZIP 1’,
and’GZIP 2’ (plus’NOCOMPRESS’), which are lossless and are
described in Sect. 10.4. Lossy compression could be allowedin
the future once a process is defined to preserve the details ofthe
compression.

10.3.6. Compressing Variable-Length Array
Columnsvariable-length array columns

Compression ofBINTABLE BINTABLE tiles that contain
variable-length array (VLA) columns requires special consider-
ation because the array values in these columns are not stored
directly in the table, but are instead stored in a data heap,
which follows the main table (see Sect. 7.3.5). The VLA col-
umn in the original, uncompressed table only contains de-
scriptors, whichare composed ofcomprisetwo integers that
give the size and location of the arrays in the heap. When
uncompressingdecompressing, these descriptor values will be
needed to write theuncompresseddecompressedVLAs back
into the same location in the heap as in the original uncom-
pressed table. Thus, the following processmustbe followed, in
order, when compressing a VLA column within a tile: . Refer to
Pence et al. (2013) for additional details.

1. For each VLA in the column:

– Readreadthe array from the input table, and compress
it using the algorithm specified byZCTYP for this VLA
column. ;

– Write the resulting bytestreamwrite the resulting byte
streamto the heap of the compressed table. ; and

– Storestore(or append) the descriptors to the compressed
bytestreambyte stream(whichmustbe 64-bit Q-type) in
a temporary array.

2. Append the VLA descriptors from the uncompressed table
(which maybe either Q-type or P-type) to the temporary ar-
ray of VLA descriptors for the compressed table.

3. Compress the combined array of descriptors using
’GZIP 1’, and write that byte stream into the corre-
sponding VLA column in the output table, so that the
compressed array is appended to the heap.

When uncompressingdecompressinga VLA column, two
stages ofuncompressiondecompressionmustbe performed in
order: .

1. UncompressDecompressthe combined array of descriptors
using theGzipalgorithm.

2. For each descriptor to a compressed array:

– Readread the compressed VLA from the compressed
tableand uncompress, and decompressit using the al-
gorithm specified byZCTYP for this VLA column. ; and

– Write write it to the correct location in theuncompressed
decompressedtable.

10.4. Compression Algorithmsalgorithms

Table 36: Valid mnemonic values for theZCMPTYPE andZCTYPn
keywords

Value Sect. Compression Type

’RICE 1’ 10.4.1 Rice algorithm for integer data
’GZIP 1’ 10.4.2 Combination of the LZ77 algorithm

and Huffman coding, used inGnu
GZIPGNU Gzip

’GZIP 2’ 10.4.2 Like ’GZIP 1’, but with reshuffled
pixel bytevalues

’PLIO 1’ 10.4.3 IRAF PLIO algorithm for integer data
’HCOMPRESS 1’ 10.4.4 H-compress algorithm for2-D two-

dimensionalimages
’NOCOMPRESS’ The HDU remains uncompressed

The name of the permitted algorithms for compressingFITS
FITS HDUs, as recorded in theZCMPTYPE keyword, are listed
in Table 36; if other types are later supported, theymustmust
be registered with the IAUFWG to reserve the keyword val-
ues. Keywords for the parameters of supported compression al-
gorithms have also been reserved, and are described with each
algorithm in the subsections below. If alternative compression
algorithms require keywords beyond those defined below, they
mustmustalso be registered with the IAUFWG to reserve the
associated keyword names.

10.4.1. Rice compression

When ZCMPTYPE = ’RICE 1’ ZCMPTYPE = ’RICE 1’, the
Rice algorithm (Rice et al. 1993)shall be used for data
(de)compression. When selected, the keywords in Table 37
shouldalso appear in the header with one of the values indicated.
If these keywords are absent, then their default valuesmustmust
be used. The Rice algorithm is lossless, but can only be applied
to integer-valued arrays. It offers a significant performance ad-
vantage over the other compression techniques (see White etal.
2013).

Table 37: Keyword parameters for Rice compression

Values
Keyword Permitted Default Meaning

ZNAME1 ’BLOCKSIZE’ − Size of block in pixels
ZVAL1 16, 3216, 32 3232 No. of pixels in a block
ZNAME2 ’BYTEPIX’ − Size of pixel value in bytes
ZVAL2 1, 2, 4, 81, 2, 4, 8 4 4 No.8-bit of eight-bitbytes per

original pixel value

53

D
R

A
FT

54

10.4.2. GZIP Gzip compression

WhenZCMPTYPE = ’GZIP 1’ the gzipZCMPTYPE= ’GZIP 1’,
the Gzip algorithm shall be used for data (de)compression.
There are no algorithm parameters, so the keywordsZNAMEnand
ZVALn should notshould notappear in the header. ThegzipGzip
algorithm is used in the free GNU software compression utility
of the same name. It was created by J.-L. Gailly and M. Adler,
based on the DEFLATE algorithm (Deutsch 1996), which is a
combination of LZ77 (Ziv & Lempel 1977) and Huffman cod-
ing. Theunix gzipUnix gzip program accepts an integer param-
eter that provides a trade between optimization for speed (1) and
compression ratio (9), which does not affect the format of the
resultant data stream. The selection of this parameter is anim-
plementation detail that is not covered by this Standard.

WhenZCMPTYPE = ’GZIP 2’ ZCMPTYPE = ’GZIP 2’, the
gzip2 algorithmshall be used for data (de)compression. The
gzip2 algorithm is a variation on’GZIP 1’. There are no al-
gorithm parameters, so the keywordsZNAMEn andZVALn should
notshould notappear in the header. In this case the bytes in the
array of data values are shuffled so that they are arranged in order
of decreasing significance before being compressed. For exam-
ple, a5-elementfive-elementcontiguous array of2-byte two-
byte(16-bit) integer values, with an original big-endian byte or-
der of:

A1A2B1B2C1C2D1D2E1E2

will have the following byte order after shuffling:

A1B1C1D1E1A2B2C2D2E2,

where A1, B1,C1,D1, and E1 are themost significantmost-
significant bytes from each of the integer values. Byte shuf-
fling shallonly only be performed for integer or floating-
point numeric data types; logical, bit, and character typesmust
notmust notbe shuffled.

10.4.3. IRAF/PLIO compression

When ZCMPTYPE = ’PLIO 1’ ZCMPTYPE = ’PLIO 1’. the
IRAF PLIO algorithmshall be used for data (de)compression.
There are no algorithm parameters, so the keywordsZNAMEnand
ZVALn should notshould notappear in the header. The PLIO al-
gorithm was developed to store integer-valued image masks in a
compressed form. The compression algorithm used is based on
run-length encoding, with the ability to dynamically follow level
changes in the image, in principle allowing a 16-bit encoding to
be used regardless of the image depth. However, this algorithm
has only been implemented in a way that supports image depths
of no more than 12 bits; therefore’PLIO 1’’PLIO 1’ mustonly
only be used for integer image types with values between 0 and
224.

The compressed line lists are stored asvariable length
variable-lengtharrays of type short integer (16 bits per list el-
ement), regardless of the mask depth. A line list consists ofa
series of simple instructions, which are executed in sequence to
reconstruct a line of the mask. Each16 bit16-bitinstruction con-
sists of the sign bit (not used), athree bitthree-bitopcode, and
twelve bits of data,i.e. : as depicted below.

+--+--------+-------------------+

|16|15 13|12 1|

+--+--------+-------------------+

| | opcode | data |

+--+----------------------------+

The significance of the data depends upon the instruction. In
order to reconstruct a mask line, the application executingthese
instructions isrequiredrequiredto keep track of two values, the
current high value and the current position in the output line. The
detailed operation of each instruction is given in Table 38.

Table 38: PLIO Instructions

Instr. Opcode Meaning

’ZN’ ’00’ Zero the nextN N output pixels.
’HN’ ’04’ Set the nextN N output pixels to the current

high value.
’PN’ ’05’ Zero the nextN-1 N − 1 output pixels, and

setpixel N PixelN to the current high value.
’SH’ ’05’ Set the high value (absolute rather than in-

cremental), taking the high 15 bits from the
next word in the instruction stream, and the
low 12 bits from the current data value.

’IH,DH’ ’02,03’ Increment (IH’IH’) or decrement
(DH’DH’) the current high value by
the data value. The current position is not
affected.

’IS,DS’ ’06,07’ Increment (IS’IS’) or decrement (DS’DS’)
the current high value by the data value, and
step, i.e., output one high value.

The high valuemustmustbe set to 1 at the beginning of a line,
hence theIH,DH andIS,DS ’IH,DH’ and’IS,DS’ instructions
are not normally needed for Boolean masks.

10.4.4. H-Compress algorithm

When ZCMPTYPE = ’HCOMPRESS 1’

ZCMPTYPE = ’HCOMPRESS 1’, the H-compress algorithm
shall be used for data (de)compression. The algorithm was
described by White (1992), and can be applied only to images
with two dimensions. Briefly, the compression method is to
apply, in order:

1. a wavelet transform called the H-transform (a Haar trans-
form generalized to two dimensions), followed by

2. a quantization that discards noise in the image while retain-
ing the signal on all scales,followed byand finally

3. a quadtree coding of the quantized coefficients.

The H-transform is a two-dimensional generalization of the
Haar transform. The H-transform is calculated for an image of
size 2N × 2N as follows: .

1. Divide the image up into blocks of 2× 2 pixels. Call the four
pixel values in a blocka00, a10, a01, anda11.

2. For each block compute four coefficients:
h0 = (a11+ a10 + a01+ a00)/(SCALE ∗ σ)
hx = (a11+ a10− a01− a00)/(SCALE ∗ σ)
hy = (a11− a10+ a01 − a00)/(SCALE ∗ σ)
hc = (a11− a10− a01 + a00)/(SCALE ∗ σ)
whereSCALE is an algorithm parameter defined below, and
σ characterizes the RMS noise in the uncompressed image.

54

D
R

A
FT

55

3. Construct a 2N−1 × 2N−1 image from theh0 values for each
2×2 block. Divide that image up into 2×2 blocks and repeat
the above calculation. Repeat this processN times, reducing
the image in size by a factor of2 two at each step, until only
oneh0 value remains.

This calculation can be easily inverted to recover the original im-
age from its transform. The transform is exactly reversibleusing
integer arithmetic. Consequently, the program can be used for
either lossy or lossless compression, with no special approach
needed for the lossless case.

Noise in the original image is still present in the H-transform,
however. To compress noisy images, each coefficient can be di-
vided bySCALE ∗ σ, whereSCALE ∼ 1 is chosen according to
how much loss is acceptable. This reduces the noise in the trans-
form to 0.5/SCALE, so that large portions of the transform are
zero (or nearly zero) and the transform is highly compressible.

There is one user-defined parameter associated with the H-
Compress algorithm: a scale factor to the RMS noise in the
image that determines the amount of compression that can be
achieved. It is not necessary to know what scale factor was used
when compressing the image in order touncompressdecompress
it, but it is still useful to record it. The keywords in Table 39
shouldbe recorded in the header for this purpose.

Table 39: Keyword parameters for H-compression

Values
Keyword Permitted Default Meaning

ZNAME1 ’SCALE’ − ’-’ Scale factor
ZVAL1 0.00.0 or larger 0.00.0 Scaling of the RMS noise; 0.0

yields lossless compression

Scale Factor– The floating-point scale parameter(whose value
is stored in KeywordZVAL1) determines the amount of com-
pression; higher values result in higher compression, but
with greater loss of information.SCALE=0.0 0.0 is a special
case that yields lossless compression, i.e. the decompressed
image has exactly the same pixel values as the original im-
age.SCALE > 0.0 leads to lossy compression, whereSCALE

determines how much of the noise is discarded.

55

D
R

A
FT

56

Appendix A: Syntax of keyword records

This Appendixappendixis not part of theFITSstandardFITS
Standardbut is included for convenient reference.

:= means ‘is defined to be’
X | Y means one ofX or Y X or Y

(no ordering relation is implied)
[X] means thatX X is optional
X... meansX X is repeated one or more times
‘B’ means the ASCII character B
‘A’–‘Z’ means one of the ASCII characters A

through Z in the ASCII collating
sequence, as shown in Appendix D

\0xnn means the ASCII character associated
with the hexadecimal code nn

{...} expresses a constraint or a comment
(it immediately follows the syntax rule)

The following statements define the formal syntax used
in FITSFITS free-format keyword records, as well as for
long-string keywords spanning more than one keyword record).

FITS keyword :=
single recordkeyword|
long string keyword

single recordkeyword :=
FITS keywordrecord

FITS keywordrecord :=
FITS commentarykeywordrecord|
FITS valuekeywordrecord

FITS commentarykeywordrecord :=
COMMENT keyword [asciitext char...]|
HISTORY keyword [asciitext char...]|
BLANKFIELD keyword [asciitext char...]|
keywordfield anycharbut equal

[ascii text char...]|
keywordfield ‘=’ anycharbut space

[ascii text char...]
{Constraint: The total number of characters in a
FITS commentarykeywordrecord mustmust be exactly
equal to 80.}

FITS valuekeywordrecord :=
keywordfield valueindicator [space...] [value]

[space...] [comment]
{Constraint: The total number of characters in a
FITS valuekeywordrecord mustmust be exactly equal to
80.}
{Comment: If the value field is not present, the value of the
FITSFITSkeyword is not defined.}

long string keyword :=
initial kwd record [continuationkwd record...]
last continuationrecord

{Comment: the value of a longstring keyword is recon-
structed by concatenating the partialstring values of the
initial kwd record and of any continuationkwd records in
the order they occur, and the characterstring value of the

last continuationrecord.}

initial kwd record :=
keywordfield valueindicator [space...]
[partial string value] [space...] [comment]

{Constraint: The total number of characters in an ini-
tial kwd recordmustbe exactly equal to 80.}

continuationkwd record :=
CONTINUE keyword [space...]
[partial string value] [space...] [comment]

{Constraint: The total number of characters in a continua-
tion kwd recordmustbe exactly equal to 80.}

last continuationrecord :=
CONTINUE keyword [space...]
[characterstring value] [space...] [comment]

{Constraint: The total number of characters in a
last continuationrecordmustbe exactly equal to 80.}

keywordfield :=
[keyword char...] [space...]

{Constraint: The total number of characters in the keywordfield
mustmustbe exactly equal to 8.}

keywordchar :=
‘A’–‘Z’ | ‘0’–‘9’ | ‘ ’ | ‘-’

COMMENT keyword :=
‘C’ ‘O’ ‘M’ ‘M’ ‘E’ ‘N’ ‘T’ space

HISTORY keyword :=
‘H’ ‘I’ ‘S’ ‘T’ ‘O’ ‘R’ ‘Y’ space

BLANKFIELD keyword :=
space space space space space space space space

CONTINUE keyword :=
‘C’ ‘O’ ‘N’ ‘T’ ‘I’ ‘N’ ‘U’ ‘E’

value indicator :=
‘=’ space

space :=
‘ ’

comment :=
‘ /’ [ascii text char...]

ascii text char :=
space–‘̃ ’

anycharbut equal :=
space–‘<’ | ‘>’–‘ ˜’

anycharbut space :=
‘!’–‘ ˜’

value :=
characterstring value| logical value|
integervalue| floating value|

56

D
R

A
FT

57

complexintegervalue| complexfloating value

characterstring value :=
beginquote [stringtext char...] endquote

{Constraint: The beginquote and endquote are not part of
the character stringcharacter-stringvalue but only serve as
delimiters. Leading spaces are significant; trailing spaces are
not.}

partial string value :=
beginquote [stringtext char...] ampersand endquote

{Constraint: The beginquote, endquote, and ampersand are not
part of the character-string value but only serve respectively as
delimiters or continuation indicator.}

beginquote :=
quote

endquote :=
quote

{Constraint: The ending quotemust notmust notbe immediately
followed by a second quote.}

quote :=
\0x27

ampersand :=
‘&’

string text char :=
ascii text char

{Constraint: A stringtext char is identical to an asciitext char
except for the quote char; a quote char is represented by two
successive quote chars.}

logical value :=
‘T’ | ‘F’

integervalue :=
[sign] digit [digit...]

{Comment: Such an integer value is interpreted as a signed
decimal number. Itmaymaycontain leading zeros.}

sign :=
‘-’ | ‘+’

digit :=
‘0’–‘9’

floating value :=
decimalnumber [exponent]

decimalnumber :=
[sign] [integerpart] [‘.’ [fraction part]]

{Constraint: At least one of the integerpart and fractionpart
mustmustbe present.}

integerpart :=
digit | [digit...]

fraction part :=
digit | [digit...]

exponent :=
exponentletter [sign] digit [digit...]

exponentletter :=
‘E’ | ‘D’

complexintegervalue :=
‘(’ [space...] realintegerpart [space...] ‘,’ [space...]
imaginaryintegerpart [space...] ‘)’

real integerpart :=
integervalue

imaginaryintegerpart :=
integervalue

complexfloating value :=
‘(’ [space...] realfloating part [space...] ‘,’ [space...]
imaginaryfloating part [space...] ‘)’

real floating part :=
floating value

imaginaryfloating part :=
floating value

Appendix B: Suggested time scale time-scale
specification

The content of thisAppendixappendixhas been superseded
by SectionSect.9 of the formal Standard, which derives from
Rots et al. (2015).

57

D
R

A
FT

58

Appendix C: Summary of keywords

ThisAppendixappendixis not part of theFITSstandardFITSStandard, but is included for convenient reference.
All of the mandatory and reserved keywords that are defined inthestandardStandard, except for the reserved WCS keywords

that are discussed separately in Sect.8, are listed in Tables C.1, C.2, and C.3. Analphabetizedalphabeticallist of these keywords
and their definitions is available online:http://heasarc.gsfc.nasa.gov/docs/fcg/standard_dict.html.

Table C.1:

MandatoryFITSFITSkeywords for the structures described in this document.
Primary Conforming Image ASCII-table Binary-table Compressed
HDU extension extension extension extension images6

SIMPLESIMPLE XTENSIONXTENSION XTENSIONXTENSION1 XTENSIONXTENSION2 XTENSIONXTENSION3 ZIMAGE =T

BITPIXBITPIX BITPIXBITPIX BITPIXBITPIX BITPIX = 8 BITPIX = 8 ZBITPIXZBITPIX
NAXISNAXIS NAXISNAXIS NAXISNAXIS NAXIS = 2 NAXIS = 2 ZNAXISZNAXIS

NAXISnNAXISn4 NAXISnNAXISn4 NAXISnNAXISn4 NAXIS1NAXIS1 NAXIS1NAXIS1 ZNAXISnZNAXISn
END END PCOUNTPCOUNT PCOUNT = 0 NAXIS2NAXIS2 NAXIS2NAXIS2 ZCMPTYPEZCMPTYPE

GCOUNTGCOUNT GCOUNT = 1 PCOUNT = 0 PCOUNTPCOUNT
ENDEND ENDEND GCOUNT = 1 GCOUNT = 1

TFIELDSTFIELDS TFIELDSTFIELDS
TFORMnTFORMn5 TFORMnTFORMn5

TBCOLnTBCOLn5 ENDEND
ENDEND

(1)XTENSION= 'IMAGE ' XTENSION= 'IMAGE ' for the image extension.(2)XTENSION= 'TABLE ' for the ASCII table
XTENSION= 'TABLE ' for the ASCII-table extension. (3)XTENSION= 'BINTABLE' for the binary tableXTENSION= 'BINTABLE' for
the binary-tableextension.(4)Runs from 1 through the value ofNAXISNAXIS. (5)Runs from 1 through the value ofTFIELDSTFIELDS. (6)required
Requiredin addition to the mandatory keywords for binary tables.

Table C.2:

ReservedFITSFITSkeywords for the structures described in this document.

All 1 Array2 ASCII-table Binary-table Compressed
HDUs HDUs extension extension images

DATE DATE EXTNAMEEXTNAME BSCALEBSCALE TSCALnTSCALn TSCALnTSCALn ZTILEnZTILEn FZTILELN

DATE-OBSDATE-OBS EXTVEREXTVER BZEROBZERO TZEROnTZEROn TZEROnTZEROn ZNAMEiZNAMEi FZALGOR
ORIGINORIGIN EXTLEVELEXTLEVEL BUNITBUNIT TNULLnTNULLn TNULLnTNULLn ZVALi ZVALi FZALGn
AUTHORAUTHOR EQUINOXEQUINOX BLANK BLANK TTYPEnTTYPEn TTYPEnTTYPEn ZMASKCMPZMASKCMP
REFERENCREFERENC EPOCHEPOCH3 DATAMAX DATAMAX TUNITnTUNITn TUNITnTUNITn ZQUANTIZZQUANTIZ
COMMENTCOMMENT BLOCKEDBLOCKED3 DATAMIN DATAMIN TDISPnTDISPn TDISPnTDISPn ZDITHER0ZDITHER0
HISTORYHISTORY EXTENDEXTEND4 TDMAXnTDMAXn TDIMnTDIMn ZSIMPLEZSIMPLE ZTHEAP
 TELESCOPTELESCOP TDMINnTDMINn THEAPTHEAP ZEXTENDZEXTEND
OBJECTOBJECT INSTRUMEINSTRUME TLMAXn TLMAXn TDMAXnTDMAXn ZBLOCKEDZBLOCKED
OBSERVEROBSERVER TLMINnTLMINn TDMINnTDMINn ZTENSIONZTENSION
CONTINUECONTINUE TLMAXn TLMAXn ZPCOUNTZPCOUNT
INHERITINHERIT 5 TLMINnTLMINn ZGCOUNTZGCOUNT
CHECKSUMCHECKSUM ZHECKSUMZHECKSUM ZHECKSUM
DATASUMDATASUM ZDATASUMZDATASUM ZD

(1)These keywords are further categorized in Table C.3.(2)Primary HDU,imageIMAGE extension, user-defined HDUs with same array structure.
(3)Deprecated.(4)Only permitted in the primary HDU.(5)Only permitted in extension HDUs, immediately following the mandatory keywords.

58

http://heasarc.gsfc.nasa.gov/docs/fcg/standard_dict.html

D
R

A
FT

59

Table C.3:

General reservedFITSFITSkeywords described in this document.
Production Bibliographic Commentary Observation

DATE DATE AUTHORAUTHOR COMMENTCOMMENT DATE-OBSDATE-OBS

ORIGINORIGIN REFERENCREFERENC HISTORYHISTORY TELESCOPTELESCOP
BLOCKEDBLOCKED1 INSTRUMEINSTRUME

OBSERVEROBSERVER
OBJECTOBJECT
EQUINOXEQUINOX
EPOCHEPOCH1

(1)Deprecated.

59

D
R

A
FT

60

Table D.1: ASCII character set.

ASCII control ASCII text
dec hex char dec hex char dec hex char dec hex char

0 00 NUL 32 20 SP 64 40 @ 96 60 `

1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 ' 71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i
10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 0C FF 44 2C , 76 4C L 108 6C l
13 0D CR 45 2D - 77 4D M 109 6D m
14 0E SO 46 2E . 78 4E N 110 6E n
15 0F SI 47 2F / 79 4F O 111 6F o
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {

28 1C FS 60 3C < 92 5C \ 124 7C |

29 1D GS 61 3D = 93 5D] 125 7D }

30 1E RS 62 3E > 94 5E ˆ 126 7E ˜

31 1F US 63 3F ? 95 5F _ 127 7F DEL1

1 Not ASCII Text

Appendix D: ASCII text

This appendix is not part of theFITSstandardFITSStandard; the material in it is based on the ANSI standard for ASCII (ANSI
1977) and is included here for informational purposes.)

In Table D.1, the first column is the decimal and the second column the hexadecimal value for the character in the third column.
The characters hexadecimal 20 to 7E (decimal 32 to 126) constitute the subset referred to in this document as the restricted set of
ASCII text ASCII-textcharacters.

Appendix E: IEEE floating-point formats

The material in thisAppendixappendixis not part of thisstandardStandard; it is adapted from the IEEE-754 floating-point standard
(IEEE 1985) and provided for informational purposes. It is not intended to be a comprehensive description of the IEEE formats;
readers should refer to the IEEE standard.)

FITSFITSrecognizes all IEEE basic formats, including the special values.

E.1. Basic formats

Numbers in the single and double formats are composed of the following three fields:

1. 1-bit a one-bitsigns,

2. Biased exponente= E + biasa biased exponente= E + bias, and

3. Fractiona fraction f = •b1b2 · · ·bp−1.

60

D
R

A
FT

61

Table E.1: Summary of format parameters.

Format
Parameter Single Double

Single extended Double extended

p 24 ≥ 32 53 ≥ 64
Emax +127 ≥ +1023 +1023 ≥ +16383
Emin −126 ≤ −1022 −1022 ≤ −16382
Exponentbiasbias +127 unspecified +1023 unspecified
Exponent width in bits 8 ≥ 11 11 ≥ 15
Format width in bits 32 ≥ 43 64 ≥ 79

Fig. E.1: Single Format.msbmsb meansmost significant bitmost-significant bit, lsblsb meansleast significant bitleast-significant
bit

1 8 23widths

s e f

msb lsb msb lsborder

Fig. E.2: Double Format.msbmsb meansmost significant bitmost-significant bit, lsblsb meansleast significant bitleast-significant
bit

1 11 52widths

s e f

msb lsb msb lsborder

The range of the unbiased exponentE shallshall include every integer between two valuesEmin andEmax, inclusive, and also two
other reserved valuesEmin − 1 to encode±0 and denormalized numbers, andEmax+1 to encode±∞ and NaNs. The foregoing
parameters are given in Table E.1. Each nonzero numerical value has just one encoding. The fields are interpreted as follows: .

E.1.1. Single

A 32-bit single formatsingle-formatnumberX is divided as shown in Fig. E.1. The valuev of X is inferred from its constituent
fieldsthus.

1. If e= 255 andf , 0, thenv is NaN regardless ofs.
2. If e= 255 andf = 0, thenv = (−1)s∞.
3. If 0 < e< 255, thenv = (−1)s2e−127(1 • f).
4. If e= 0 and f , 0, thenv = (−1)s2e−126(0 • f) (denormalized numbers).
5. If e= 0 and f = 0, thenv = (−1)s0 (zero).

E.1.2. Double

A 64-bit double formatdouble-formatnumberX is divided as shown in Fig. E.2. The valuev of X is inferred from its constituent
fieldsthus.

1. If e= 2047 andf , 0, thenv is NaN regardless ofs.
2. If e= 2047 andf = 0, thenv = (−1)s∞.
3. If 0 < e< 2047, thenv = (−1)s2e−1023(1 • f).
4. If e= 0 and f , 0, thenv = (−1)s2e−1022(0 • f) (denormalized numbers).
5. If e= 0 and f = 0, thenv = (−1)s0 (zero).

E.2. Byte patterns

Table E.2 shows the types of IEEE floating-point value, whether regular or special, corresponding to alldouble and single precision
double- and single-precisionhexadecimal byte patterns.

61

D
R

A
FT

62

Table E.2: IEEE floating-point formats.

IEEE value Double precision Single precision

+0 00000000000000000000000000000000 0000000000000000
denormalized 00000000000000010000000000000001 0000000100000001

to to
000FFFFFFFFFFFFF000FFFFFFFFFFFFF 007FFFFF007FFFFF

positive underflow 00100000000000000010000000000000 0080000000800000
positive numbers 00100000000000010010000000000001 0080000100800001

to to
7FEFFFFFFFFFFFFE7FEFFFFFFFFFFFFE 7F7FFFFE7F7FFFFE

positive overflow 7FEFFFFFFFFFFFFF7FEFFFFFFFFFFFFF 7F7FFFFF7F7FFFFF
+∞ 7FF00000000000007FF0000000000000 7F8000007F800000
NaN1 7FF00000000000017FF0000000000001 7F8000017F800001

to to
7FFFFFFFFFFFFFFF7FFFFFFFFFFFFFFF 7FFFFFFF7FFFFFFF

−0 80000000000000008000000000000000 8000000080000000
negative 80000000000000018000000000000001 8000000180000001
denormalized to to

800FFFFFFFFFFFFF800FFFFFFFFFFFFF 807FFFFF807FFFFF
negative underflow 80100000000000008010000000000000 8080000080800000
negative numbers 80100000000000018010000000000001 8080000180800001

to to
FFEFFFFFFFFFFFFEFFEFFFFFFFFFFFFE FF7FFFFEFF7FFFFE

negative overflow FFEFFFFFFFFFFFFFFFEFFFFFFFFFFFFF FF7FFFFFFF7FFFFF
−∞ FFF0000000000000FFF0000000000000 FF800000FF800000
NaN1 FFF0000000000001FFF0000000000001 FF800001FF800001

to to
FF FFFFFFFF

1 Certain valuesmaymay be designated asquiet NaN (no diagnostic when used) orsignaling (produces diagnostic when used) by particular
implementations.

62

D
R

A
FT

63

Appendix F: Reserved extension type names

This Appendixappendixis not part of theFITSstandardFITS
Standard, but is included for informational purposes. It de-
scribes the extension type names registered as of the date this
standardStandardwas issued.) A current list is available from
theFITSSupport Office web siteFITSSupport Office websiteat
http://fits.gsfc.nasa.gov.

F.1. Standard extensions

These three extension types have been approved by the
IAUFWG and are defined in Sect.7 of this standardStandard
document as well as in the indicatedAstronomy and Astrophysics
journal articles.

– 'IMAGE ' – This extension type provides a means of stor-
ing a multi-dimensional array similar to that of theFITSFITS
primary header and data unit. Approved as a standard exten-
sion in 1994 (Ponz et al. 1994).

– 'TABLE ' – ThisASCII tableASCII-tableextension type
contains rows and columns of data entries expressed as
ASCII characters. Approved as a standard extension in 1988
(Harten et al. 1988).

– 'BINTABLE' – Thisbinary tablebinary-tableextension type
provides amore flexiblemore-flexibleand efficient means of
storing data structures than is provided by theTABLETABLE
extension type. The table rows can contain a mixture of
numerical, logical, and character data entries. In addition,
each entry is allowed to be asingle dimensionedsingle-
dimensionedarray. Numeric data are kept in binary formats.
Approved as a standard extension in 1994 (Cotton et al.
1995).

F.2. Conforming extensions

These conventions meet the requirements for a conforming ex-
tension as defined in in Sect.3.4.1 of thisstandardStandard,
however they have not been formally approved or endorsed by
the IAUFWG.

– 'IUEIMAGE' – This name was given to the prototype of
the IMAGEIMAGE extension type and was primarily used
in the IUE project data archive from approximately 1992
to 1994. Except for the name, the format is identical to the
IMAGEIMAGE extension.

– 'A3DTABLE' – This name was given to the prototype
of the BINTABLEBINTABLE extension type and was pri-
marily used in the AIPS data processing system devel-
oped at NRAO from about 1987 until it was replaced by
BINTABLEBINTABLE in the early 1990s. The format is de-
fined in the ‘Going AIPS’ manual (Cotton et al. 1990),
Chapter 14. It is very similar to theBINTABLEBINTABLE

type except that it does not support the variable-lengtharray-
arrayconvention.

– 'FOREIGN '– This extension type is used to put aFITSFITS
wrapper about an arbitrary file, allowing a file or tree of files
to be wrapped up inFITSFITSand later restored to disk. A
full description of this extension type is given in the Registry
of FITSFITS conventions on theFITSSupport Office web
siteFITSSupport Office website.

– 'DUMP ' – This extension type can be used to store a
stream ofbinary databinary-datavalues. The only known

use of this extension type is to record telemetry header pack-
ets for data from the Hinode mission. Themore general
FOREIGNmore-generalFOREIGN extension type could also
be used to store this type of data.

F.3. Other suggested extension names

There have been occasional suggestions for other extension
names that might be used for other specific purposes. These
include a COMPRESSCOMPRESS extension for storing com-
pressed images, aFITSFITSextension for hierarchically embed-
ding entireFITSFITS files within otherFITSFITS files, and a
FILEMARKFILEMARKextension for representing the equivalent
of an end-of-file mark onmagnetic tapemagnetic-tapemedia.
None of these extension types have been implemented or used in
practice, therefore these names are not reserved. These extension
names (or any other extension name not specifically mentioned
in the previous sections of this appendix)should notshould not
be used in anyFITSFITSfile without first registering the name
with the IAU FITS FITSWorking Group.

Appendix G: MIME types

This Appendixappendixis not part of theFITSstandardFITS
Standard, but is included for informational purposes.

RFC 4047 (Allen & Wells 2005) describes the reg-
istration of the Multipurpose Internet Mail Extensions
(MIME) sub-types ‘application/fitsapplication/fits’
and ‘image/fitsimage/fits’ to be used by the international
astronomical community for the interchange ofFITSFITS
files. The MIME type serves as a electronic tag or label that is
transmitted along with theFITSFITSfile that tells the receiving
application what type of file is being transmitted. The remainder
of this appendix has been extracted verbatim from the RFC
4047 document.

The general nature of the full FITSstandard
FITS Standard requires the use of the media type
‘application/fitsapplication/fits’. Nevertheless, the
principal intent for a great manyFITSFITS files is to convey
a single data array in the primary HDU, and such arrays are
very often 2-dimensional two-dimensional images. Several
common image viewing applications already display single-
HDU FITSFITSfiles, and the prototypes forvirtual observatory
virtual-observatoryprojects specify that data provided by
web services be conveyed by the data array in the primary
HDU. These uses justify the registration of a second media
type, namely ‘image/fitsimage/fits’, for files which that use
the subset of thestandardStandarddescribed by the original
FITSstandardFITSStandardpaper. The MIME type ‘image/fits’
mayimage/fits’ maybe used to describeFITSFITS primary
HDUs that have other than two dimensions, however it is
expected that most files described as ‘image/fitsimage/fits’
will have two-dimensional (NAXIS NAXIS =2 2) primary
HDUs.

G.1. MIME type ‘application/fitsapplication/fits’

A FITSFITSfile described with the media type ‘application/fits’
shouldapplication/fits’ should conform to the published
standards forFITSFITS files as determined by convention and
agreement within the internationalFITSFITS community. No

63

http://fits.gsfc.nasa.gov

D
R

A
FT

64

other constraints are placed on the content of a file described
as ‘application/fitsapplication/fits’.

A FITSFITS file described with the media type
‘application/fits’ may application/fits’ may have an
arbitrary number of conforming extension HDUs that follow
its mandatory primary header and data unit. The extension
HDUs may may be one of the standard types (IMAGE,
TABLE, and BINTABLEIMAGE, TABLE, and BINTABLE) or
any other type that satisfies the ‘Requirements forConforming
Extensionsconforming extensions’ (Sect. 3.4.1). The primary
HDU or any IMAGEextension mayIMAGE extension may
contain zero to 999 dimensions withzero or morezero-or-more
pixels along each dimension.

The primary HDUmay use the random groupsmay use
the random-groupsconvention, in which the dimension of the
first axis is zero and the keywordsGROUPS, PCOUNTand
GCOUNTGROUPS. PCOUNT andGCOUNT appear in the header.
NAXIS1 NAXIS1 =0andGROUPS 0 andGROUPS =T T is the
signature of random groups; see Sect.6.

G.1.1. Recommendations for application writers

An application intended to handle ‘application/fits’
shouldapplication/fits’ should be able to provide a
user with a manifest of all of the HDUs that are present in the
file and with all of the keyword/value pairs from each of the
HDUs.

An application intended to handle ‘application/fits’
shouldapplication/fits’ should be prepared to encounter
extension HDUs that contain either ASCII or binary tables, and
to provide a user with access to their elements.

An application which can modify FITSthat can modify
FITS files or retrieveFITSFITS files from an external service
shouldshouldbe capable of writing such files to a local storage
medium.

Complete interpretation of the meaning and intended use of
the data in each of the HDUs typically requires the use of heuris-
tics that attempt to ascertain which local conventions wereused
by the author of theFITSFITSfile.

As examples, files with media type
‘application/fitsapplication/fits’ might contain any of
the following contents: .

– An empty primary HDU (containing zero data elements) fol-
lowed by a table HDU that contains a catalog of celestial
objects.

– An empty primary HDU followed by atableTABLE HDU
that encodes a series of time-tagged photon events from an
exposure using an X-ray detector.

– An empty primary HDU followed by a series of
IMAGEIMAGE HDUs containing data from an exposure
taken by a mosaic of CCD detectors.

– An empty primary HDU followed by a series oftableTABLE
HDUs that contain a snapshot of the state of a relational
database.

– A primary HDU containing a single image along with key-
word/value pairs of metadata.

– A primary HDU with NAXIS1 NAXIS1 =0andGROUPS 0

andGROUPS =Tfollowed by random groupsT followed by
random-groupsdata records of complex fringe visibilities.

G.2. MIME type ‘image/fitsimage/fits’

A FITSFITS file described with the media type ‘image/fits’
shouldimage/fits’ should have a primary HDU with
positive integer values for theNAXISand NAXISnNAXIS
and NAXISn keywords, and henceshouldshould contain
at least one pixel. Files with4 four or more non-
degenerate axes (NAXISnNAXISn > 1) shouldshould be
described as ‘application/fitsapplication/fits’, not as
‘ image/fitsimage/fits’. (In rare cases it may be appropriate
to describe a NULL image – a dataless container forFITSFITS
keywords, withNAXIS NAXIS =0or NAXISn 0 or NAXISn=0 0
– or an image with4+ four or more non-degenerate axes
as ‘image/fitsimage/fits’ but this usage is discouraged be-
cause such files may confuse simpleimage viewerimage-viewer
applications.)

FITSFITS files declared as ‘image/fits’ mayimage/fits’
may also have one or more conforming extension HDUs fol-
lowing their primary HDUs. These extension HDUsmaymay
contain standard, non-linear,world coordinateworld-coordinate
system (WCS) information in the form of tables or images. The
extension HDUsmaymayalso contain other, non-standard meta-
data pertaining to the image in the primary HDU in the forms of
keywords and tables.

A FITSFITS file described with the media type ‘image/fits’
shouldimage/fits’ shouldbe principally intended to commu-
nicate the single data array in the primary HDU. This means
that ‘image/fits’ should notimage/fits’ should notbe applied
to FITSFITS files containing multi-exposure-frame mosaic im-
ages. Also,random groups filesmustrandom-groups filesmust
be described as ‘application/fitsapplication/fits’ and not as
‘ image/fitsimage/fits’.

A FITSFITS file described with the media type
‘ image/fitsimage/fits’ is also valid as a file of media
type ‘application/fitsapplication/fits’. The choice of
classification depends on the context and intended usage.

G.2.1. Recommendations for application writers

An application that is intended to handle ‘image/fits’
shouldimage/fits’ shouldbe able to provide a user with a
manifest of all of the HDUs that are present in the file and with
all of the keyword/value pairs from each of the HDUs. An ap-
plication writermaymaychoose to ignore HDUs beyond the pri-
mary HDU, but even in this case the applicationshouldshould
be able to present the user with the keyword/value pairs from the
primary HDU.

Note that an application intended to render
‘ image/fitsimage/fits’ for viewing by a user has signif-
icantly more responsibility than an application intended to
handle, e.g.,‘image/tiff’or ‘image/gif’ . FITS’image/tiff’ or
’image/gif’. FITS data arrays contain elementswhich that
typically represent the values of a physical quantity at some co-
ordinate location. Consequently they need not contain any pixel
rendering information in the form of transfer functions, and
there is no mechanism for color look-up tables. An application
shouldshouldprovide this functionality, either statically using a
more or less sophisticatedmore- or less-sophisticatedalgorithm,
or interactively allowing a user various degrees of choice.

Furthermore, the elements in aFITSdata array mayFITS
data arraymaybe integers or floating-point numbers. The dy-

64

D
R

A
FT

65

namic range of thedata arraydata-arrayvalues may exceed that
of the display medium and the eye, and their distribution may
be highly nonuniformnon-uniform. Logarithmic, square-root,
and quadratic transfer functions along withhistogram equaliza-
tion histogram-equalizationtechniques have proved helpful for
renderingFITSFITS data arrays. Some elements of the array
may have valueswhich that indicate that their data are unde-
fined or invalid; theseshouldshouldbe rendered distinctly. Via
WCS Paper I (Greisen & Calabretta 2002) thestandard permits
CTYPEnStandard permitsCTYPEn =’COMPLEX’ ’COMPLEX’
to assert that a data array contains complex numbers (futurerevi-
sions might admit other elements such as quaternions or general
tensors).

Three-dimensional data arrays (NAXIS NAXIS =3with
NAXIS1, NAXIS2and NAXIS3 3 with NAXIS1, NAXIS2, and
NAXIS3 all greater than 1) are of special interest. Applications
intended to handle ‘image/fits’ mayimage/fits’ maydefault to
displaying the first2D two-dimensionalplane of such an image
cube, or theymaymaydefault to presenting such an image in a
fashion akin to that used for an animated GIF, or theymaymay
present the data cube as a mosaic of ‘thumbnail’ images. The
time-lapse movie-looping display technique can be effective in
many instances, and application writersshouldshouldconsider
offering it for all three-dimensional arrays.

An ‘ image/fitsimage/fits’ primary HDU with NAXIS
NAXIS =1 1 is describing a one-dimensional entity such as
a spectrum or a time series. Applications intended to handle
‘ image/fits’ mayimage/fits’ maydefault to displaying such an
image as a graphical plot rather than as a two-dimensional pic-
ture with a single row.

An application that cannot handle an image with dimension-
ality other than twoshouldshouldgracefully indicate its limita-
tions to its users when it encountersNAXIS NAXIS =1or NAXIS
1 or NAXIS =3 3 cases, while still providing access to the key-
word/value pairs.

FITSFITS files with degenerate axes (i.e., one or
more NAXISn NAXISn =1) may 1) may be described as
‘ image/fitsimage/fits’, but the first axesshouldshould be
non-degenerate (i.e., the degenerate axesshouldshould be
the highest dimensions). An algorithm designed to render
only two-dimensional images will be capable of displaying
such anNAXIS NAXIS =3or NAXIS 3 or NAXIS =4FITS 4

FITS array that has one or two of the axes consisting of a
single pixel, and an application writershouldshouldconsider
coding this capability into the application. Writers of new
applications that generateFITSFITS files intended to be de-
scribed as ‘image/fits’ shouldimage/fits’ should consider
using theWCSAXESWCSAXES keyword (Greisen et al. 2006)
to declare the dimensionality of such degenerate axes, so
that NAXISNAXIS can be used to convey the number of
non-degenerate axes.

G.3. File extensions

TheFITSstandardFITSStandardoriginated in the era when files
were stored and exchanged via magnetic tape; it does not pre-
scribe any nomenclature for files on disk. Various sites within
theFITSFITScommunity have long-established practices where
files are presumed to beFITSFITS by context. File extensions

used at such sites commonly indicate content of the file instead
of the data format.

In the absence of other information it is reasonably safe to
presume that a file name ending in ‘.fits.fits’ is intended to be
a FITSFITS file. Nevertheless, there are other commonly used
extensions; e.g., ‘‘.fit.fit’, ‘ .fts.fts’, and many others not suit-
able for listing in a media type registration.

Appendix H: Past changes or clarifications to the
formal definition of FITSFITS

This Appendixappendixis not part of theFITSstandardFITS
Standard, but is included for informational purposes.

H.1. Differences between the requirements in this standard
Standard and the requirements in the original FITSFITS
papers.

1. Sect. 4.1.2: The original FITSFITS definition paper
(Wells et al. 1981) disallowslower caselower-caseletters
in the keyword name, but does not specify what other char-
acters may or may not appear in the name.

2. Sect. 4.1.2: The slash between the value and comment is
‘recommended’ in the original paper (Wells et al. 1981)
whereas thestandardStandardrequires that it be present,
which is consistent with the prescription of Fortran list-
directed input.

3. Sect. 4.2: The original paper (Wells et al. 1981) specu-
lated thatFITSFITSwould eventually support the full range
of flexibility that is allowed by Fortran list-directed input,
including dimensioned parameters. ThestandardStandard
restricts the value field to a single value, not an array.

4. Sect. 4.2.5 and Sect.4.2.6: The original paper (Wells et al.
1981) defined a fixed format for complex keyword values,
with the real part right justified inbytesBytes 11 through
30 and the imaginary part right justified inbytesBytes 31
through 50. There are no knownFITSFITSfiles that use this
fixed format.
The standardStandarddoes not define a fixed format for
complex keyword values. Instead, complex values are repre-
sented in conformance with the rules for Fortran list-directed
input, namely, with the real and imaginary parts separated by
a comma and enclosed in parentheses.

5. Sect. 4.4.1.1 and Sect. 4.4.1.2: The paper that defines gen-
eralized extensions (Grosbøl et al. 1988) does not prohibit
the appearance of theSIMPLESIMPLE keyword in exten-
sions nor theXTENSIONXTENSION keyword in the primary
header.

H.2. List of modification to the FITSstandardFITS Standard,
version 3Version 3.0

After the IAUFWG officially approved version 3 of the
FITSstandardVersion 3.0 of theFITSStandardin 2008, the fol-
lowing additional corrections, clarifications, or format modifica-
tions have been made to the document.

1. Two typographical errors in Table 21 (previously Table 8.1)
were corrected. The last2 two lines of the third column
should read ‘LONPOLEa LONPOLEa (= PVi 3a)PVi 3a)’
and ‘LATPOLEa LATPOLEa (= PVi 4a)’PVi 4a)’) , instead

65

D
R

A
FT

66

of PVi 1aand PVi 2aPVi 1a and PVi 2a, respectively.
(October 2008)

2. The latex LATEX text source document was reformatted to
conform to the Astronomy & Astrophysics journal page style
(June 2010). The visible changes include the following: .
– The tables, figures, equations, and footnotes are num-

bered sequentially throughout the entire the document,
instead of sequentially within each chapter.

– The citations use the standard ‘Author (year)’ format in-
stead of being referenced by a sequential number. Also,
the ‘Bibliography’ section at the end of the document has
been replaced by a ‘References’ section in which the ci-
tations are listed alphabetically by author.

3. The following minor corrections or clarifications were made
during the refereeing process after submittingversion 3 of
theFITSstandardVersion 3.0 of theFITSStandardfor publi-
cation in the Astronomy & Astrophysics journal (July 2010):
.
– A sentence was added to the end of Sect.1.2: ‘Thisweb

sitewebsitealso contains the contact information for the
Chairman of the IAUFWG, to whom any questions or
comments regarding thisstandardStandardshould be ad-
dressed.’

– A ‘Section’ column was added to Table 1 to reference the
relevant section of the document.

– The wording of the second sentence in Sect.4.1.1 was
revised from ‘Except where specifically stated otherwise
in this standard, keywords may appear in any order.’ to
‘Keywords may appear in any order except where specif-
ically stated otherwise in thisstandardStandard.’

– A sentence was added to the end of the ‘Keyword name’
subsection in Sect.4.1.2: ‘Note that keyword names that
begin with (or consist solely of) any combination of hy-
phens, underscores, and digits are legal.’

– A footnote to the description of theREFERENC
REFERENC keyword in Sect.4.4.2 was added: ‘This bib-
liographic convention (Schmitz 1995) was initially de-
veloped for use within NED (NASA/IPAC Extragalactic
Database) and SIMBAD (operated at CDS, Strasbourg,
France).’

– In Sect. 7.3.4, the phrase ‘TFORMn TFORMn format
code’ was corrected to read ‘TDISPn TDISPn format
code’ (in four places).

– The wording in the ‘Expressed as’ column in Table 26
for the‘LOG’, ‘GRI’, ‘GRA’, and ‘TAB’ LOG, GRI, GRA,
andTAB spectral algorithm codes was clarified.

– In TableC.2 the EXTNAME, EXTVER, and
EXTLEVEL C.2 theEXTNAME, EXTVER, andEXTLEVEL
keywords were moved under the ‘All HDUs’ column
because they are now allowed in the primary array
header.

– The last paragraph of Sect.4.1.2.3 was corrected to state
that theASCII text ASCII-textcharacters have hexadec-
imal values 20 through 7E, not 41 through 7E.

H.3. List of modifications to the latest FITS standardFITS
Standard

1. The representation of time coordinates has been in-
corporated by reference from Rots et al. (2015) and is
summarized in Sect. 9. Cross-references have been in-

serted in pre-existing sections of the Standard (namely
in SectSects. 4.2.7, 4.3, 4.4.2.1, 4.4.2.2 and 5.4, as well
as in various places of Sect. 8,like 8.3 and such as
Sect. 8.3 and Sect.8.4.1). New keywords are listed in a
rearranged Table 22. Contextually an erratum was applied
in Sect. 8.4.1: keywordsOBSGEO-[XYZ] were incorrectly
marked asOBSGEO-[XYZ]a; the TAI-UTC difference in
Table 30 was updated with respect to Rots et al. (2015) tak-
ing into account the latest leap second; the possibility of in-
troducing more sources for thesolar systemSolar System
ephemerides was re-worded (at the end of Sect.9.2.5 and in
Table 31).

2. The continued string keywords described in Sect. 4.2.1.2
were originally introduced as aFITSconvention sinceFITS
convention during1994, and registered in 2007. The text of
the original convention is reported athttp://fits.gsfc.
nasa.gov/registry/continue_keyword.html. The
differences with thisstandard concern :Standard concern
the following.

– In the convention, theLONGSTRNLONGSTRN keyword
was used to signal the possible presence of long strings in
the HDU. The use of this keyword is no longerrequired
or recommendedrequiredor recommended.

– Usage of the convention was not recom-
mendednot recommendedfor reserved or mandatory
keywords. Now it isexplicitly forbiddenunless keywords
are explicitly declared long-string.

– To avoid ambiguities in the application of the previous
clause, the declaration of string keywords insections
Sects.8, 9 and 10 has been reset from the generic ‘char-
acter’ to ‘string’.

– It is also explicitly clarified there is no limit to the num-
ber of continuation records.

– The description of continued comment field is new.

3. The blank header space convention described in Sect. 4.4.2.4
was usedsincefrom 1996, and registered in 2014. The text
of the original convention is reported athttp://fits.
gsfc.nasa.gov/registry/headerspace.html. It in-
cluded a recommendationabout using the convention in
a controlled environment, which does not appear in this
standardStandard.

4. TheINHERITINHERIT keyword described in Sect. 4.4.2.6
was originally introduced as aFITSFITSconvention in 1995,
and registered in 2007. The text of the original convention
is reported athttp://fits.gsfc.nasa.gov/registry/
inherit.html. See also references and practical consid-
erations therein. The differences with the present document
concern amore precise RFC-2219more-precise RFC 2119
compliant wording in a couple of sentences in Appendix K.

5. The checksum keywords described in Sect. 4.4.2.7 were
originally introduced as aFITSconvention sinceFITS con-
vention during 1994, and registered in 2007. The text
of the original convention is reported athttp://fits.
gsfc.nasa.gov/registry/checksum.html. The differ-
ences with thisstandardStandardconcern:

– The the omission of some additional implementation
guidelines. , and

– Thetheomission of a discussion on alternate algorithms
and relevant additional references.

66

http://fits.gsfc.nasa.gov/registry/continue_keyword.html
http://fits.gsfc.nasa.gov/registry/continue_keyword.html
http://fits.gsfc.nasa.gov/registry/headerspace.html
http://fits.gsfc.nasa.gov/registry/headerspace.html
http://fits.gsfc.nasa.gov/registry/inherit.html
http://fits.gsfc.nasa.gov/registry/inherit.html
http://fits.gsfc.nasa.gov/registry/checksum.html
http://fits.gsfc.nasa.gov/registry/checksum.html

D
R

A
FT

67

6. The table keywords described in Sect. 7.2.2 and 7.3.2 were
originally introduced as aFITSconvention sinceFITS con-
vention during1993, and registered in 2006. The text of
the original convention is reported athttp://fits.gsfc.
nasa.gov/registry/colminmax.html. The differences
with thisstandard concern:Standard are as follows.

– The exclusion of undefined or IEEE special values when
computing maximum and minimum is nowmandatory
while it wasoptional.

– The original text included the possibility of using the
fact TDMINnTDMINn were greater thanTDMAXn(or
TLMINngreater thanTLMAXn TDMAXn (or TLMINn
greater thanTLMAXn) as an indication the values were
undefined. This clause has been removed

– The original text contained usage examples and addi-
tional minor explanatory details.

7. The Green Bank convention, mentioned in Sect. 8.2 and de-
scribed in Appendix L, has been in use since 1989, and
was registered in 2010. The text of the registered convention
is reported athttp://fits.gsfc.nasa.gov/registry/
greenbank/greenbank.pdf and contains some additional
details about the history of the convention.

8. The conventions for compressed data described in Sect. 10.
were originally introduced as a couple ofFITSFITS
conventions registered in 2007 and 2013. The text of
the original conventions is reported athttp://fits.
gsfc.nasa.gov/registry/tilecompression.html for
compressed images and athttp://fits.gsfc.nasa.
gov/registry/tiletablecompression.html for com-
pressed binary tables. The differences with thisstandard con-
cern:Standard are listed below.

– In Sect. 10.3.3 the original text forFZALGn mentioned
the possibility that, ‘If the column cannot be compressed
with the requested algorithm (e.g., if it has an inappropri-
ate data type), then a default compression algorithm will
be used instead.’ But there is no default algorithm. This
is irrelevant for the Standard.

– In Sect. 10.4 the alias’RICE ONE’ is not adopted in the
Standard as a synonym for’RICE 1’.

– In Sect. 10.4.3 a sentence was left out about requiring
additional instructions in PLIO to make it work for more
then 212 bits, since we aren’t allowing this possibility in
the Standard.

– In Sect. 10.4.4 the reference to a ‘smoothing flag’ was
dropped.

– Also in Sect. 10.4.4 thescale factoris now floating point,
while it was originally integer.

– In Table 36 (and Sect. 10.3.5) the’NOCOMPRESS’ algo-
rithm is explicitly mentioned.

H.4. List of modifications for language editing

1. Apply systematically LATEX macros for keyword names and
values, and for RFC 2119 expressions, according to instruc-
tions reported in the LATEX source preamble (for future edi-
tors of the Standard).

2. The acronymFITS is always indicated in italics.
3. Use italics systematically for RFC 2119 obligations and rec-

ommendations.

4. Apply consistent use of italic and typewriter fonts, and’

quotation marks around literal keyword values. Correct other
minor LATEX issues.

5. Apply systematic capitalization of the names of specific enti-
ties, where appropriate. These include Standard (when refer-
ring to theFITS Standard document), Version (where num-
bered), Byte, Column, Parameter, Field, and Axis. Start some
words with a lower-case letter that previously began with a
capital letter.

6. Address other typographical issues, such as the insertion of
commas in several places, adding a few non-breaking spaces,
and better handling of references to sections, etc.

7. Several cases of minor rewording.
8. Express small numbers in letter form (one to nine), not in nu-

merals (1 to 9), wherever sensible. However, there is the cus-
tomary exception for normalization in sentences and head-
ings that also contain numbers greater than nine.

9. Compound nouns are systematically hyphenated to high-
light the correct grouping (and hence meaning) of the com-
ponents. This includes the attributive references to ASCII-
table, binary-table, and random-groups.

10. Improve the aesthetics of some tables.

Appendix I: Random Number
Generator Random-number generator

This Appendixappendixis not part of theFITSstandardFITS
Standard, but is included for informational purposes.

The portablerandom numberrandom-numbergenerator al-
gorithm below is from Park & Miller (1988). This algorithm re-
peatedly evaluates the function

seed= (a ∗ seed) modm

where the values ofa andm are shown below, but it is imple-
mented in a way to avoid integer overflow problems.

int random_generator(void) {

/* initialize an array of random numbers */

int ii;

double a = 16807.0;

double m = 2147483647.0;

double temp, seed;

float rand_value[10000];

/* initialize the random numbers */

seed = 1;

for (ii = 0; ii < N_RANDOM; ii++) {

temp = a * seed;

seed = temp -m * ((int) (temp / m));

/* divide by m for value between 0 and 1 */

rand_value[ii] = seed / m;

}

}

If implemented correctly, the10 000th 10 000th value of seed
will equal 1 043 618 065.

67

http://fits.gsfc.nasa.gov/registry/colminmax.html
http://fits.gsfc.nasa.gov/registry/colminmax.html
http://fits.gsfc.nasa.gov/registry/greenbank/greenbank.pdf
http://fits.gsfc.nasa.gov/registry/greenbank/greenbank.pdf
http://fits.gsfc.nasa.gov/registry/tilecompression.html
http://fits.gsfc.nasa.gov/registry/tilecompression.html
http://fits.gsfc.nasa.gov/registry/tiletablecompression.html
http://fits.gsfc.nasa.gov/registry/tiletablecompression.html

D
R

A
FT

68

Appendix J: CHECKSUMImplementation
Guidelines CHECKSUM implementation guidelines

This Appendixappendixis not part of theFITSstandardFITS
Standard, but is included for informational purposes.

J.1. Recommended CHECKSUMKeyword
ImplementationCHECKSUM keyword implementation

The recommendedCHECKSUMrecommendedCHECKSUM key-
word algorithm described here generates a 16-character ASCII
string that forces the 32-bit1’ s ones’ complement checksum
accumulated over the entireFITSFITSHDU to equal negative 0
(all 32 bits equal to 1). In addition, this string will only contain
alphanumeric characters within the ranges 0–9, A–Z, and a–zto
promote human readability and transcription. If the present algo-
rithm is used, theCHECKSUMkeyword valuemustCHECKSUM
keyword valuemustbe expressed in fixed format, with the start-
ing single quote character in columnsingle-quote character in
Column 11 and the endingsingle quote character in column
single-quote character in Column28 of theFITSFITSkeyword
record, because the relative placement of the value string within
the keyword record affects the computed HDU checksum. The
steps in the algorithm are as follows: .

1. Write theCHECKSUMCHECKSUM keyword into the HDU
header with an initial value consisting of 16 ASCII
zeros (’0000000000000000’’0000000000000000’) where
the first single quotesingle-quotecharacter is incolumn
Column11 of theFITSFITS keyword record. This specific
initialization string isrequiredrequiredby the encoding al-
gorithm described in Sect.J.2J.2.The final comment field
of the keyword, if any,mustmustalso be written at this time.
It is recommendedrecommendedthat the current date and
time be recorded in the comment field to document when the
checksum was computed.

2. Accumulate the 32-bit1’ s ones’complement checksum over
theFITSFITS logical records that make up the HDU header
in the same manner as was done for the data records by inter-
preting each 2880-byte logical record as 720 32-bit unsigned
integers.

3. Calculate the checksum for the entire HDU by adding (us-
ing 1’ s ones’complement arithmetic) the checksum accu-
mulated over the header records to the checksum accumu-
lated over the data records (i.e., the previously computed
DATASUMDATASUM keyword value).

4. Compute the bit-wise complement of the 32-bit total HDU
checksum value by replacing all 0 bits with 1 and all 1 bits
with 0.

5. Encode the complement of the HDU checksum into a 16-
character ASCII string using the algorithm described in Sect.
J.2

6. Replace the initialCHECKSUMCHECKSUM keyword value
with this 16-character encoded string. The checksum for the
entire HDU will now be equal to negative 0.

J.2. Recommended ASCII Encoding Algorithmencoding
algorithm

The algorithm described here is used to generate an
ASCII string, which, when substituted for the value of the
CHECKSUMCHECKSUM keyword, will force the checksum for

the entire HDU to equal negative 0. It is based on a fundamen-
tal property of1’ s ones’complement arithmetic that the sum
of an integer and the negation of that integer (i.e, the bitwise
complement formed by replacing all 0 bits with 1s and all 1 bits
with 0s) will equal negative 0 (all bits set to 1). This principle is
applied here by constructing a 16-character string, which, when
interpreted as a byte stream of four 32-bit integers, has a sum
that is equal to the complement of the sum accumulated over the
rest of the HDU. This algorithm also ensures that the 16 bytes
that make up the four integers all have values that correspond to
ASCII alpha-numeric characters in the range 0–9, A–Z, and a–z.

1. Begin with the1’ s ones’ complement (replace 0s with
1s and 1s with 0s) of the 32-bit checksum accumu-
lated over all theFITS FITS records in the HDU af-
ter first initializing the CHECKSUMCHECKSUM keyword
with a fixed-format string consisting of 16 ASCII zeros
(’0000000000000000’’0000000000000000’).

2. Interpret this complemented 32-bit value as a sequence of
four unsigned8-bit integers, A, B, C and D, where A is the
most significant byte and D is the least significanteight-bit
integers,A, B, C, andD, whereA is the most-significant byte
andD is the least-significant byte. Generate a sequence of
four integers,A1, A2, A3, A4A1, A2, A3, A4, that are all
equal toA A divided by 4 (truncated to an integer if neces-
sary). If A A is not evenly divisible by 4, add the remainder
to A1A1. The key property to note here is that the sum of the
four new integers is equal to the original byte value (e.g.,A
= A1 + A2 + A3 + A4A = A1 + A2 + A3 + A4). Perform
a similar operation onB, C, and DB, C, andD, resulting in
a total of 16 integer values,4 four from each of the original
bytes, whichshouldshouldbe rearranged in the following
order:

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4.

Each of these integers represents one of the 16 characters in
the finalCHECKSUMCHECKSUM keyword value. Note that
if this byte stream is interpreted as4 four 32-bit integers, the
sum of the integers is equal to the original complemented
checksum value.

3. Add 48 (hex 30), which is the value of an ASCII zero char-
acter, to each of the 16 integers generated in the previous
step. This places the values in the range of ASCII alphanu-
meric characters ’0’ (ASCII zero) to ’r’. This offset is effec-
tively subtracted back out of the checksum when the initial
CHECKSUMCHECKSUM keyword value string of 16 ASCII
0s is replaced with the final encoded checksum value.

4. To improve human readability and transcription of the string,
eliminate any non-alphanumeric characters by considering
the bytes a pair at a time (e.g.,A1 + A2, A3 + A4, B1 +
B2A1 + A2, A3 + A4, B1 + B2, etc.) and repeatedly incre-
ment the first byte in the pair by 1 and decrement the2nd
secondbyte by 1 as necessary until they both correspond to
the ASCII value of the allowed alphanumeric characters 0–9,
A–Z, and a–z shown in Figure1. J.1.Note that this operation
conserves the value of the sum of the4 four equivalent 32-bit
integers, which is required for use in this checksum applica-
tion.

5. Cyclically shift all 16 characters in the string one placeto
the right, rotating the last character (D4D4) to the begin-
ning of the string. This rotation compensates for the fact that
the fixed formatFITScharacter stringFITS character-string

68

D
R

A
FT

69

Fig. J.1:Only ASCII alpha-numeric characters are used to en-
code the checksum – punctuation is excluded

222

0 30 1 31 2 32 3 33 4 34 5 35 6 36 7 37 8 38 9 39

: 3a ; 3b < 3c = 3d > 3e ? 3f @ 40 A 41 B 42 C 43

D 44 E 45 F 46 G 47 H 48 I 49 J 4a K 4b L 4c M 4d

N 4e O 4f P 50 Q 51 R 52 S 53 T 54 U 55 V 56 W 57

X 58 Y 59 Z 5a [5b \ 5c] 5d ^ 5e _ 5f ‘ 60 a 61

b 62 c 63 d 64 e 65 f 66 g 67 h 68 i 69 j 6a k 6b

l 6c m 6d n 6e o 6f p 70 q 71 r 72

Figure 1. Only ASCII alpha-numerics are used to encode the checksum — punctuation is excluded.2221
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

values are not aligned on4-bytefour-byteword boundaries
in theFITSFITSfile. (The first character of the string starts
in columnColumn12 of the header card image, rather than
columnColumn13).

6. Write this string of 16 characters to the value of the
CHECKSUMCHECKSUM keyword, replacing the initial string
of 16 ASCII zeros.

To invert the ASCII encoding, cyclically shift the 16 charac-
ters in the encoded string one place to the left, subtract thehex
30 offset from each character, and calculate the checksum by in-
terpreting the string as four 32-bit unsigned integers. This can be
used, for instance, to read the value ofCHECKSUMCHECKSUM
into the software when verifying or updating a HDU.

J.3. Encoding Exampleexample

This example illustrates the encoding algorithm given in Sect.
J.2 Consider aFITSHDU whose 1’ s FITS HDU whose

ones’ complement checksum is 868229149, which is equiva-
lent to hex33C0201D33C0201D. This number was obtained
by accumulating the 32-bit checksum over the header and
data records using1’ s ones’ complement arithmetic after
first initializing the CHECKSUMCHECKSUM keyword value to
’0000000000000000’’0000000000000000’. The complement
of the accumulated checksum is 3426738146, which is equiva-
lent to hexCC3FDFE2CC3FDFE2. The steps needed to encode
this hex value into ASCII are shown schematically below: .

Byte Preserve byte alignment

A B C D A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

CC 3F DF E2 -> 33 0F 37 38 33 0F 37 38 33 0F 37 38 33 0F 37 38

+ remainder 0 3 3 2

= hex 33 12 3A 3A 33 0F 37 38 33 0F 37 38 33 0F 37 38

+ 0 offset 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

= hex 63 42 6A 6A 63 3F 67 68 63 3F 67 68 63 3F 67 68

ASCII c B j j c ? g h c ? g h c ? g h

Eliminate punctuation characters

initial values c B j j c ? g h c ? g h c ? g h

. c C j j c > g h c @ g h c > g h

. c D j j c = g h c A g h c = g h

. c E j j c < g h c B g h c < g h

. c F j j c ; g h c C g h c ; g h

. c G j j c : g h c D g h c : g h

final values c H j j c 9 g h c E g h c 9 g h

final string "hcHjjc9ghcEghc9g" (rotate 1 place to the right)

In this examplebyte B1 Byte B1 (originally ASCII BB)
is shifted higher (to ASCIIHH) to balancebyte B2 Byte B2

(originally ASCII ??) being shifted lower (to ASCII99).
Similarly, bytes B3 and B4BytesB3 andB4 are shifted by op-
posing amounts. This is possible because the two sequences of
ASCII punctuation characters that can occur in encoded check-
sums are both preceded and followed by longer sequences of
ASCII alphanumeric characters. This operation is purely for cos-
metic reasons to improve readability of the final string.

This is how theseCHECKSUMand DATASUMCHECKSUM
and DATASUM keywords would appear in aFITSFITS header
(with the recommended time stamp in the comment field).:

DATASUM = '2503531142' / 2015-06-28T18:30:45

CHECKSUM= 'hcHjjc9ghcEghc9g' / 2015-06-28T18:30:45

J.4. Incremental Updating updating of the
Checksumchecksum

The symmetry of1’ s ones’complement arithmetic also means
that after modifying aFITSFITSHDU, the checksummaymay
be incrementally updated using simple arithmetic without accu-
mulating the checksum for portions of the HDU that have not
changed. The new checksum is equal to the old total checksum
plus the checksum accumulated over the modified records, mi-
nus the original checksum for the modified records.

An incremental update provides the mechanism for end-to-
end checksum verification through any number of intermediate
processing steps. Bycalculatingrather thanaccumulatingthe in-
termediate checksums, the original checksum test is propagated
through to the final data file. On the other hand, if a new check-
sum is accumulated with each change to the HDU, no informa-
tion is preserved about the HDU’s original state.

The recipe for updating theCHECKSUMCHECKSUM key-
word following some change to the HDU is:C′ = C − m+m′,
whereC andC′ represent the HDU’s checksum (that is, the com-
plement of theCHECKSUMCHECKSUM keyword) before and af-
ter the modification andm andm′ are the corresponding check-
sums for the modifiedFITSFITS records or keywords only.
Since theCHECKSUMCHECKSUM keyword contains the com-
plement of the checksum, the correspondingly complemented
form of the recipe is more directly useful: ˜C′ = ˜(C + ˜m+m′),
where ˜ (tilde) denotes the (1’sones’) complement operation. See
Braden et al. (1988); Mallory & Kullberg (1990); Rijsinghani
(1994). Note that the tilde on the right hand side of the equation
cannot be distributed over the contents of the parentheses due
to the dual nature of zero in1’ s ones’complement arithmetic
(Rijsinghani 1994).

J.5. Example C Code code for Accumulating accumulating
the Checksumchecksum

The1’ s ones’complement checksum is simple and fast to com-
pute. This routine assumes that the input records are a multiple of
4 four bytes long (as is the case forFITS FITS logical records),
but it is not difficult to allow for odd length records if neces-
sary. To use this routine, first initialize theCHECKSUMkeyword
to ’0000000000000000’and initialize sum32 = 0CHECKSUM
keyword to’0000000000000000’ and initializesum32 = 0,
then step through all theFITSFITS logical records in theFITS
FITSHDU.

void checksum (

unsigned char *buf, /* Input array of bytes to be checksummed */

/* (interpret as 4-byte unsigned ints) */

69

	Contents
	Introduction
	Brief history of FITS
	Version history of this document
	Acknowledgments

	Definitions, acronyms, and symbols
	Conventions used in this document
	Defined terms

	FITS file organization
	Overall file structure
	Individual FITS Structures
	Primary header and data unit
	Primary header
	Primary data array

	Extensions
	Requirements for conforming extensions
	Standard extensions
	Order of extensions

	Special records (restricted use)
	Physical blocking
	Bit-stream devices
	Sequential media

	Restrictions on changes

	Headers
	Keyword records
	Syntax
	Components

	Value
	Character string
	Logical
	Integer number
	Real floating-point number
	Complex integer number
	Complex floating-point number
	Date

	Units
	Construction of units strings
	Units in comment fields

	Keywords
	Mandatory keywords
	Other reserved keywords
	Additional keywords

	Data representation
	Characters
	Integers
	Eight-bit
	Sixteen-bit
	Thirty-two-bit
	Sixty-four-bit
	Unsigned integers

	IEEE-754 floating point
	Time

	Random-groups structure
	Keywords
	Mandatory keywords
	Reserved keywords

	Data sequence
	Data representation

	Standard extensions
	Image extension
	Mandatory keywords
	Other reserved keywords
	Data sequence

	The ASCII-table extension
	Mandatory keywords
	Other reserved keywords
	Data sequence
	Fields
	Entries

	Binary-table extension
	Mandatory keywords
	Other reserved keywords
	Data sequence
	Data display
	Variable-length arrays
	Variable-length-array guidelines

	World-coordinate systems
	Basic concepts
	World-coordinate-system representations
	Alternative WCS axis descriptions

	Celestial-coordinate-system representations
	Spectral-coordinate-system representations
	Spectral-coordinate reference frames

	Conventional-coordinate types

	Representations of time coordinates
	Time values
	ISO-8601 datetime strings
	Julian and Besselian epochs

	Time coordinate frame
	Time scale
	Time reference value
	Time reference position
	Time reference direction
	Solar System ephemeris

	Time unit
	Time offset, binning, and errors
	Time offset
	Time resolution and binning
	Time errors

	Global time keywords
	Other time-coordinate axes
	Durations
	Recommended best practices
	Global keywords and overrides
	Restrictions on alternate descriptions
	Image time axes

	Representations of compressed data
	Tiled image compression
	Required keywords
	Other reserved keywords
	Table columns

	Quantization of floating-point data
	Dithering algorithms
	Preserving undefined pixels with lossy compression

	Tiled table compression
	Required keywords
	Procedure for table compression
	Compression directive keywords
	Other reserved keywords
	Supported compression algorithms for tables
	Compressing variable-length array columns

	Compression algorithms
	Rice compression
	Gzip compression
	IRAF/PLIO compression
	H-Compress algorithm

	Syntax of keyword records
	Suggested time-scale specification
	Summary of keywords
	ASCII text
	IEEE floating-point formats
	Basic formats
	Single
	Double

	Byte patterns

	Reserved extension type names
	Standard extensions
	Conforming extensions
	Other suggested extension names

	MIME types
	MIME type `application/fits'
	Recommendations for application writers

	MIME type `image/fits'
	Recommendations for application writers

	File extensions

	Past changes or clarifications to the formal definition of FITS
	Differences between the requirements in this Standard and the requirements in the original FITS papers.
	List of modification to the FITS Standard, Version 3.0
	List of modifications to the latest FITS Standard
	List of modifications for language editing

	Random-number generator
	CHECKSUM implementation guidelines
	Recommended CHECKSUM keyword implementation
	Recommended ASCII encoding algorithm
	Encoding example
	Incremental updating of the checksum
	Example C code for accumulating the checksum
	Example C code for ASCII encoding

	Header inheritance convention
	Green Bank convention
	References / Index

