
D
R

AF
TDefinition of the Flexible Image Transport System

(FITSFITS)

The FITSFITS Standard

Version 4.0: updated 2016 July 22 by the IAUFWG

Document Original document publication date: 2016 July 22
Language-edited document publication date: 2018 August xx

FITSFITS Working Group 1

Commission 5: Documentation and Astronomical Data 2

International Astronomical Union
http://fits.gsfc.nasa.gov/iaufwg/

1 to be absorbed in Data Representation Working Group under new Commission B2
2 now Commission B2 Data and Documentation

1

http://fits.gsfc.nasa.gov/iaufwg/

D
R

AF
T

0

D
R

AF
T

i

Contents

List of Tables

i

D
R

AF
T

ii

ii

D
R

AF
T

1

1. Introduction

An archival format must be utterly portable and self-
describing, on the assumption that, apart from the tran-
scription device, neither the software nor the hardware
that wrote the data will be available when the data
are read. ‘Preserving Scientific Data on our Physical
Universe,’ p. 60. Steering Committee for the Study
on the Long-Term Retention of Selected Scientific and
Technical Records of the Federal Government, [US]
National Research Council, National Academy Press
1995.

This document, hereafter referred to as the
‘standardStandard’, describes the Flexible Image Transport
System (FITS)FITS), which is the standard archival data format
for astronomical data sets. Although FITSFITS was originally
designed for transporting image data on magnetic tape (which
accounts for the ‘I’ and ‘T’ in the name), the capabilities of
the FITSFITS format have expanded to accommodate more
complex more-complex data structures. The role of FITSFITS
has also grown from simply a way to transport data between
different analysis software systems into the preferred format for
data in astronomical archives, as well as the on-line analysis
format used by many software packages.

This standard is intended as a formal codification of the
FITSformatFITS format, which has been endorsed by the
International Astronomical Union (IAU) for the interchange of
astronomical data (?). It is fully consistent with all actions and
endorsements of the IAU FITSFITS Working Group (IAUFWG),
which was appointed by Commission 5 of the IAU to oversee
further development of the FITSFITS format. In particular, this
standard defines the organization and content of the header and
data units for all standard FITSFITS data structures: the primary
array, the random groups random-groups structure, the image ex-
tension, the ASCII table ASCII-table extension, and the binary
table binary-table extension. It also specifies minimum structural
requirements and general principles governing the creation of
new extensions. For headers, it specifies the proper syntax for
keyword records and defines required and reserved keywords.
For data, it specifies character and numeric value character-
and numeric-value representations and the ordering of contents
within the byte stream.

One important feature of the FITSFITS format is that its
structure, down to the bit level, is completely specified in docu-
ments (such as this standard), many of which have been pub-
lished in refereed scientific journals. Given these documents,
which are readily available in hard copy form in libraries around
the world as well as in electronic form on the Internet, future
researchers should be able to decode the stream of bytes in any
FITSFITS format data file. In contrast, many other current data
formats are only implicitly defined by the software that reads and
writes the files. If that software is not continually maintained so
that it can be run on future computer systems, then the informa-
tion encoded in those data files could be lost.

1.1. Brief history of FITSFITS

The FITSFITS format evolved out of the recognition that a stan-
dard format was needed for transferring astronomical images
from one research institution to another. The first prototype de-
velopments of a universal interchange format that would eventu-

ally lead to the definition of the FITSFITS format began in 1976
between Don Wells at KPNO and Ron Harten at the Netherlands
Foundation for Research in Astronomy (NFRA). This need for
an image interchange format was raised at a meeting of the
Astronomy section of the U.S. National Science Foundation in
January 1979, which led to the formation of a task force to work
on the problem. Most of the technical details of the first basic
FITSFITS agreement (with files consisting of only a primary
header followed by a data array) were subsequently developed
by Don Wells and Eric Greisen (NRAO) in March 1979. After
further refinements, and successful image interchange tests be-
tween observatories that used widely different types of computer
systems, the first papers that defined the FITSFITS format were
published in 1981 (??). The FITSFITS format quickly became
the defacto de facto standard for data interchange within the as-
tronomical community (mostly on 9-track nine-track magnetic
tape at that time), and was officially endorsed by the IAU in
1982 (?). Most national and international astronomical projects
and organizations subsequently adopted the FITSFITS format
for distribution and archiving of their scientific data products.
Some of the highlights in the developmental history of FITSFITS
are shown in Table ??.

1.2. Version history of this document

The fundamental definition of the FITSFITS format was orig-
inally contained in a series of published papers (????). As
FITSFITS became more widely used, the need for a single docu-
ment to unambiguously define the requirements of the FITSFITS
format became apparent. In 1990, the NASA Science Office of
Standards and Technology (NOST) at the Goddard Space Flight
Center provided funding for a technical panel to develop the
first version of this standard Standard document. As shown in
Table ??, the NOST panel produced several draft versions, cul-
minating in the first NOST standard document, NOST 100-1.0,
in 1993. Although this document was developed under a NASA
accreditation process, it was subsequently formally approved by
the IAUFWG, which is the international control authority for the
FITSFITS format. The small update to the standard Standard in
1995 (NOST 100-1.1) added a recommendation on the physical
units of header keyword values.

The NOST technical panel was convened a second time to
make further updates and clarifications to the standardStandard,
resulting in the NOST 100-2.0 versionthat , which was approved
by the IAUFWG in 1999 and published in 2001 (?). In 2005,
the IAUFWG formally approved the variable-length array con-
vention in binary tables, and a short time later approved support
for the 64-bit integers data type. New versions of the standard
Standard were released to reflect both of these changes (versions
IAUFWGVersions IAUFWG 2.1 and IAUFWG 2.1b).

In early 2007 the IAUFWG appointed its own technical
panel to consider further modifications and updates to the
standardStandard. The changes proposed by this panel, which
were ultimately approved in 2008 by the IAUFWG after a for-
mal public review process, are shown in the Version 3.0 version
of the document, published in ?.

Since 2006 a Registry for FITS conventions submitted by the
community was established under the care of the IAUFWG at
http://fits.gsfc.nasa.gov/fits_registry.html. The
Registry was intended as a repository of documentation of us-
ages, which, although not endorsed as part of the FITS Standard,

1

http://fits.gsfc.nasa.gov/fits_registry.html

D
R

AF
T

2

Table 1: Significant milestones in the development of FITSFITS.

Date Milestone Section
1979 Initial FITSFITS Agreement and first interchange of files
1981 Published original (single HDU) definition (?)
1981 Published random groups random-groups definition (?) Sect. ??
1982 Formally endorsed by the IAU (?)
1988 Defined rules for multiple extensions (?)
1988 IAU FITSFITS Working Group (IAUFWG) established
1988 Extended to include ASCII table ASCII-table extensions (?) Sect. ??
1988 Formal IAU approval of ASCII tables (?) Sect. ??
1990 Extended to include IEEE floating-point data (?) Sect. ??
1994 Extended to multiple IMAGEarray IMAGE-array extensions (?) Sect. ??
1995 Extended to binary table binary-table extensions (?) Sect. ??
1997 Adopted 4-digit year four-digit-year date format (?) Sect. ??
2002 Adopted proposals for world coordinate world-coordinate systems (?) Sect. ??
2002 Adopted proposals for celestial coordinates (?) Sect. ??
2004 Adopted MIME types for FITSFITS data files (?) App. ??
2005 Extended to support variable-length arrays in binary tables Sect. ??
2005 Adopted proposals for spectral coordinate spectral-coordinate systems (?) Sect. ??
2005 Extended to include 64-bit integer data type Sect. ??
2006 Adopted WCS HEALPix projection (?) Sect. ??
2006 Established FITS convention registry
2014 Adopted proposals for time coordinates (?) Sect. ??
2016 Adopted proposals for compressed data Sect. ??
2016 Adopted various registered conventions App. ??
2018 General language editing App. ??

Table 2: Version history of the standardStandard.

Version Date Status
NOST 100-0.1 1990 December First Draft Standard
NOST 100-0.2 1991 June Second Revised Draft Standard
NOST 100-0.3 1991 December Third Revised Draft Standard
NOST 100-1.0 1993 June NOST Standard
NOST 100-1.1 1995 September NOST Standard
NOST 100-2.0 1999 March NOST Standard
IAUFWG 2.1 2005 April IAUFWG Standard
IAUFWG 2.1b 2005 December IAUFWG Standard
IAUFWG 3.0 2008 July IAUFWG Standard
IAUFWG 4.0 2016 July IAUFWG Standard (approved)
IAUFWG 4.0 2018 August IAUFWG Standard (language-edited)

are otherwise perfectly legal usages of FITS. In 2014 a small
team was formed to evaluate the possible incorporation of some
conventions within the Standard, while another small team was
in charge to update the Standard document with a summary of
the WCS time representation (?), which in the meanwhile had
been voted natively as part of the FITS Standard.

Details on the conventions that have been incorporated into
this latest version of the Standard (CONTINUE long-string key-
words, blank header space, CHECKSUM, column limits, tiled im-
age and table compression) or only briefly mentioned (key-
word inheritance and Green Bank conventions) are described in
Appendix ??, which also lists the corresponding affected sec-
tions of the Standard.

After the approval by the IAUFWG in July 2016 the
Standard was subjected to a thorough language editing (with no
impact on the technical prescriptions) before the final issue in
2018. Details about the language editing changes are provided
in Appendix ??.

The latest version of the standardStandard, as well as other
information about the FITSFITS format, can be obtained from

the FITSSupport Office web site FITS Support Office web-
site at http://fits.gsfc.nasa.gov. This web site website
also contains the contact information for the Chairman of the
IAUFWG, to whom any questions or comments regarding this
standard Standard should be addressed.

1.3. Acknowledgments

The members of the three technical panels that produced this
standard Standard are shown below.

First technical panel, 1990 – 19931990–1993
Robert J. Hanisch (Chair) Space Telescope Science Inst.
Lee E. Brotzman Hughes STX
Edward Kemper Hughes STX
Barry M. Schlesinger Raytheon STX
Peter J. Teuben University of Maryland
Michael E. Van SteenbergNASA Goddard SFC
Wayne H. Warren Jr. Hughes STX
Richard A. White NASA Goddard SFC

2

http://fits.gsfc.nasa.gov

D
R

AF
T

3

Second technical panel, 1994 – 19991994–1999
Robert J. Hanisch (Chair) Space Telescope Science Inst.
Allen Farris Space Telescope Science Inst.
Eric W. Greisen National Radio Astr. Obs.
William D. Pence NASA Goddard SFC
Barry M. Schlesinger Raytheon STX
Peter J. Teuben University of Maryland
Randall W. Thompson Computer Sciences Corp.
Archibald Warnock A/WWW Enterprises

Third technical panel, 2007
William D. Pence (Chair) NASA Goddard SFC
Lucio Chiappetti IASF Milano, INAF, Italy
Clive G. Page University of Leicester, UK
Richard Shaw National Optical Astr. Obs.
Elizabeth Stobie University of Arizona

Dedicated task forces, 2013-2016
Lucio Chiappetti IASF Milano, INAF, Italy
Steve Allen UCO Lick Observatory
Adam Dobrzycki European Southern Observatory
William D. Pence NASA Goddard SFC
Arnold Rots Harvard Smithsonian CfA
Richard Shaw National Optical Astr. Obs.
William T. Thompson NASA Goddard SFC

Language editing, 2016-2018
Malcolm J. Currie Rutherford Appleton Lab, UK
Lucio Chiappetti IASF Milano, INAF, Italy

2. Definitions, acronyms, and symbols

2.1. Conventions used in this document

Terms or letters set in Courier fontCourier typeface
represent literal strings that appear in FITSFITS files. In the case
of keyword names, such as ‘NAXISnNAXISn’, the lower case
lower-case letter represents a positive integer index number, gen-
erally in the range 1 to 999. The emphasized words must, shall,
should, may, recommended, and optionalmust, shall, should,
may, recommended, required, and optional in this document are
to be interpreted as described in IETF standard, RFC 2119 (?).

2.2. Defined terms

 Used to designate an ASCII space character.
ANSI American National Standards Institute.
Array A sequence of data values. This sequence corresponds

to the elements in a rectilinear, n-dimension -dimensional
matrix (1 ≤ n ≤ 999, or n = 0 in the case of a null array).

Array value The value of an element of an array in a FITSFITS
file, without the application of the associated linear transfor-
mation to derive the physical value.

ASCII American National Standard Code for Information
Interchange.

ASCII character Any member of the 7-bit seven-bit ASCII
character set.

ASCII digit One of the ten ASCII characters ‘0’ through ‘9’,
which are represented by decimal character codes 48 through
57 (hexadecimal 30 through 39).

ASCII NULL The ASCII character that has all eight bits set to
zero.

ASCII space The ASCII character for space, which is repre-
sented by decimal 32 (hexadecimal 20).

ASCII text The restricted set of ASCII characters decimal 32
through 126 (hexadecimal 20 through 7E).

Basic FITS The FITS
Basic FITS The FITS structure consisting of the primary

header followed by a single primary data array. This is
also known as Single Image FITSFITS (SIF), as opposed to
Multi-Extension FITSFITS (MEF) files that contain one or
more extensions following the primary HDU.

Big endian The numerical data format used in FITSFITS files
in which the most significant most-significant byte of the
value is stored first followed by the remaining bytes in or-
der of significance.

Bit A single binary digit.
Byte An ordered sequence of eight consecutive bits treated as a

single entity.
Card image An obsolete term for an 80-character keyword

record derived from the 80-column punched computer cards
that were prevalent in the 1960s and 1970s.

Character string A sequence of one or more of the restricted
set of ASCII text ASCII-text characters, decimal 32 through
126 (hexadecimal 20 through 7E).

Conforming extension An extension whose keywords and or-
ganization adhere to the requirements for conforming exten-
sions defined in Sect. ?? of this standardStandard.

Data block A 2880-byte FITSFITS block containing data de-
scribed by the keywords in the associated header of that
HDU.

Deprecate To express disapproval of. This term is used to re-
fer to obsolete structures that should notshould not be used
in new FITSfilesbut which shallFITS files, but which shall
remain valid indefinitely.

Entry A single value in an ASCII table or binary table ASCII-
table or binary-table standard extension.

Extension A FITSFITS HDU appearing after the primary HDU
in a FITSFITS file.

Extension type name The value of the XTENSIONXTENSION
keyword, used to identify the type of the extension.

Field A component of a larger entity, such as a keyword record
or a row of an ASCII table or binary table ASCII-table or
binary-table standard extension. A field in a table extension
table-extension row consists of a set of zero or more zero-or-
more table entries collectively described by a single format.

File A sequence of one or more records terminated by an end-
of-file indicator appropriate to the medium.

FITS
FITS Flexible Image Transport System.
FITSblock
FITS block A sequence of 2880 8-bit eight-bit bytes aligned on

2880 byte 2880-byte boundaries in the FITSFITS file, most
commonly either a header block or a data block. Special
records are another infrequently used type of FITSFITS
block. This block length was chosen because it is evenly di-
visible by the byte and word lengths of all known computer
systems at the time FITSFITS was developed in 1979.

FITSfile
FITS file A file with a format that conforms to the specifications

in this document.

3

D
R

AF
T

4

FITSstructure
FITS structure One of the components of a FITSFITS file: the

primary HDU, the random groupsrandom-groups records, an
extension, or, collectively, the special records following the
last extension.

FITSSupport Office The FITSinformation web site
FITS Support Office The FITS information website that is

maintained by the IAUFWG and is currently hosted at http:
//fits.gsfc.nasa.gov.

Floating point A computer representation of a real number.
Fraction The field of the mantissa (or significand) of a floating-

point number that lies to the right of its implied binary point.
Group parameter value The value of one of the parameters

preceding a group in the random groups random-groups
structure, without the application of the associated linear
transformation.

HDU Header and Data Unit. A data structure consisting of a
header and the data the header describes. Note that an HDU
maymay consist entirely of a header with no data blocks.

Header A series of keyword records organized within one or
more header blocks that describes structures and/or data
which that follow it in the FITSFITS file.

Header block A 2880-byte FITSFITS block containing a se-
quence of thirty-six 80-character keyword records.

Heap The supplemental data area following the main data table
in a binary table binary-table standard extension.

IAU International Astronomical Union.
IAUFWG International Astronomical Union FITSFITS

Working Group.
IEEE Institute of Electrical and Electronic Engineers.
IEEE NaN IEEE Not-a-Number value; used to represent unde-

fined floating-point values in FITSFITS arrays and binary ta-
bles.

IEEE special values Floating-point number byte patterns
that have a special, reserved meaning, such as −0, ±∞,
±underflow, ±overflow, ±denormalized, ±NaN. (See
Appendix ??).

Indexed keyword A keyword name that is of the form of a
fixed root with an appended positive integer index number.

Keyword name The first eight bytes of a keyword record,
which contain the ASCII name of a metadata quantity (un-
less it is blank).

Keyword record An 80-character record in a header block con-
sisting of a keyword name in the first eight characters fol-
lowed by an optionaloptional value indicator, value, and
comment string. The keyword record shallshall be composed
only of the restricted set of ASCII text ASCII-text characters
ranging from decimal 32 to 126 (hexadecimal 20 to 7E).

Mandatory keyword A keyword that mustmust be used in all
FITSFITS files or a keyword required required in conjunc-
tion with particular FITSFITS structures.

Mantissa Also known as significand. The component of an
IEEE floating-point number consisting of an explicit or im-
plicit leading bit to the left of its implied binary point and a
fraction field to the right.

MEF Multi-Extension FITSFITS, i.e., a FITSFITS file contain-
ing a primary HDU followed by one or more extension
HDUs.

NOST NASA/Science Office of Standards and Technology.
Physical value The value in physical units represented by an el-

ement of an array and possibly derived from the array value

using the associated, but optionaloptional, linear transforma-
tion.

Pixel Short for ‘Picture element’; a single location within an
array.

Primary data array The data array contained in the primary
HDU.

Primary HDU The first HDU in a FITSFITS file.
Primary header The first header in a FITSFITS file, containing

information on the overall contents of the file (as well as on
the primary data array, if present).

Random Group A FITSFITS structure consisting of a collec-
tion of ‘groups’, where a group consists of a subarray of data
and a set of associated parameter values. Random groups are
deprecated for any use other than for radio interferometry
data.

Record A sequence of bits treated as a single logical entity.
Repeat count The number of values represented in a field in a

binary tablebinary-table standard extension.
Reserved keyword An optionalkeyword that mustoptional

keyword that must be used only in the manner defined in
this standardStandard.

SIF Single Image FITSFITS, i.e., a FITSFITS file containing
only a primary HDU, without any extension HDUs. Also
known as Basic FITSFITS.

Special records A series of one or more FITSFITS blocks fol-
lowing the last HDU whose internal structure does not other-
wise conform to that for the primary HDU or to that specified
for a conforming extension in this standardStandard. Any use
of special records requires approval from the IAU FITS FITS
Working Group.

Standard extension A conforming extension whose header and
data content are completely specified in Sect. ?? of this
standardStandard, namely, an image extension, an ASCII
table ASCII-table extension, or a binary table binary-table
extension.

3. FITSFITS file organization

3.1. Overall file structure

A FITSfile shallFITS file shall be composed of the following
FITSFITS structures, in the order listed:

– Primary header and data unit (HDU).
– Conforming Extensions (optionaloptional).
– Other special records (optionaloptional, restricted).

A FITSFITS file composed of only the primary HDU is some-
times referred to as a Basic FITSFITS file, or a Single Image
FITSFITS (SIF) file, and a FITSFITS file containing one or more
extensions following the primary HDU is sometimes referred to
as a Multi-Extension FITSFITS (MEF) file.

Each FITSFITS structure shallshall consist of an inte-
gral number of FITSblocksFITS blocks, which are each 2880
bytes (23040 bits) in length. The primary HDU shallshall start
with the first FITSFITS block of the FITSFITS file. The first
FITSFITS block of each subsequent FITSFITS structure shallbe
the FITSshall be the FITS block immediately following the last
FITSFITS block of the preceding FITSFITS structure.

This standard does not impose Standard neither imposes a
limit on the total size of a FITSFITS file, nor imposes a limit on
the size of an individual HDU within a FITSFITS file. Software
packages that read or write data according to this standard

4

http://fits.gsfc.nasa.gov
http://fits.gsfc.nasa.gov

D
R

AF
T

5

Standard could be limited, however, in the size of files that are
supported. In particular, some software systems have histori-
cally only supported files up to 231 bytes in size (approximately
2.1 × 109 bytes).

3.2. Individual FITSFITS Structures

The primary HDU and every extension HDU shallshall consist
of one or more 2880-byte header blocks immediately followed
by an optionaloptional sequence of associated 2880-byte data
blocks. The header blocks shallshall contain only the restricted
set of ASCIIASCII-text text characters, decimal 32 through 126
(hexadecimal 20 through 7E). The ASCII control characters with
decimal values less than 32 (including the null, tab, carriage re-
turn, and line feed line-feed characters), and the delete character
(decimal 127 or hexadecimal 7F) must notmust not appear any-
where within a header block.

3.3. Primary header and data unit

The first component of a FITSfile shallFITS file shall be the
primary HDU, which always contains the primary header and
maymay be followed by the primary data array. If the primary
data array has zero length, as determined by the values of the
NAXISNAXIS and NAXISnNAXISn keywords in the primary
header (Sect. ??), then the primary HDU shallshall contain no
data blocks.

3.3.1. Primary header

The header of a primary HDU shallshall consist of one or more
header blocks, each containing a series of 80-character keyword
records containing only the restricted set of ASCIIASCII-text
text characters. Each 2880-byte header block contains 36 key-
word records. The last header block mustcontain the ENDmust
contain the END keyword (defined in Sect. ??) ??), which marks
the logical end of the header. Keyword records without informa-
tion (e.g., following the ENDEND keyword) shallshall be filled
with ASCII spaces (decimal 32 or hexadecimal 20).

3.3.2. Primary data array

The primary data array, if present, shallshall consist of a single
data array with from 1 to 999 dimensions (as specified by the
NAXISNAXIS keyword defined in Sect. ??). The random groups
random-groups convention in the primary data array is a more
complicated more-complicated structure and is discussed sepa-
rately in Sect. ??. The entire array of data values are represented
by a continuous stream of bits starting with the first bit of the first
data block. Each data value shallshall consist of a fixed number
of bits that is determined by the value of the BITPIXBITPIX key-
word (Sect. ??). Arrays of more than one dimension shallshall
consist of a sequence such that the index along axisAxis 1 varies
most rapidly, that along axisAxis 2 next most rapidly, and those
along subsequent axes progressively less rapidly, with that along
axis m, where mAxis m, where m is the value of NAXISNAXIS,
varying least rapidly. There is no space or any other special char-
acter between the last value on a row or plane and the first value
on the next row or plane of a multi-dimensional array. Except
for the location of the first element, the array structure is in-
dependent of the FITSFITS block structure. This storage order

A(1, 1, . . . , 1),
A(2, 1, . . . , 1),

...,
A(NAXIS1NAXIS1, 1, . . . , 1),
A(1, 2, . . . , 1),
A(2, 2, . . . , 1),

...,
A(NAXIS1NAXIS1, 2, . . . , 1),

...,
A(1, NAXIS2NAXIS2, . . . , NAXISmNAXISm),

...,
A(NAXIS1, NAXIS2NAXIS1, NAXIS2, . . . , NAXISmNAXISm)

Fig. 1: Arrays of more than one dimension shallshall consist
of a sequence such that the index along axis Axis 1 varies
most rapidly and those along subsequent axes progressively less
rapidly.

is shown schematically in Fig. ?? and is the same order as in
multi-dimensional arrays in the Fortran programming language
(?). The index count along each axis shallshall begin with 1 and
increment by 1 up to the value of the NAXISnNAXISn keyword
(Sect. ??).

If the data array does not fill the final data block, the remain-
der of the data block shallshall be filled by setting all bits to zero.
The individual data values shallshall be stored in big-endian
byte order such that the byte containing the most significant
most-significant bits of the value appears first in the FITSFITS
file, followed by the remaining bytes, if any, in decreasing order
of significance.

3.4. Extensions

3.4.1. Requirements for conforming extensions

All extensions, whether or not further described in this standard,
shallStandard, shall fulfill the following requirements to be in
conformance with this FITSstandardFITS Standard. New exten-
sion types shouldshould be created only when the organization
of the information is such that it cannot be handled by one of
the existing extension types. A FITSFITS file that contains ex-
tensions is commonly referred to as a multi-extension FITSFITS
(MEF) file.

3.4.1.1. Identity

Each extension type shallshall have a unique type name,
specified in the header by the XTENSIONXTENSION keyword
(Sect. ??). To preclude conflict, extension type names mustmust
be registered with the IAUFWG. The current list of registered
extensions is given in Appendix ??. An up-to-date list is also
maintained on the FITSSupport Office web siteFITS Support
Office website.

3.4.1.2. Size specification

The total number of bits in the data of each extension

5

D
R

AF
T

6

shallshall be specified in the header for that extension, in the
manner prescribed in Sect. ??.

3.4.2. Standard extensions

A standard extension is a conforming extension whose organi-
zation and content are completely specified in Sect. ?? of this
standardStandard. Only one extension format shallshall be ap-
proved for each type of data organization.

3.4.3. Order of extensions

An extension maymay follow the primary HDU or another con-
forming extension. Standard extensions and other conforming
extensions maymay appear in any order in a FITSFITS file.

3.5. Special records (restricted use)

Special records are 2880-byte FITSFITS blocks following the
last HDU of the FITSFITS file that have an unspecified structure
that does not meet the requirements of a conforming extension.
The first 8 eight bytes of the special records must notmust not
contain the string ‘XTENSION’. It is recommendedrecommended
that they do not contain the string ‘SIMPLE ’. The con-
tents of special records are not otherwise specified by this
standardStandard.

Special records were originally designed as a way for
the FITSFITS format to evolve by allowing new FITSFITS
structures to be implemented. Following the development of
conforming extensions, which provide a general mechanism for
storing different types of data structures in FITSFITS format in a
well defined manner, the need for other new types of FITSFITS
data structures has been greatly reduced. Consequently, further
use of special records is restricted and requires the approval of
the IAU FITS FITS Working Group.

3.6. Physical blocking

3.6.1. Bitstream Bit-stream devices

For bitstream bit-stream devices, including but not restricted to
logical file systems, FITSfiles shallFITS files shall be interpreted
as a sequence of one or more 2880-byte FITSFITS blocks, re-
gardless of the physical blocking structure of the underlying
recording media. When writing a FITSFITS file on media with
a physical block size unequal to the 2880-byte FITSFITS block
length, any bytes remaining in the last physical block follow-
ing the end of the FITSFITS file shouldshould be set to zero.
Similarly, when reading FITSFITS files on such media, any
bytes remaining in the last physical block following the end of
the FITSfile shallFITS file shall be disregarded.

3.6.2. Sequential media

The FITSFITS format was originally developed for writing files
on sequential magnetic tapemagnetic-tape devices. The follow-
ing rules on how to write to sequential media (?) are now irrele-
vant to most current data storage data-storage devices.

If physically possible, FITSfiles shallFITS files shall be writ-
ten on sequential media in blocks that are from one to ten integer
multiples of 2880-bytes 2880 bytes in length. If this is not pos-

sible, the FITSfile shallFITS file shall be written as a bitstream
bit stream using the native block size of the sequential device.
Any bytes remaining in the last block following the end of the
FITSfile shallFITS file shall be set to zero.

When reading FITSFITS files on sequential media, any files
shorter than 2880 bytes in length (e.g., ANSI tape labels) are not
considered part of the FITSfiles and shouldFITS files and should
be disregarded.

3.7. Restrictions on changes

Any structure that is a valid FITSFITS structure shallshall
remain a valid FITSFITS structure at all future times. Use of cer-
tain valid FITSstructures mayFITS structures may be deprecated
by this or future FITSstandard FITS Standard documents.

4. Headers

The first two sections of this chapter define the structure and con-
tent of header keyword records. This is followed in Sect. ?? with
Sect. ?? offers recommendations on how physical units should
be expressed. The final section defines the mandatory and re-
served keywords for primary arrays and conforming extensions.

4.1. Keyword records

4.1.1. Syntax

Each 80-character header keyword record shallshall consist of
a keyword name, a value indicator (only required required
if a value is present), an optionaloptional value, and an
optionaloptional comment. Keywords maymay appear in any
order except where specifically stated otherwise in this
standardStandard. It is recommendedrecommended that the or-
der of the keywords in FITSFITS files be preserved during data
processing operations because the designers of the FITSFITS
file may have used conventions that attach particular signifi-
cance to the order of certain keywords (e.g., by grouping se-
quences of COMMENTCOMMENT keywords at specific loca-
tions in the header, or appending HISTORYHISTORY keywords
in chronological order of the data processing steps) or using
CONTINUECONTINUE keywords to generate long-string key-
word values).

A formal syntax, giving a complete definition of the syn-
tax of FITSFITS keyword records, is given in Appendix ??.
It is intended as an aid in interpreting the text defining the
standardStandard.

In earlier versions of this standard a FITS Standard a FITS
keyword, assumed as an item whose value is to be looked up
by name (and presumably assigned to a variable) by a FITS
reading FITS-reading program, was associated one to one to a
single header keyword record. With the introduction of contin-
ued (long-string) keywords (see Sect. ??.2), such FITS keywords
may FITS keywords may span more than one header keyword
record, and the value shallshall be created by concatenation as
explained in Sect. ??.2.

4.1.2. Components

4.1.2.1. Keyword name (bytesBytes 1 through 8)

6

D
R

AF
T

7

The keyword name shallshall be a left justified, 8-charactereight-
character, space-filled, ASCII string with no embedded spaces.
All digits 0 through 9 (decimal ASCII codes 48 to 57, or
hexadecimal 30 to 39) and upper case Latin alphabetic char-
acters ‘A’through ‘Z’’A’ through ’Z’ (decimal 65 to 90 or
hexadecimal 41 to 5A) are permitted; lower case characters
shall notlower-case characters shall not be used. The underscore
(‘ ’’ ’, decimal 95 or hexadecimal 5F) and hyphen (‘-’’-’,
decimal 45 or hexadecimal 2D) are also permitted. No other
characters are permitted.3 For indexed keyword names that
have a single positive integer index counter appended to the
root name, the counter shall nothave leading zeroes shall not
have leading zeros (e.g., NAXIS1, not NAXIS001NAXIS1,
not NAXIS001). Note that keyword names that begin with (or
consist solely of) any combination of hyphens, underscores, and
digits are legal.

4.1.2.2. Value indicator (bytesBytes 9 and 10)

If the two ASCII characters '= ' (decimal 61 followed by
decimal 32) are present in bytesBytes 9 and 10 of the keyword
record, this indicates that the keyword has a value field associ-
ated with it, unless it is one of the commentary keywords defined
in Sect. ?? (i.e., a HISTORYHISTORY, COMMENTCOMMENT,
or completely blank keyword name)which by definition , which,
by definition, have no value.

4.1.2.3. Value/comment (bytesBytes 11 through 80)

In keyword records that contain the value indicator in
bytesBytes 9 and 10, the remaining bytesBytes 11 through 80 of
the record shallshall contain the value, if any, of the keyword,
followed by optionaloptional comments. In keyword records
without a value indicator, bytesBytes 9 through 80 shouldshould
be interpreted as commentary text, however, this does not
preclude conventions that interpret the content of these bytes in
other ways.

The value field, when present, shallcontain the ASCII text
shall contain the ASCII-text representation of a literal string
constant, a logical constant, or a numerical constant, in the for-
mat specified in Sect. ??. The value field maymay be a null field;
i.e., it maymay consist entirely of spaces, in which case the value
associated with the keyword is undefined.

The mandatory FITSFITS keywords defined in this standard
must notStandard must not appear more than once within
a header. All other keywords that have a value should
notshould not appear more than once. If a keyword does appear
multiple times with different values, then the value is indetermi-
nate.

If a comment follows the value field, it mustmust be
preceded by a slash (‘/’’/’, decimal 47 or hexadecimal
2F).3 A space between the value and the slash is strongly
recommendedrecommended. The comment maymay contain any
of the restricted set of ASCIIASCII-text text characters, deci-
mal 32 through 126 (hexadecimal 20 through 7E). The ASCII
control characters with decimal values less than 32 (including
the null, tab, carriage return, and line feed line-feed characters),

3 This requirement differs from the wording in the original FITSFITS
papers. See Appendix H??.

and the delete character (decimal 127 or hexadecimal 7F) must
notmust not appear anywhere within a keyword record.

4.2. Value

The structure of the value field depends on the data type of the
value. The value field represents a single value and not an array
of values.3 The value field mustmust be in one of two formats:
fixed or free. The fixed-format is required required for values
of mandatory keywords and is recommendedrecommended for
values of all other keywords.

4.2.1. Character string

??.1 Single record Single-record string keywords

A character string character-string value shallshall be com-
posed only of the set of restricted ASCIIASCII-text text
characters, decimal 32 through 126 (hexadecimal 20 through
7E) enclosed by single quote single-quote characters (“'’”,
decimal 39, hexadecimal 27). A single quote is represented
within a string as two successive single quotes, e.g., O’HARA
= 'O''HARA''O''HARA'. Leading spaces are significant; trailing
spaces are not. This standard Standard imposes no requirements
on the case sensitivity of character string values unless explicitly
stated in the definition of specific keywords.

If the value is a fixed-format character string, the start-
ing single quote character mustbe in bytesingle-quote charac-
ter must be in Byte 11 of the keyword record and the clos-
ing single quote mustmust occur in or before byteByte 80.
Earlier versions of this standard also requiredStandard also
required that fixed-format characters strings mustmust be padded
with space characters to at least a length of eight charac-
ters so that the closing quote character does not occur be-
fore byteByte 20. This minimum character string character-
string length is no longer requiredrequired, except for the value
of the XTENSIONXTENSION keyword (e.g., 'IMAGE ' and
'TABLE '; see Sect. ??)which must ??), which must be
padded to a length of eight characters for backward compati-
bility with previous usage.

Free-format character strings follow the same rules as fixed-
format character strings except that the starting single quote
character mayoccur after bytesingle-quote character may occur
after Byte 11. Any bytes preceding the starting quote character
and after byteByte 10 mustmust contain the space character.

Note that there is a subtle distinction between the following
three keywords: .

KEYWORD1= '' / null string keyword
KEYWORD2= ' ' / empty string keyword
KEYWORD3= / undefined keyword

The value of KEYWORD1KEYWORD1 is a null, or zero
length zero-length string whereas the value of the
KEYWORD2KEYWORD2 is an empty string (nominally a
single space character because the first space in the string
is significant, but trailing spaces are not). The value of
KEYWORD3KEYWORD3 is undefined and has an indeterminate
data type as well, except in cases where the data type of the
specified keyword is explicitly defined in this standardStandard.

7

D
R

AF
T

8

The maximum length of a string value that can be repre-
sented on a single keyword record is 68 characters, with the
opening and closing quote characters in bytesBytes 11 and 80,
respectively. In general, no length limit less fewer than 68 is im-
plied for character-valued keywords.

Whenever a keyword value is declared ‘string’ or said to
‘contain a character string’, the length limits in this section ap-
ply. The next section ??.2 applies when the value is declared
‘long-string’.

??.2 Continued string (long-string) keywords

Earlier versions of this Standard only defined single record
single-record string keywords as described in the previous sec-
tion. The Standard now incorporates a convention (originally de-
veloped for use in FITSFITS files from high-energy astrophysics
missions) for continuing arbitrarily long string values over a po-
tentially unlimited sequence of multiple consecutive keyword
records using the following procedure: .

1. Divide the long string long-string value into a sequence of
smaller substrings, each of which is no longer than 67 char-
actersin lengthcontains fewer than 68 characters. (Note that
if the string contains any literal single quote single-quote
characters, then these must must be represented as a pair
of single quote single-quote characters in the FITSkeyword
FITS-keyword value, and these two characters must must
both be contained within a single substring).

2. Append an ampersand character (‘&’’&’) to the end of each
substring, except for the last substring. This character serves
as a flag to FITSreading FITS-reading software that this
string value maymay be continued on the following keyword
in the header.

3. Enclose each substring with single quote single-quote
characters. Non-significant space characters may may occur
between the ampersand character and the closing quote char-
acter.

4. Write the first substring as the value of the specified key-
word.

5. Write each subsequent substring, in order, to a series
of keywords that all have the reserved keyword name
CONTINUE(see CONTINUE (see Sect. ??) in bytes Bytes 1
through 8, and have space characters in bytes Bytes 9 and
10 of the keyword record. The substring may may be lo-
cated anywhere in bytes Bytes 11 through 80 of the keyword
record and may may be preceded by non-significant space
characters starting in byte Byte 11. A comment string may
may follow the substring; if present, the comment string must
must be separated from the substring by a forward slash char-
acter (‘/’forward-slash character (’/’). Also, it is strongly
recommended that the slash character be preceded by a space
character.

The CONTINUE keyword must notCONTINUE keyword
must not be used with of any of the mandatory or reserved key-
words defined in this standard Standard unless explicitly de-
clared of type long-string.

The following keyword records illustrate a string value that
is continued over multiple keyword records. (Note: the length of
the substrings have been reduced to fit within the page layout):
.)

WEATHER = 'Partly cloudy during the evening f&'
CONTINUE 'ollowed by cloudy skies overnight.&'
CONTINUE ' Low 21C. Winds NNE at 5 to 10 mph.'

If needed, additional space for the keyword comment field
can be generated by continuing the string value with one or more
null strings, as illustrated schematically below: .

STRKEY = 'This keyword value is continued &'
CONTINUE ' over multiple keyword records.&'
CONTINUE '&' / The comment field for this
CONTINUE '&' / keyword is also continued
CONTINUE '' / over multiple records.

FITSreading FITS-reading software can reconstruct the
long string long-string value by following an inverse pro-
cedure of checking if the string value ends with the ‘&’
’&’ character and is immediately followed by a conform-
ing CONTINUECONTINUE keyword record. If both con-
ditions are true, then concatenate the substring from the
CONTINUECONTINUE record onto the previous substring after
first deleting the trailing ‘&’ ’&’ character. Repeat these steps
until all subsequent CONTINUECONTINUE records have been
processed.

Note that if a string value ends with the ‘&’ ’&’ charac-
ter, but is not immediately followed by a CONTINUECONTINUE
keyword that conforms to all the previously described require-
ments, then the ‘&’ character should ’&’ character should be
interpreted as the literal last character in the string. Also, any ‘or-
phaned’ CONTINUECONTINUE keyword records (formally not
invalidating the FITS FITS file, although likely representing an
error with respect to what the author of the file meant) should
should be interpreted as containing commentary text in bytes 9
– 80 Bytes 9–80 (similar to a COMMENTCOMMENT keyword).

4.2.2. Logical

If the value is a fixed-format logical constant, it shallshall appear
as an uppercase Tor Fupper-case T or F in byteByte 30. A logical
value is represented in free-format by a single character consist-
ing of an uppercase Tor Fupper-case T or F as the first non-space
character in bytesBytes 11 through 80.

4.2.3. Integer number

If the value is a fixed-format integer, the ASCII representation
shallshall be right-justified in bytesBytes 11 through 30. An in-
teger consists of a ‘+’ ’+’ (decimal 43 or hexadecimal 2B) or
‘−’ ’-’ (decimal 45 or hexadecimal 2D) sign, followed by one
or more contiguous ASCII digits (decimal 48 to 57 or hexadec-
imal 30 to 39), with no embedded spaces. The leading ‘+’ ’+’
sign is optionaloptional. Leading zeros are permitted, but are not
significant. The integer representation shallshall always be inter-
preted as a signed, decimal number. This standard Standard does
not limit the range of an integer keyword value, however, soft-
ware packages that read or write data according to this standard
Standard could be limited in the range of values that are sup-
ported (e.g., to the range that can be represented by a 32-bit or
64-bit signed binary integer).

A free-format integer value follows the same rules as fixed-
format integers except that the ASCII representation maymay
occur anywhere within bytesBytes 11 through 80.

8

D
R

AF
T

9

4.2.4. Real floating-point number

If the value is a fixed-format real floating-point num-
ber, the ASCII representation shallshall be right-justified in
bytesBytes 11 through 30.

A floating-point number is represented by a decimal number
followed by an optionaloptional exponent, with no embedded
spaces. A decimal number shallshall consist of a ‘+’ ’+’ (deci-
mal 43 or hexadecimal 2B) or ‘–’ ’-’ (decimal 45 or hexadeci-
mal 2D) sign, followed by a sequence of ASCII digits containing
a single decimal point (‘.’’.’), representing an integer part and a
fractional part of the floating-point number. The leading ‘+’ ’+’
sign is optionaloptional. At least one of the integer part or frac-
tional part mustmust be present. If the fractional part is present,
the decimal point mustmust also be present. If only the integer
part is present, the decimal point maymay be omitted, in which
case the floating-point number is indistinguishable from an in-
teger. The exponent, if present, consists of an exponent letter
followed by an integer. Letters in the exponential form (‘E’ or
‘D’)’E’ or ’D’)4 shallshall be upper case. The full precision of
64-bit values cannot be expressed over the whole range of values
using the fixed-format. This standard does not impose Standard
neither imposes an upper limit on the number of digits of preci-
sion, nor any limit on the range of floating-point keyword val-
ues. Software packages that read or write data according to this
standard Standard could be limited, however, in the range of val-
ues and exponents that are supported (e.g., to the range that can
be represented by a 32-bit or 64-bit floating-point number).

A free-format floating-point value follows the same rules as
a fixed-format floating-point value except that the ASCII repre-
sentation maymay occur anywhere within bytesBytes 11 through
80.

4.2.5. Complex integer number

There is no fixed-format for complex integer numbers.5

If the value is a complex integer number, the value mustmust
be represented as a real part and an imaginary part, separated
by a comma and enclosed in parentheses e.g., (123, 45). Spaces
may(123, 45). Spaces may precede and follow the real and
imaginary parts. The real and imaginary parts are represented
in the same way as integers (Sect. ??). Such a representa-
tion is regarded as a single value for the complex integer num-
ber. This representation maymay be located anywhere within
bytesBytes 11 through 80.

4.2.6. Complex floating-point number

There is no fixed-format for complex floating-point numbers.5

If the value is a complex floating-point number, the value
mustmust be represented as a real part and an imaginary part,
separated by a comma and enclosed in parentheses, e.g., (123.23,
-45.7). Spaces may(123.23, -45.7). Spaces may precede and
follow the real and imaginary parts. The real and imaginary parts

4 The ‘D’ ’D’ exponent form is traditionally used when representing
values that have more decimals of precision or a larger magnitude than
can be represented by a single precision single-precision 32-bit floating-
point number, but otherwise there is no distinction between ‘E’ ’E’ or
‘D’’D’.

5 This requirement differs from the wording in the original FITSFITS
papers. See Appendix H??.

Table 3: IAU-recommended basic units.

Quantity Unit Meaning Notes
SI base & supplementary units
length m meter
mass kg kilogram g gram allowed
time s second
plane angle rad radian
solid angle sr steradian
temperature K kelvin
electric current A ampere
amount of substance mol mole
luminous intensity cd candela

IAU-recognized derived units
frequency Hz hertz s−1

energy J joule N m
power W watt J s−1

electric potential V volt J C−1

force N newton kg m s−2

pressure, stress Pa pascal N m−2

electric charge C coulomb A s
electric resistance Ohm ohm V A−1

electric conductance S siemens A V−1

electric capacitance F farad C V−1

magnetic flux Wb weber V s
magnetic flux density T tesla Wb m−2

inductance H henry Wb A−1

luminous flux lm lumen cd sr
illuminance lx lux lm m−2

are represented in the same way as floating-point values (Sect.
??). Such a representation is regarded as a single value for the

complex floating-point number. This representation maymay be
located anywhere within bytesBytes 11 through 80.

4.2.7. Date

There is strictly no such thing as a data type for date valued
keywords, however a pseudo data type of datetime is defined
in Sect. ?? and mustmust be used to write ISO-8601 datetime
strings as character strings.

If a keyword needs to express a time in JD or MJD (see
Sect. ??), this can be formatted as an arbitrary precision number,
optionally separating the integer and fractional part as specified
in Sect. ??.

4.3. Units

When a numerical keyword value represents a physical quantity,
it is recommendedrecommended that units be provided. Units
shall be shall be represented with a string of characters com-
posed of the restricted ASCII text ASCII-text character set. Unit
strings can be used as values of keywords (e.g., for the reserved
keywords BUNIT, and TUNITnBUNIT, and TUNITn), as an en-
try in a character string character-string column of an ASCII or
binary table ASCII-table or binary-table extension, or as part of
a keyword comment string (see Sect. ??, below).

The units of all FITSFITS header keyword values, with the
exception of measurements of angles, shouldshould conform
with the recommendations in the IAU Style Manual (?). For an-
gular measurements given as floating-point values and specified
with reserved keywords, the units shouldshould be degrees (i.e.,

9

D
R

AF
T

10

Table 4: Additional allowed units.

Quantity Unit Meaning Notes
plane angle plane angle deg degree of arc π/180 rad

arcmin minute of arc 1/60 deg
arcsec second of arc 1/3600 deg
mas milli-second of arc 1/3 600 000 deg

time min minute 60 s
h hour 60 min = 3600 s
d day 86 400 s

† a year (Julian) 31 557 600 s (365.25 d), peta a(Pa) forbidden
† yr year (Julian) a is IAU-style

energy∗ † eV electron volt 1.6021765 × 10−19 J
‡ erg erg 10−7 J

Ry rydberg 1
2

(
2πe2

hc

)2
mec2 = 13.605692 eV

mass∗ solMass solar mass 1.9891 × 1030 kg
u unified atomic mass unit 1.6605387 × 10−27 kg

luminosity solLum Solar luminosity 3.8268 × 1026 W
length ‡ Angstrom angstrom 10−10 m

solRad Solar radius 6.9599 × 108 m
AU astronomical unit 1.49598 × 1011 m
lyr light year 9.460730 × 1015 m

† pc parsec 3.0857 × 1016 m
events count count

ct count
photon photon
ph photon

flux density † Jy jansky 10−26 W m−2 Hz−1

† mag (stellar) magnitude
† R rayleigh 1010/(4π) photons m−2 s−1 sr−1

magnetic field †‡ G gauss 10−4 T
area pixel (image/detector) pixel

pix (image/detector) pixel
†‡ barn barn 10−28 m2

Miscellaneous units
D debye 1

3 × 10−29 C.m
Sun relative to Sun e.g., abundances
chan (detector) channel
bin numerous applications (including the 1-d analogue one-dimensional analog of pixel)
voxel 3-d analogue three-dimensional analog of pixel

† bit binary information unit
† byte (computer) byte 8 bit eight bits

adu Analog-to-digital converter
beam beam area of observation as in Jy/beam

Notes. (†)Addition of prefixes for decimal multiples and submultiples are allowed. (‡)Deprecated in IAU Style Manual (?) but still in use.
(∗)Conversion factors from CODATA Internationally recommended values of the fundamental physical constants 2002 (http://physics.nist.
gov/cuu/Constants/).

degdeg). If a requirement exists within this standard Standard
for the units of a keyword, then those units mustmust be used.

The units for fundamental physical quantities recommended
by the IAU are given in Table ??, and . Table ?? lists additional
units that are commonly used in astronomyare given in Table ??.
Further specifications for time units are given in Sect. ??. The
recommended plain text plain-text form for the IAU-recognized
base units are given in columnColumn 2 of both tables.6 All base
units strings maymay be preceded, with no intervening spaces,
by a single character (two for deca) taken from Table ?? and
representing scale factors mostly in steps of 103. Compound pre-
fixes (e.g., ZYeV ZYeV for 1045 eV) must notmust not be used.

6 These tables are reproduced from the first in a series of papers on
world coordinate world-coordinate systems (?), which provides exam-
ples and expanded discussion.

4.3.1. Construction of units strings

Compound units strings maymay be formed by combining
strings of base units (including prefixes, if any) with the recom-
mended syntax described in Table ??. Two or more base units
strings (called str1and str2str1 and str2 in Table ??) maymay
be combined using the restricted set of (explicit or implicit) op-
erators that provide for multiplication, division, exponentiation,
raising arguments to powers, or taking the logarithm or square-
root of an argument. Note that functions such as loglog actually
require dimensionless arguments, so that log(Hz)log(Hz), for
example, actually means log(x/1 Hz)log(x/1 Hz). The final
units string is the compound string, or a compound of com-
pounds, preceded by an optionaloptional numeric multiplier of
the form 10**k, 10ˆk, or 1010**k , 10ˆk, or 10±k where kk is
an integer, optionally surrounded by parentheses with the sign

10

http://physics.nist.gov/cuu/Constants/
http://physics.nist.gov/cuu/Constants/

D
R

AF
T

11

character required required in the third form in the absence of
parentheses. Creators of FITSFITS files are encouraged to use
the numeric multiplier only when the available standard scale
factors of Table ?? will not suffice. Parentheses are used for
symbol grouping and are strongly recommendedrecommended
whenever the order of operations might be subject to misin-
terpretation. A space character implies multiplication, which
can also be conveyed explicitly with an asterisk or a period.
Therefore, although spaces are allowed as symbol separators,
their use is discouraged. Note that, per IAU convention, case is
significant throughout. The IAU style manual forbids the use of
more than one slash (‘/’’/’) character in a units string. However,
since normal mathematical precedence rules apply in this con-
text, more than one slash maymay be used but is discouraged.

A unit raised to a power is indicated by the unit string
followed, with no intervening spaces, by the optionaloptional
symbols ** or ˆ followed by the power given as a numeric ex-
pression, called exprexpr in Table ??. The power maymay be
a simple integer, with or without sign, optionally surrounded
by parentheses. It maymay also be a decimal number (e.g., 1.5,
0.51.5, 0.5) or a ratio of two integers (e.g., 7/97/9), with or
without sign, which mustmust be surrounded by parentheses.
Thus meters squared maymay be indicated by m**(2), m**+2,
m+2, m2, mˆ2, mˆ(+2)m**(2), m**+2, m+2, m2, mˆ2, mˆ(+2),
etc. and per meter cubed maymay be indicated by m**-3, m-3,
mˆ(-3), /m3m**-3, m-3, mˆ(-3), /m3, and so forth. Meters
to the three-halves power maymay be indicated by m(1.5),
mˆ(1.5), m**(1.5), m(3/2), m**(3/2), and mˆ(3/2), but
notby mˆ3/2 or m1.5m(1.5), mˆ(1.5), m**(1.5), m(3/2),
m**(3/2), and mˆ(3/2), but not by ms/2 or m1.5.

4.3.2. Units in comment fields

If the units of the keyword value are specified in the comment
of the header keyword, it is recommendedrecommended that the
units string be enclosed in square brackets (i.e., enclosed by ‘[’
and ‘]’) at the beginning of the comment field, separated from
the slash (‘/’’/’) comment field delimiter by a single space char-
acter. An example, using a non-standard keyword, is
EXPTIME = 1200. / sexposure time in secondsEXPTIME =
1200. / [s] exposure time in seconds
This widespread, but optionaloptional, practice suggests that
square brackets shouldshould be used in comment fields only
for this purpose. Nonetheless, software should notshould not
depend on units being expressed in this fashion within a key-
word comment, and software should notshould not depend on
any string within square brackets in a comment field containing
a proper units string.

4.4. Keywords

4.4.1. Mandatory keywords

Mandatory keywords are requiredrequired in every HDU as de-
scribed in the remainder of this subsection. They mustmust be
used only as described in this standardStandard. Values of the
mandatory keywords mustmust be written in fixed-format.

4.4.1.1. Primary header

The SIMPLESIMPLE keyword is required required to be

Table 5: Prefixes for multiples and submultiples.

Submult Prefix Char Mult Prefix Char

10−1 deci d 10 deca da
10−2 centi c 102 hecto h
10−3 milli m 103 kilo k
10−6 micro u 106 mega M
10−9 nano n 109 giga G
10−12 pico p 1012 tera T
10−15 femto f 1015 peta P
10−18 atto a 1018 exa E
10−21 zepto z 1021 zetta Z
10−24 yocto y 1024 yotta Y

Table 6: Characters and strings allowed to denote mathematical
operations.

String Meaning

str1 str2 Multiplication
str1*str2 Multiplication
str1.str2 Multiplication
str1/str2 Division
str1**expr Raised to the power expr
str1ˆexpr Raised to the power expr
str1expr Raised to the power expr
log(str1) Common Logarithm (to base 10)
ln(str1) Natural Logarithm
exp(str1) Exponential (estr1)
sqrt(str1) Square root

Table 7: Mandatory keywords for primary header.

Position Keyword
1 SIMPLE SIMPLE = TT
2 BITPIXBITPIX
3 NAXISNAXIS
4 NAXISn, nNAXISn, n = 1, . . . , NAXISNAXIS

...
(other keywords)
...

last ENDEND

Table 8: Interpretation of valid BITPIXBITPIX value.

Value Data represented
8 8 Character or unsigned binary integer

16 16 16-bit two’s complement binary integer
32 32 32-bit two’s complement binary integer
64 64 64-bit two’s complement binary integer

-32 −32 IEEE single precision single-precision floating point
-64 −64 IEEE double precision double-precision floating point

the first keyword in the primary header of all FITSFITS files.
The primary header mustmust contain the other mandatory
keywords shown in Table ?? in the order given. Other keywords
must notmust not intervene between the SIMPLESIMPLE
keyword and the last NAXISnNAXISn keyword.

11

D
R

AF
T

12

SIMPLESIMPLE keyword. The value field shallshall contain
a logical constant with the value TT if the file conforms to
this standardStandard. This keyword is mandatory for the pri-
mary header and must notmust not appear in extension headers.7
A value of FF signifies that the file does not conform to this
standardStandard.

BITPIXBITPIX keyword. The value field shallshall contain an
integer. The absolute value is used in computing the sizes of data
structures. It shallshall specify the number of bits that represent
a data value in the associated data array. The only valid values
of BITPIXBITPIX are given in Table ??. Writers of FITSarrays
shouldselect a BITPIXFITS arrays should select a BITPIX data
type appropriate to the form, range of values, and accuracy of
the data in the array.

NAXISNAXIS keyword. The value field shallshall contain a
non-negative integer no greater than 999 representing the num-
ber of axes in the associated data array. A value of zero signifies
that no data follow the header in the HDU.

NAXISnNAXISn keywords. The NAXISnkeywords
mustNAXISn keywords must be present for all values n =
1, ..., NAXISn = 1, . . . , NAXIS, in increasing order of nn,
and for no other values of nn. The value field of this indexed
keyword shallshall contain a non-negative integer representing
the number of elements along axis nAxis n of a data array.
A value of zero for any of the NAXISnNAXISn signifies that
no data follow the header in the HDU (however, the random
groups random-groups structure described in Sect. ?? has
NAXIS1 ?? has NAXIS1 =0 0, but will have data following the
header if the other NAXISnNAXISn keywords are non-zero). If
NAXISNAXIS is equal to 0, there shall not0, there shall not be
any NAXISnNAXISn keywords.

ENDEND keyword. This keyword has no associated value.
Bytes 9 through 80 shallshall be filled with ASCII spaces (dec-
imal 32 or hexadecimal 20). The ENDEND keyword marks the
logical end of the header and must must occur in the last 2880-
byte FITSFITS block of the header.

The total number of bits in the primary data array, exclusive
of fill that is needed after the data to complete the last 2880-byte
data block (Sect. ??), is given by the following expression:

NbitsNbits = |BITPIXBITPIX| × (NAXIS1NAXIS1 × NAXIS2NAXIS2 × · · · × NAXISmNAXISm),(1)

where Nbits mustbeNbits must be non-negative and is the num-
ber of bits excluding fill, mm is the value of NAXISNAXIS, and
BITPIXBITPIX and the NAXISnNAXISn represent the values
associated with those keywords. Note that the random groups
random-groups convention in the primary array has a more
complicated more-complicated structure whose size is given by
Eq. ??. The header of the first FITSFITS extension in the file, if
present, shallshall start with the first FITSFITS block following
the data block that contains the last bit of the primary data array.

7 This requirement differs from the wording in the original FITSFITS
papers. See Appendix H??.

An example of a primary array header is shown in Table ??.
In addition to the required keywords, it includes a few of the
reserved keywords that are discussed in Sect. ??.

4.4.1.2. Conforming extensions

All conforming extensions, whether or not further speci-
fied in this standard, mustStandard, must use the keywords
defined in Table ?? in the order specified. Other keywords
must notmust not intervene between the XTENSIONXTENSION
keyword and the GCOUNTGCOUNT keyword. The BITPIX,
NAXIS, NAXISn, and ENDBITPIX, NAXIS, NAXISn, and END
keywords are defined in Sect. ??.

XTENSIONXTENSION keyword. The value field shallshall
contain a character string giving the name of the extension
type. This keyword is mandatory for an extension header and
must notmust not appear in the primary header.8 7 To preclude
conflict, extension type names mustmust be registered with the
IAUFWG. The current list of registered extensions is given
in Appendix ??. An up-to-date list is also maintained on the
FITSSupport Office web siteFITS Support Office website.

PCOUNTPCOUNT keyword. The value field shallshall contain
an integer that shallshall be used in any way appropriate to de-
fine the data structure, consistent with Eq. ??. In IMAGEIMAGE
(Sect. ??) and TABLETABLE (Sect. ??) extensions this key-
word mustmust have the value 0; in BINTABLE0; in BINTABLE
extensions (Sect. ??) it is used to specify the number of bytes
that follow the main data table in the supplemental data area
called the heap. This keyword is also used in the random groups
random-groups structure (Sect. ??) to specify the number of pa-
rameters preceding each array in a group.

GCOUNTGCOUNT keyword. The value field shallshall contain
an integer that shallshall be used in any way appropriate to
define the data structure, consistent with Eq. ??. This key-
word mustmust have the value 1 in the IMAGE, TABLEand
BINTABLE1 in the IMAGE, TABLE, and BINTABLE standard ex-
tensions defined in Sect. ??. This keyword is also used in the
random groups random-groups structure (Sect. ??) to specify
the number of random groups present.

The total number of bits in the extension data array (exclu-
sive of fill that is needed after the data to complete the last 2880-
byte data block) is given by the following expression:

NbitsNbits = |BITPIXBITPIX| × GCOUNTGCOUNT ×

(PCOUNTPCOUNT + NAXIS1NAXIS1 × NAXIS2NAXIS2 × · · · × NAXISmNAXISm),(2)

where Nbits mustbeNbits must be non-negative and is the num-
ber of bits excluding fill; mm is the value of NAXISNAXIS; and
BITPIX, GCOUNT, PCOUNTBITPIX, GCOUNT, PCOUNT, and
the NAXISnNAXISn represent the values associated with those
keywords. If Nbits > 0Nbits > 0, then the data array shallshall
be contained in an integral number of 2880-byte FITSFITS data
blocks. The header of the next FITSFITS extension in the file, if
any, shallshall start with the first FITSFITS block following the

8 This requirement differs from the wording in the original
FITSpapers. See Appendix H.

12

D
R

AF
T

13

Table 9: Example of a primary array header.

Keyword records
SIMPLE = T / file does conform to FITS standardSIMPLE = T / file does conform to FITS Standard
BITPIX = 16 / number of bits per data pixel
NAXIS = 2 / number of data axes
NAXIS1 = 250 / length of data axis 1
NAXIS2 = 300 / length of data axis 2
OBJECT = 'Cygnus X-1'
DATE = '2006-10-22'
END

data block that contains the last bit of the current extension data
array.

4.4.2. Other reserved keywords

The reserved keywords described below are optionaloptional,
but if present in the header they mustmust be used only as de-
fined in this standardStandard. They apply to any FITSFITS
structure with the meanings and restrictions defined below. Any
FITSstructure mayFITS structure may further restrict the use of
these keywords.

4.4.2.1. General descriptive keywords

DATEDATE keyword. The value field shallshall contain
a character string giving the date on which the HDU
was created, in the form YYYY-MM-DDYYYY-MM-DD,
or the date and time when the HDU was created,
in the form YYYY-MM-DDThh:mm:ss.sss. . . , where
YYYYshallYYYY-MM-DDThh:mm:ss[.sss. . .], where YYYY
shall be the four-digit calendar year number, MMMM the two-
digit month number with January given by 01 and December
by 12, and DDDD the two-digit day of the month. When both
date and time are given, the literal TshallT shall separate the
date and time, hhshallhh shall be the two-digit hour in the day,
mmmm the two-digit number of minutes after the hour, and
ss.sss. . .ss[.sss. . .] the number of seconds (two digits fol-
lowed by an optionaloptional fraction) after the minute. Default
values must notmust not be given to any portion of the date/time
string, and leading zeros must notmust not be omitted. The
decimal part of the seconds field is optionaland mayoptional and
may be arbitrarily long, so long as it is consistent with the rules
for value formats of Sect. ??. Otherwise said, the format for
DATEDATE keywords written after January 1, 2000 shallshall
be the ISO-8601 datetime form described in Sect. ??. See also
Sect. ??.

The value of the DATEkeyword shallDATE keyword shall
always be expressed in UTC when in this format, for all data
sets created on Earth.

The following format maymay appear on files written be-
fore January 1, 2000. The value field contains a character string
giving the date on which the HDU was created, in the form
DD/MM/YY, where DDDD/MM/YY, where DD is the day of the
month, MMMM the month number with January given by 01 and
December by 12, and YYYY the last two digits of the year, the
first two digits being understood to be 19. Specification of the
date using Universal Time is recommendedrecommended but not
assumed.

Table 10: Mandatory keywords in conforming extensions.

Position Keyword
1 XTENSIONXTENSION
2 BITPIXBITPIX
3 NAXISNAXIS
4 NAXISn, nNAXISn, n = 1, . . . , NAXISNAXIS
5 PCOUNTPCOUNT
6 GCOUNTGCOUNT

...
(other keywords)
...

last ENDEND

When a newly created HDU is substantially a verbatim copy
of another HDU, the value of the DATEDATE keyword in the
original HDU maymay be retained in the new HDU instead of
updating the value to the current date and time.

ORIGINORIGIN keyword. The value field shallshall contain a
character string identifying the organization or institution re-
sponsible for creating the FITSFITS file.

EXTENDEXTEND keyword. The value field shallshall contain
a logical value indicating whether the FITSFITS file is allowed
to contain conforming extensions following the primary HDU.
This keyword maymay only appear in the primary header and
must notmust not appear in an extension header. If the value field
is Tthen there mayT then there may be conforming extensions in
the FITSFITS file following the primary HDU. This keyword is
only advisory, so its presence with a value TT does not require
that the FITSFITS file contains extensions, nor does the absence
of this keyword necessarily imply that the file does not contain
extensions. Earlier versions of this standard Standard stated that
the EXTENDkeyword mustEXTEND keyword must be present in
the primary header if the file contained extensions, but this is no
longer requiredrequired.

BLOCKEDBLOCKED keyword. This keyword is deprecated and
should notshould not be used in new FITSFITS files. It is re-
served primarily to prevent its use with other meanings. As pre-
viously defined, this keyword, if used, was requiredrequired to
appear only within the first 36 keywords in the primary header.
Its presence with the required required logical value of TT ad-
vised that the physical block size of the FITSFITS file on which
it appears maymay be an integral multiple of the FITSFITS block
length and not necessarily equal to it.

13

D
R

AF
T

14

4.4.2.2. Keywords describing observations

DATE-OBSDATE-OBS keyword. The format of the value field
for DATE-OBSkeywords shallDATE-OBS keywords shall fol-
low the prescriptions for the DATEDATE keyword (Sect. ??
and Sect. ?? Either the four-digit year format or the two-
digit year format maymay be used for observation dates
from 1900 through 1999, although the four-digit format is
recommendedrecommended.

When the format with a four-digit year is used, the default in-
terpretations for time shouldshould be UTC for dates beginning
1972-01-01 and UT before. Other date and time scales are per-
missible. The value of the DATE-OBSkeyword shallDATE-OBS
keyword shall be expressed in the principal time system or time
scale of the HDU to which it belongs; if there is any chance
of ambiguity, the choice shouldshould be clarified in comments.
The value of DATE-OBSshallDATE-OBS shall be assumed to re-
fer to the start of an observation, unless another interpretation is
clearly explained in the comment field. Explicit specification of
the time scale is recommendedrecommended. By default, times
for TAI and times that run simultaneously with TAI, e.,g., UTC
and TT, will be assumed to be as measured at the detector (or, in
practical cases, at the observatory). For coordinate times such as
TCG, TCB, and TDB, the default shallshall be to include light-
time corrections to the associated spatial origin, namely the geo-
center for TCG and the solar-system Solar System barycenter for
the other two. Conventions maymay be developed that use other
time systems. Time scales are now discussed in detail in Sect. ??
and Table ??.

When the value of DATE-OBSDATE-OBS is expressed in the
two-digit year form, allowed for files written before January 1,
2000 with a year in the range 1900-19991900–1999, there is no
default assumption as to whether it refers to the start, middle or
end of an observation.

DATExxxxDATExxxx keywords. The value fields for all key-
words beginning with the string DATEDATE whose value con-
tains date, and optionally time, information shallshall follow the
prescriptions for the DATE-OBSDATE-OBS keyword. See also
Sect. ?? for the datetime format, and Sect. ?? for further global
time keywords specified by the Standard.

TELESCOPTELESCOP keyword. The value field shallshall
contain a character string identifying the telescope used to ac-
quire the data associated with the header.

INSTRUMEINSTRUME keyword. The value field shallshall
contain a character string identifying the instrument used to ac-
quire the data associated with the header.

OBSERVEROBSERVER keyword. The value field shallshall
contain a character string identifying who acquired the data as-
sociated with the header.

OBJECTOBJECT keyword. The value field shallshall contain a
character string giving a name for the object observed.

4.4.2.3. Bibliographic keywords

AUTHORAUTHOR keyword. The value field shallshall contain
a character string identifying who compiled the information in
the data associated with the header. This keyword is appropriate
when the data originate in a published paper or are compiled
from many sources.

REFERENCREFERENC keyword. The value field shallshall
contain a character string citing a reference where the
data associated with the header are published. It is
recommendedrecommended that either the 19-digit biblio-
graphic identifier8 used in the Astrophysics Data System bibli-
ographic databases (http://adswww.harvard.edu/) or the
Digital Object Identifier (http://doi.org) be included in the
value string, when available (e.g., ’1994A&AS..103..135A’or
’doi:10.1006/jmbi.1998.2354’’1994A&AS..103..135A’ or
’doi:10.1006/jmbi.1998.2354’).

4.4.2.4. Commentary keywords

These keywords provide commentary information about the
contents or history of the FITSfile and mayFITS file and
may occur any number of times in a header. These keywords
shallshall have no associated value even if the value indica-
tor characters `= ' appear in bytesBytes 9 and 10 (hence it
is recommendedrecommended that these keywords not contain
the value indicator). Bytes 9 through 80 maymay contain any of
the restricted set of ASCIIASCII-text text characters, decimal 32
through 126 (hexadecimal 20 through 7E).

In earlier versions of this standard Standard continued string
keywords (see Sect. ??.2) could be handled as commentary
keywords if the relevant convention was not supported. Now
CONTINUEkeywords shallCONTINUE keywords shall be hon-
oured as specified in Section Sect. ??.2.

COMMENTCOMMENT keyword. This keyword maymay be used
to supply any comments regarding the FITSFITS file.

HISTORYHISTORY keyword. This keyword shouldshould be
used to describe the history of steps and procedures associated
with the processing of the associated data.

Keyword field is blank. This keyword maymay be used to sup-
ply any comments regarding the FITSFITS file. It is frequently
used for aesthetic purposes to provide a break between groups
of related keywords in the header.

A sequence of one or more entirely blank keyword records
(consisting of 80 ASCII space characters) that immediately pre-
cede the ENDkeyword may END keyword may be interpreted as
non-significant fill space that may may be overwritten when new
keywords are appended to the header. This usage convention en-
ables an arbitrarily large amount of header space to be preallo-
cated when the FITSFITS HDU is first created, which can help
mitigate the potentially time-consuming alternative of having to

8 This bibliographic convention (?) was initially developed for use
within NED (NASA/IPAC Extragalactic Database) and SIMBAD (op-
erated at CDS, Strasbourg, France).

14

http://adswww.harvard.edu/
http://doi.org

D
R

AF
T

15

shift all the following data in the file by 2880 bytes to make room
for a new FITS FITS header block each time space is needed for
a new keyword.

4.4.2.5. Keywords that describe arrays

These keywords are used to describe the contents of an
array, either in the primary array, in an image IMAGE extension
(Sect. ??), or in a series of random groups (Sect. ??). They are
optionaloptional, but if they appear in the header describing an
array or groups, they mustmust be used as defined in this section
of this standard. They shall notStandard. They shall not be used
in headers describing other structures unless the meaning is the
same as defined here.

BSCALEBSCALE keyword. This keyword shallshall be used,
along with the BZEROBZERO keyword, to linearly scale the ar-
ray pixel values (i.e., the actual values stored in the FITSFITS
file) to transform them into the physical values that they repre-
sent using Eq. ??.

physical value = BZEROBZERO + BSCALEBSCALE × array value.(3)

The value field shallshall contain a floating-point number repre-
senting the coefficient of the linear term in the scaling equation,
the ratio of physical value to array value at zero offset. The de-
fault value for this keyword is 1.01.0. Before support for IEEE
floating-point data types was added to FITSFITS (?), this tech-
nique of linearly scaling integer values was the only way to rep-
resent the full range of floating-point values in a FITSFITS array.
This linear scaling technique is still commonly used to reduce
the size of the data array by a factor of two by representing 32-
bit floating-point physical values as 16-bit scaled integers.

BZEROBZERO keyword. This keyword shallshall be used,
along with the BSCALEBSCALE keyword, to linearly scale the
array pixel values (i.e., the actual values stored in the FITSFITS
file) to transform them into the physical values that they repre-
sent using Eq. ??. The value field shallshall contain a floating-
point number representing the physical value corresponding to
an array value of zero. The default value for this keyword is
0.00.0.

Besides its use in representing floating-point values as scaled
integers (see the description of the BSCALEBSCALE keyword),
the BZEROBZERO keyword is also used when storing unsigned
integer unsigned-integer values in the FITSFITS array. In this
special case the BSCALEkeyword shallBSCALE keyword shall
have the default value of 1.01.0, and the BZEROkeyword
shallBZERO keyword shall have one of the integer values shown
in Table ??.

Since the FITSFITS format does not support a native un-
signed integer data type (except for the unsigned 8-bit eight-bit
byte data type), the unsigned values are stored in the FITSFITS
array as native signed integers with the appropriate integer offset
specified by the BZEROBZERO keyword value shown in the ta-
ble. For the byte data type, the converse technique can be used to
store signed byte values as native unsigned values with the neg-
ative BZEROBZERO offset. In each case, the physical value is
computed by adding the offset specified by the BZEROBZERO

keyword to the native data type value that is stored in the
FITSfile.FITS file.9

BUNITBUNIT keyword. The value field shallshall contain a
character string describing the physical units in which the
quantities in the array, after application of BSCALEand
BZEROBSCALE and BZERO, are expressed. These units
mustmust follow the prescriptions of Sect. ??.

BLANKBLANK keyword. This keyword shallshall be used only
in headers with positive values of BITPIXBITPIX (i.e., in ar-
rays with integer data). Bytes 1 through 8 contain the string
`BLANK ' (ASCII spaces in bytesBytes 6 through 8). The
value field shallshall contain an integer that specifies the value
that is used within the integer array to represent pixels that have
an undefined physical value.

If the BSCALEand BZEROBSCALE and BZERO keywords
do not have the default values of 1.0 and 0.01.0 and 0.0, re-
spectively, then the value of the BLANKkeyword mustBLANK
keyword must equal the actual value in the FITSFITS data
array that is used to represent an undefined pixel and not
the corresponding physical value (computed from Eq. ??).
To cite a specific, common example, unsigned 16-bit inte-
gers are represented in a signed integer FITSFITS array (with
BITPIXBITPIX = 1616) by setting BZERO BZERO =32768and
BSCALE 32768 and BSCALE =1 1. If it is desired to use
pixels that have an unsigned value (i.e., the physical value)
equal to 0 to represent undefined pixels in the array, then the
BLANKkeyword mustBLANK keyword must be set to the value
−32768 -32768 because that is the actual value of the undefined
pixels in the FITSFITS array.

DATAMAXDATAMAX keyword. The value field shallshall always
contain a floating-point number, regardless of the value of
BITPIXBITPIX. This number shallshall give the maximum valid
physical value represented by the array (from Eq. ??), exclusive
of any IEEE special values.

DATAMINDATAMIN keyword. The value field shallshall always
contain a floating-point number, regardless of the value of
BITPIXBITPIX. This number shallshall give the minimum valid
physical value represented by the array (from Eq. ??), exclusive
of any IEEE special values.

WCS keywords. An extensive set of keywords have been de-
fined to describe the world coordinates associated with an array.
These keywords are discussed separately in Sect. ??.

4.4.2.6. Extension keywords

The next three keywords were originally defined for use

9 A more computationally efficient method of adding or subtracting
the BZERO BZERO values is to simply flip the most significant most-
significant bit of the binary value. For example, using 8-bit eight-bit
integers, the decimal value 248 minus the BZERO BZERO value of
128 128 equals 120. The binary representation of 248 is 11111000.
Flipping the most significant most-significant bit gives the binary value
01111000, which is equal to decimal 120.

15

D
R

AF
T

16

Table 11: Usage of BZEROBZERO to represent non-default integer data types.

BITPIX BITPIX Native Physical BZERO BZERO
data type data type

8 8 unsigned signed byte -128-128 (−27)
16 16 signed unsigned 16-bit 3276832768 (215)
32 32 signed unsigned 32-bit 21474836482147483648 (231)
64 64 signed unsigned 64-bit 92233720368547758089223372036854775808 (263)

within the header of a conforming extension, however
they also maymay appear in the primary header with an
analogous meaning. If these keywords are present, it is
recommendedrecommended that they have a unique combina-
tion of values in each HDU of the FITSFITS file.

EXTNAMEEXTNAME keyword. The value field shallshall
contain a character string to be used to distinguish among dif-
ferent extensions of the same type, i.e., with the same value of
XTENSIONXTENSION, in a FITSFITS file. Within this context,
the primary array shouldshould be considered as equivalent to
an IMAGEIMAGE extension.

EXTVEREXTVER keyword. The value field shallshall contain
an integer to be used to distinguish among different extensions
in a FITSFITS file with the same type and name, i.e., the same
values for XTENSIONand EXTNAMEXTENSION and EXTNAME.
The values need not start with 1 1 for the first extension with a
particular value of EXTNAMEEXTNAME and need not be in se-
quence for subsequent values. If the EXTVEREXTVER keyword
is absent, the file shouldshould be treated as if the value were 1.
1.

EXTLEVELEXTLEVEL keyword. The value field shallshall
contain an integer specifying the level in a hierarchy of extension
levels of the extension header containing it. The value shallbe 1
shall be 1 for the highest level; levels with a higher value of
this keyword shallshall be subordinate to levels with a lower
value. If the EXTLEVELEXTLEVEL keyword is absent, the file
shouldshould be treated as if the value were 1. 1.

The following keyword is optionaloptional, but is reserved
for use by the convention described in Appendix ??. If present
it shallshall appear in the extension header immediately after
the mandatory keywords, and be used as described in the
Appendixappendix.

INHERITINHERIT keyword. The value field shallshall contain
a logical value of Tor FT or F to indicate whether or not the cur-
rent extension should inherit the keywords in the primary header
of the FITS FITS file.

??.7 Data Integrity KeywordsData-integrity keywords

The two keywords described here provide an integrity check
on the information contained in FITSFITS HDUs.

DATASUMKeywordDATASUM keyword. The value field of the
DATASUMkeyword shallDATASUM keyword shall consist of a
character string that shouldcontain the unsigned integer should
contain the unsigned-integer value of the 32-bit 1’ s ones’
complement checksum of the data records in the HDU (i.e., ex-
cluding the header records). For this purpose, each 2880-byte
FITSlogical record should FITS logical record should be inter-
preted as consisting of 720 32-bit unsigned integers. The 4 four
bytes in each integer mustmust be interpreted in order of de-
creasing significance where the most significant most-significant
byte is first, and the least significant least-significant byte is
last. Accumulate the sum of these integers using 1’ s ones’
complement arithmetic in which any overflow of the most sig-
nificant most-significant bit is propagated back into the least sig-
nificant least-significant bit of the sum.

The DATASUMDATASUM value is expressed as a character
string (i.e., enclosed in single quote single-quote characters)
because support for the full range of 32-bit unsigned inte-
ger unsigned-integer keyword values is problematic in some
software systems. This string may may be padded with non-
significant leading or trailing blank characters or leading zeros.
A string containing only one or more consecutive ASCII blanks
may may be used to represent an undefined or unknown value
for the DATASUMDATASUM keyword. The DATASUMkeyword
may DATASUM keyword may be omitted in HDUs that have
no data records, but it is preferable to include the keyword
with a value of 0. 0. Otherwise, a missing DATASUMDATASUM
keyword asserts no knowledge of the checksum of the data
records. Recording in the comment field the ISO-8601-formatted
Datetime (?) when the value of this keyword record is created or
updated is recommendedrecommended.

CHECKSUMKeywordCHECKSUM keyword. The value field of
the CHECKSUMkeyword shallCHECKSUM keyword shall consist
of an ASCII character string whose value forces the 32-bit
1’ s ones’ complement checksum accumulated over the entire
FITSFITS HDU to equal negative 0. (Note that 1ones’s comple-
ment arithmetic has both positive and negative zero elements).
It is recommendedrecommended that the particular 16-character
string generated by the algorithm described in Appendix ?? be
used. A string containing only one or more consecutive ASCII
blanks may may be used to represent an undefined or unknown
value for the CHECKSUMCHECKSUM keyword.

The CHECKSUMkeyword value mustCHECKSUM keyword
value must be expressed in fixed format, when the algorithm
in Appendix ?? is used, otherwise the usage of fixed format is
recommendedrecommended. Recording in the comment field the
ISO-8601-formatted Datetime when the value of this keyword
record is created or updated is recommendedrecommended.

If the CHECKSUMCHECKSUM keyword exists in the header
of the HDU and the accumulated checksum is not equal to -0−0,
or if the DATASUMDATASUM keyword exists in the header of

16

D
R

AF
T

17

the HDU and its value does not match the data checksum, then
this provides a strong indication that the content of the HDU
has changed subsequent to the time that the respective keyword
value was computed. Such an invalid checksum may indicate
corruption during a prior file copy or transfer operation, or a
corruption of the physical media on which the file was stored. It
may alternatively reflect an intentional change to the data file by
subsequent data processing if the CHECKSUMCHECKSUM value
was not also updated.

Normally both keywords will be present in the header if ei-
ther is present, but this is not requiredrequired. These key-
words apply only to the HDU in which they are contained.
If these keywords are written in one HDU of a multi-HDU
FITSFITS file then it is strongly recommended that they also
be written to every other HDU in the file with values appro-
priate to each HDU in turn; in that case the checksum ac-
cumulated over the entire file will equal -0 −0 as well. The
DATASUMkeyword mustDATASUM keyword must be updated
before the CHECKSUMCHECKSUM keyword. In general updat-
ing the two checksum keywords should should be the final
step of any update to either data or header records in a FITS
FITS HDU. It is highly recommendedrecommended that if a
FITSFITS file is intended for public distribution, then the check-
sum keywords, if present, should should contain valid values.

4.4.3. Additional keywords

New keywords maymay be devised in addition to those described
in this standardStandard, so long as they are consistent with the
generalized rules for keywords and do not conflict with manda-
tory or reserved keywords. Any keyword that refers to or de-
pends upon the existence of other specific HDUs in the same or
other files should should be used with caution because the per-
sistence of those HDUs cannot always be guaranteed.

5. Data Representationrepresentation

Primary and extension data shallshall be represented in one of
the formats described in this section. FITSdata shallFITS data
shall be interpreted to be a byte stream. Bytes are in big-endian
order of decreasing significance. The byte that includes the sign
bit shallshall be first, and the byte that has the ones bit shallshall
be last.

5.1. Characters

Each character shallshall be represented by one byte. A character
shallshall be represented by its 7-bit seven-bit ASCII (?) code in
the low order low-order seven bits in the byte. The high-order bit
shallshall be zero.

5.2. Integers

5.2.1. Eight-bit

Eight-bit integers shallshall be unsigned binary integers, con-
tained in one byte with decimal values ranging from 0 to 255.

5.2.2. Sixteen-bit

Sixteen-bit integers shallshall be two’s complement signed bi-
nary integers, contained in two bytes with decimal values rang-
ing from -32768 to +−32768 to +32767.

5.2.3. Thirty-two-bit

Thirty-two-bit integers shallshall be two’s complement signed
binary integers, contained in four bytes with decimal values
ranging from -2147483648 to +−2147483648 to +2147483647.

5.2.4. Sixty-four-bit

Sixty-four-bit integers shallshall be two’s complement signed bi-
nary integers, contained in eight bytes with decimal values rang-
ing from -9223372036854775808 to +−9223372036854775808
to +9223372036854775807.

5.2.5. Unsigned integers

The FITSFITS format does not support a native unsigned in-
teger data type (except for the unsigned 8-bit byte data type)
therefore unsigned 16-bit, 32-bit, or 64-bit binary integers can-
not be stored directly in a FITSFITS data array. Instead, the ap-
propriate offset mustmust be applied to the unsigned integer to
shift the value into the range of the corresponding signed integer,
which is then stored in the FITSFITS file. The BZERO keyword
shallBZERO keyword shall record the amount of the offset needed
to restore the original unsigned value. The BSCALEBSCALE
keyword shallshall have the default value of 1.0 1.0 in this
case, and the appropriate BZEROBZERO value, as a function of
BITPIXBITPIX, is specified in Table ??.

This same technique mustmust be used when storing un-
signed integers in a binary table binary-table column of signed
integers (Sect. ??). In this case the TSCALnTSCALn keyword
(analogous to BSCALE) shallBSCALE) shall have the default
value of 1.01.0, and the appropriate TZEROnTZEROn value
(analogous to BZEROBZERO) is specified in Table ??.

5.3. IEEE-754 floating point

Transmission of 32- and 64-bit floating-point data within
the FITSformat shallFITS format shall use the ANSI/IEEE-
754 standard (?). BITPIXBITPIX = -32and BITPIX-32 and
BITPIX = -64-64 signify 32- and 64-bit IEEE floating-point
numbers, respectively; the absolute value of BITPIXBITPIX is
used for computing the sizes of data structures. The full IEEE set
of number forms is allowed for FITSFITS interchange, including
all special values.

The BLANKBLANK keyword should notshould not be used
when BITPIXBITPIX = -32-32 or -64-64; rather, the IEEE
NaN shouldshould be used to represent an undefined value. Use
of the BSCALEand BZEROBSCALE and BZERO keywords is not
recommendednot recommended.

Appendix ?? has additional details on the IEEE format.

17

D
R

AF
T

18

Table 12: Mandatory keywords in primary header preceding ran-
dom groups.

Position Keyword
1 SIMPLE SIMPLE = TT
2 BITPIXBITPIX
3 NAXISNAXIS
4 NAXIS1 NAXIS1 = 00
5 NAXISn, nNAXISn, n = 2, . . . , value of NAXISNAXIS

...
(other keywords, which mustmust include . . .)
GROUPS GROUPS = TT
PCOUNTPCOUNT
GCOUNTGCOUNT
...

last ENDEND

5.4. Time

There is strictly no such thing as a data type for time valued data,
but rules to encode time values are given in Sect. ?? and in more
detail in ?.

6. Random groups Random-groups structure

The random groups random-groups structure allows a collection
of ‘groups’, where a group consists of a subarray of data and a set
of associated parameter values, to be stored within the FITSFITS
primary data array. Random groups have been used almost ex-
clusively for applications in radio interferometry; outside this
field, there is little support for reading or writing data in this for-
mat. Other than the existing use for radio interferometry data,
the random groups random-groups structure is deprecated and
should notshould not be further used. For other applications, the
binary table binary-table extension (Sect. ??) provides a more
extensible and better documented way of associating groups of
data within a single data structure.

6.1. Keywords

6.1.1. Mandatory keywords

The SIMPLESIMPLE keyword is requiredrequired to be the
first keyword in the primary header of all FITSFITS files, in-
cluding those with random groupsrandom-groups records. If
the random groups random-groups format records follow the
primary header, the keyword records of the primary header
mustmust use the keywords defined in Table ?? in the order
specified. No other keywords maymay intervene between the
SIMPLESIMPLE keyword and the last NAXISnNAXISn key-
word.

SIMPLESIMPLE keyword. The keyword record containing this
keyword is structured in the same way as if a primary data array
were present (Sect. ??).

BITPIXBITPIX keyword. The keyword record containing this
keyword is structured as prescribed in Sect. ??.

NAXISNAXIS keyword. The value field shallshall contain an
integer ranging from 1 to 999, representing one more than the
number of axes in each data array.

NAXIS1NAXIS1 keyword. The value field shallshall contain the
integer 00, a signature of random groups random-groups format
indicating that there is no primary data array.

NAXISnNAXISn keywords (n=2n = 2, . . . , value of
NAXISNAXIS). The NAXISnkeywords mustNAXISn keywords
must be present for all values n = 2, ..., NAXISn = 2, . . . , NAXIS,
in increasing order of nn, and for no larger values of nn. The
value field shallshall contain an integer, representing the num-
ber of positions along axis n-1Axis n − 1 of the data array in
each group.

GROUPSGROUPS keyword. The value field shallshall contain
the logical constant TT. The value TT associated with this key-
word implies that random groups random-groups records are
present.

PCOUNTPCOUNT keyword. The value field shallshall contain
an integer equal to the number of parameters preceding each ar-
ray in a group.

GCOUNTGCOUNT keyword. The value field shallshall contain
an integer equal to the number of random groups present.

ENDEND keyword. This keyword has no associated value.
Bytes 9 through 80 shallshall contain ASCII spaces (decimal 32
or hexadecimal 20).

The total number of bits in the random groups random-groups
records exclusive of the fill described in Sect. ?? is given by the
following expression:

NbitsNbits = |BITPIXBITPIX| × GCOUNTGCOUNT ×

(PCOUNTPCOUNT + NAXIS2NAXIS2 × NAXIS3NAXIS3 × · · · × NAXISmNAXISm),(4)

where Nbits isNbits is non-negative and the number of
bits excluding fill; mm is the value of NAXISNAXIS; and
BITPIX, GCOUNT, PCOUNTBITPIX, GCOUNT, PCOUNT, and
the NAXISnNAXISn represent the values associated with those
keywords.

6.1.2. Reserved keywords

PTYPEnPTYPEn keywords. The value field shallshall contain
a character string giving the name of parameter nParameter n.
If the PTYPEnPTYPEn keywords for more than one value of
nn have the same associated name in the value field, then the
data value for the parameter of that name is to be obtained by
adding the derived data values of the corresponding parameters.
This rule provides a mechanism by which a random parameter
maymay have more precision than the accompanying data array
elements; for example, by summing two 16-bit values with the

18

D
R

AF
T

19

first scaled relative to the other such that the sum forms a number
of up to 32-bit precision.

PSCALnPSCALn keywords. This keyword shallshall be used,
along with the PZEROnPZEROn keyword, when the nth FITSnth

FITS group parameter value is not the true physical value, to
transform the group parameter value to the true physical values
it represents, using Eq. ??. The value field shallshall contain a
floating-point number representing the coefficient of the linear
term in Eq. ??, the scaling factor between true values and group
parameter values at zero offset. The default value for this key-
word is 1.01.0.

PZEROnPZEROn keywords. This keyword shallshall be used,
along with the PSCALnPSCALn keyword, when the nth FITSnth

FITS group parameter value is not the true physical value, to
transform the group parameter value to the physical value. The
value field shallshall contain a floating-point number, represent-
ing the true value corresponding to a group parameter value of
zero. The default value for this keyword is 0.00.0. The transfor-
mation equation is as follows:

physical value = PZEROnPZEROn + PSCALnPSCALn × group parm valuegroup param value.(5)

6.2. Data sequence

Random groups data shallRandom-groups data shall consist of
a set of groups. The number of groups shallshall be specified by
the GCOUNTGCOUNT keyword in the associated header. Each
group shallshall consist of the number of parameters specified
by the PCOUNTPCOUNT keyword followed by an array with the
number of elements Nelem givenNelem given by the following ex-
pression:

NelemNelem = (NAXIS2NAXIS2 × NAXIS3NAXIS3 × · · · × NAXISmNAXISm),(6)

where Nelem Nelem is the number of elements in the data ar-
ray in a group, mm is the value of NAXISNAXIS, and the
NAXISnNAXISn represent the values associated with those key-
words.

The first parameter of the first group shallshall appear in the
first location of the first data block. The first element of each
array shallshall immediately follow the last parameter associated
with that group. The first parameter of any subsequent group
shallshall immediately follow the last element of the array of the
previous group. The arrays shallshall be organized internally in
the same way as an ordinary primary data array. If the groups
data do not fill the final data block, the remainder of the block
shallshall be filled with zero values in the same way as a primary
data array (Sect. ??). If random groups random-groups records
are present, there shallshall be no primary data array.

6.3. Data representation

Permissible data representations are those listed in Sect. ??.
Parameters and elements of associated data arrays shallshall
have the same representation. If more precision is required for
an associated parameter than for an element of a data array, the

Table 13: Mandatory keywords in image IMAGE extensions.

Position Keyword
1 XTENSION= 'IMAGE '
2 BITPIXBITPIX
3 NAXISNAXIS
4 NAXISn, nNAXISn, n = 1, . . . , NAXISNAXIS
5 PCOUNT PCOUNT = 00
6 GCOUNT GCOUNT = 11

...
(other keywords . . .)
...

last ENDEND

parameter shallshall be divided into two or more addends, rep-
resented by the same value for the PTYPEnPTYPEn keyword.
The value shallshall be the sum of the physical values, which
maymay have been obtained from the group parameter values
using the PSCALnand PZEROnPSCALn and PZEROn keywords.

7. Standard extensions

A standard extension is a conforming extension whose or-
ganization and content are completely specified in this
standardStandard. The specifications for the 3 three currently de-
fined standard extensions, namely,

1. ’IMAGE’IMAGE extensions;

2. ’TABLE’ASCII table TABLE ASCII-table extensions; and

3. ’BINTABLE’binary table extensions ; BINTABLE binary-
table extensions

are given in the following sections. A list of other conforming
extensions is given in Appendix ??.

7.1. Image extension

The FITSimage FITS IMAGE extension is nearly identical in
structure to the the primary HDU and is used to store an array of
data. Multiple image IMAGE extensions can be used to store any
number of arrays in a single FITSFITS file. The first keyword in
an image extension shallrecord in an IMAGE extension shall be
XTENSION= 'IMAGE 'XTENSION= 'IMAGE '.

7.1.1. Mandatory keywords

The XTENSIONkeyword is requiredXTENSION keyword is
required to be the first keyword of all image IMAGE extensions.
The keyword records in the header of an image extension
mustmust use the keywords defined in Table ?? in the order
specified. No other keywords maymay intervene between the
XTENSIONand GCOUNTXTENSION and GCOUNT keywords.

XTENSIONXTENSION keyword. The value field shallshall
contain the character string 'IMAGE '.

19

D
R

AF
T

20

BITPIXBITPIX keyword. The value field shallshall contain an
integer. The absolute value is used in computing the sizes of
data structures. It shallshall specify the number of bits that rep-
resent a data value. The only valid values of BITPIXBITPIX are
given in Table ??. Writers of IMAGEextensions shouldselect a
BITPIXIMAGE extensions should select a BITPIX data type ap-
propriate to the form, range of values, and accuracy of the data
in the array.

NAXISNAXIS keyword. The value field shallshall contain a
non-negative integer no greater than 999, representing the num-
ber of axes in the associated data array. If the value is zero then
the image extension shall notIMAGE extension shall not have any
data blocks following the header.

NAXISnNAXISn keywords. The NAXISnkeywords
mustNAXISn keywords must be present for all values n =
1, ..., NAXISn = 1, . . . , NAXIS, in increasing order of nn,
and for no other values of nn. The value field of this indexed
keyword shallshall contain a non-negative integer, representing
the number of elements along axis nAxis n of a data array. If
the value of any of the NAXISnNAXISn keywords is zero, then
the image extension shall notIMAGE extension shall not have
any data blocks following the header. If NAXISNAXIS is equal
to 0, there should notbe any NAXISn0 there should not be any
NAXISn keywords.

PCOUNTPCOUNT keyword. The value field shallshall contain
the integer 00.

GCOUNTGCOUNT keyword. The value field shallshall contain
the integer 11; each image IMAGE extension contains a single
array.

ENDEND keyword. This keyword has no associated value.
Bytes 9 through 80 shallshall be filled with ASCII spaces (deci-
mal 32 or hexadecimal 20).

7.1.2. Other reserved keywords

The reserved keywords defined in Sect. ?? (except for
EXTENDand BLOCKED) mayEXTEND and BLOCKED) may
appear in an image extension image-extension header. The key-
words mustmust be used as defined in that section.

7.1.3. Data sequence

The data format shallshall be identical to that of a primary data
array as described in Sect. ??.

7.2. The ASCII table ASCII-table extension

The ASCII table ASCII-table extension provides a means of
storing catalogs and tables of astronomical data in FITSFITS
format. Each row of the table consists of a fixed-length se-
quence of ASCII characters divided into fields that correspond
to the columns in the table. The first keyword in an ASCII ta-

ble extension shallbe record in an ASCII-table extension shall
be XTENSION= 'TABLE '.

7.2.1. Mandatory keywords

The header of an ASCII table extension mustASCII-table ex-
tension must use the keywords defined in Table ??. The
first keyword mustbe XTENSIONmust be XTENSION; the
seven keywords following XTENSION(BITPIX. . . TFIELDS)
mustXTENSION (BITPIX . . .TFIELDS) must be in the order spec-
ified with no intervening keywords.

XTENSIONXTENSION keyword. The value field shallshall
contain the character string value text 'TABLE '.

BITPIXBITPIX keyword. The value field shallshall contain the
integer 88, denoting that the array contains ASCII characters.

NAXISNAXIS keyword. The value field shallshall contain the
integer 22, denoting that the included data array is two-
dimensional: rows and columns.

NAXIS1NAXIS1 keyword. The value field shallshall contain a
non-negative integer, giving the number of ASCII characters in
each row of the table. This includes all the characters in the de-
fined fields plus any characters that are not included in any field.

NAXIS2NAXIS2 keyword. The value field shallshall contain a
non-negative integer, giving the number of rows in the table.

PCOUNTPCOUNT keyword. The value field shallshall contain
the integer 00.

GCOUNTGCOUNT keyword. The value field shallshall contain
the integer 11; the data blocks contain a single table.

TFIELDSTFIELDS keyword. The value field shallshall contain
a non-negative integer representing the number of fields in each
row. The maximum permissible value is 999.

TBCOLnTBCOLn keywords. The TBCOLnkeywords
mustTBCOLn keywords must be present for all values n =
1, ..., TFIELDSn = 1, . . . , TFIELDS and for no other values of
nn. The value field of this indexed keyword shallshall contain
an integer specifying the column in which field nField n starts.
The first column of a row is numbered 1.

TFORMnTFORMn keywords. The TFORMnkeywords
mustTFORMn keywords must be present for all values n =
1, ..., TFIELDSn = 1, . . . , TFIELDS and for no other values
of nn. The value field of this indexed keyword shallshall
contain a character string describing the format in which field
nField n is encoded. Only the formats in Table ??, interpreted
as Fortran (?) input formats and discussed in more detail in
Sect. ??, are permitted for encoding. Format codes mustmust
be specified in upper case. Other format editing codes common

20

D
R

AF
T

21

Table 14: Mandatory keywords in ASCII table ASCII-table extensions.

Position Keyword
1 XTENSION= 'TABLE '
2 BITPIX BITPIX = 88
3 NAXIS NAXIS = 22
4 NAXIS1NAXIS1
5 NAXIS2NAXIS2
6 PCOUNT PCOUNT = 00
7 GCOUNT GCOUNT = 11
8 TFIELDSTFIELDS

...
(other keywords, including (if TFIELDSTFIELDS is not zero) . . .)
TTYPEn, n=1, 2, . . . , k where k TTYPEn, n = 1, 2, . . . , k, where k is the value of TFIELDS(RecommendedTFIELDS (recommended)
TBCOLn, n=1, 2, . . . , k where k TBCOLn, n = 1, 2, . . . , k, where k is the value of TFIELDS(RequiredTFIELDS (required)
TFORMn, n=1, 2, . . . , k where k TFORMn, n = 1, 2, . . . , k, where k is the value of TFIELDS(RequiredTFIELDS (required)
...

last ENDEND

Table 15: Valid TFORMnTFORMn format values in
TABLETABLE extensions.

Field value Data type
Aw Aw Character

Iw Iw Decimal integer
Fw.d Fw.d Floating-point, fixed decimal notation
Ew.d Ew.d Floating-point, exponential notation
Dw.d Dw.d Floating-point, exponential notation

Notes. w is the width in characters of the field and d is the number of
digits to the right of the decimal.

to Fortran such as repetition, positional editing, scaling, and
field termination are not permitted. All values in numeric fields
have a number base of ten (i.e., they are decimal); binary,
octal, hexadecimal, and other representations are not permitted.
The TDISPnTDISPn keyword, defined in Sect. ??, may ??,
may be used to recommend that a decimal integer value in an
ASCII table be displayed as the equivalent binary, octal, or
hexadecimal value.

ENDEND keyword. This keyword has no associated value.
Bytes 9 through 80 shallshall contain ASCII spaces (decimal 32
or hexadecimal 20).

7.2.2. Other reserved keywords

In addition to the reserved keywords defined in Sect. ?? (ex-
cept for EXTENDand BLOCKEDEXTEND and BLOCKED), the
following other reserved keywords maymay be used to describe
the structure of an ASCII table ASCII-table data array. They
are optionaloptional, but if they appear within an ASCII table
ASCII-table extension header, they mustmust be used as defined
in this section of this standardStandard.

TTYPEnTTYPEn keywords. The value field for this indexed
keyword shallshall contain a character string giving the name
of field nField n. It is strongly recommended that every field of

the table be assigned a unique, case-insensitive name with this
keyword, and it is recommendedrecommended that the charac-
ter string be composed only of upper and lower case upper-
and lower-case letters, digits, and the underscore (‘ ’’ ’, dec-
imal 95, hexadecimal 5F) character. Use of other characters is
not recommendednot recommended because it may be difficult
to map the column names into variables in some languages (e.g.,
any hyphens, ‘*’ or ‘+’ ’*’ or ’+’ characters in the name may
be confused with mathematical operators). String comparisons
with the TTYPEnkeyword values should notTTYPEn keyword
values should not be case sensitive (e.g., ’TIME’ and ’Time’
should’TIME’ and ’Time’ should be interpreted as the same
name).

TUNITnTUNITn keywords. The value field shallshall contain
a character string describing the physical units in which the
quantity in field nField n, after any application of TSCALnand
TZEROnTSCALn and TZEROn, is expressed. Units mustmust
follow the prescriptions in Sect. ??.

TSCALnTSCALn keywords. This indexed keyword shallshall
be used, along with the TZEROnTZEROn keyword, to linearly
scale the values in the table field nField n to transform them into
the physical values that they represent using Eq. ??. The value
field shallshall contain a floating-point number representing the
coefficient of the linear term in the scaling equation. The default
value for this keyword is 1.01.0. This keyword must notmust not
be used for A-format fields.

The transformation equation used to compute a true physical
value from the quantity in field nField n is

physical value = TZEROnTZEROn + TSCALnTSCALn × field value(7)

where field valuefield value is the value that is actually
stored in that table field in the FITSFITS file.

TZEROnTZEROn keywords. This indexed keyword shallshall
be used, along with the TSCALnTSCALn keyword, to linearly
scale the values in the table field nField n to transform them
into the physical values that they represent using Eq. ??. The
value field shallshall contain a floating-point number represent-

21

D
R

AF
T

22

Table 16: Valid TDISPnTDISPn format values in TABLETABLE extensions.

Field value Data type
Aw Aw Character

Iw.m Iw.m Integer
Bw.m Bw.m Binary, integers only
Ow.m Ow.m Octal, integers only
Zw.m Zw.m Hexadecimal, integers only
Fw.d Fw.d Floating-point, fixed decimal notation

Ew.dEe Ew.dEe Floating-point, exponential notation
ENw.d ENw.d Engineering; E format with exponent multiple of three
ESw.d ESw.d Scientific; same as EN but non-zero leading digit if not zero

Gw.dEe Gw.dEe General; appears as F if significance not lost, else E.
Dw.dEe Dw.dEe Floating-point, exponential notation

Notes. w is the width in characters of displayed values, m is the minimum number of digits displayed, d is the number of digits to right of decimal,
and e is number of digits in exponent. The .m and Ee fields are optional.

ing the physical value corresponding to an array value of zero.
The default value for this keyword is 0.00.0. This keyword must
notmust not be used for A-format fields.

TNULLnTNULLn keywords. The value field for this indexed
keyword shallshall contain the character string that represents an
undefined value for field nField n. The string is implicitly space
filled to the width of the field.

TDISPnTDISPn keywords. The value field of this indexed
keyword shallshall contain a character string describing the
format recommended for displaying an ASCII text ASCII-
text representation of of the contents of field nField n. This
keyword overrides the default display format given by the
TFORMnTFORMn keyword. If the table value has been scaled,
the physical value, derived using Eq. ??, shallshall be displayed.
All elements in a field shallshall be displayed with a single, re-
peated format. Only the format codes in Table ??, interpreted as
Fortran (?) output formats, and discussed in more detail in Sect.
??, are permitted for encoding. The format codes mustmust be

specified in upper case. If the Bw.m, Ow.m, and Zw.mBw.m,
Ow.m, and Zw.m formats are not readily available to the reader,
the Iw.mdisplay format mayIw.m display format may be used
instead, and if the ENw.dand ESw.dENw.d and ESw.d formats
are not available, Ew.dmayEw.d may be used.

The following four keywords maymay be used to specify mini-
mum and maximum values in numerical columns of a FITSFITS
ASCII or binary table. These keywords mustmust have the same
data type as the physical values in the associated column (ei-
ther an integer or a floating point floating-point number). Any
undefined elements in the column shallshall be excluded when
determining the value of these keywords.

TDMINnTDMINn keywords. The value field shallshall contain
a number giving the minimum physical value contained in
column nColumn n of the table. This keyword is analogous to
the DATAMINDATAMIN keyword that is defined for arrays in
Sect. ??.5.

TDMAXnTDMAXn keywords. The value field shallshall contain
a number giving the maximum physical value contained in

column nColumn n of the table. This keyword is analogous to
the DATAMAXDATAMAX keyword that is defined for arrays in
Sect. ??.5.

TLMINnTLMINn keywords. The value field shallshall contain
a number that specifies the minimum physical value in column
nColumn n that has a valid meaning or interpretation. The col-
umn is not required required to actually contain any elements
that have this value, and the column may may contain elements
with physical values less than TLMINnTLMINn, however, the in-
terpretation of any such out-of-range column elements is not de-
fined.

TLMAXnTLMAXn keywords. The value field shallshall contain
a number that specifies the maximum physical value in column
nColumn n that has a valid meaning or interpretation. The col-
umn is not required required to actually contain any elements
that have this value, and the column may may contain elements
with physical values greater than TLMAXnTLMAXn, however,
the interpretation of any such out-of-range column elements is
not defined.

The TLMINnand TLMAXnTLMINn and TLMAXn keywords are
commonly used when constructing histograms of the data values
in a column. For example, if a table contains columns that give
the X and Y X and Y pixel location of a list of photons that were
detected by a photon counting photon-counting device, then the
TLMINnand TLMAXnTLMINn and TLMAXn keywords could be
used respectively to specify the minimum and maximum values
that the detector is capable of assigning to the X and Y X and Y
columns.

7.2.3. Data sequence

The table is constructed from a two-dimensional array of ASCII
characters. The row length and the number of rows shallshall
be those specified, respectively, by the NAXIS1NAXIS1 and
NAXIS2NAXIS2 keywords of the associated header. The num-
ber of characters in a row and the number of rows in the ta-
ble shallshall determine the size of the character array. Every
row in the array shallshall have the same number of characters.
The first character of the first row shallshall be at the start of
the data block immediately following the last header block. The

22

D
R

AF
T

23

first character of subsequent rows shallshall follow immediately
the character at the end of the previous row, independent of the
FITSFITS block structure. The positions in the last data block
after the last character of the last row of the table shallshall be
filled with ASCII spaces.

7.2.4. Fields

Each row in the array shallshall consist of a sequence of from
0 to 999 fields, as specified by the TFIELDSTFIELDS keyword,
with one entry in each field. For every field, the Fortran (?) for-
mat of the information contained (given by the TFORMnTFORMn
keyword), the location in the row of the beginning of the
field (given by the TBCOLnTBCOLn keyword), and (option-
ally, but strongly recommended) the field name (given by the
TTYPEnTTYPEn keyword), shallshall be specified in the associ-
ated header. The location and format of fields shallshall be the
same for every row. Fields maymay overlap, but this usage is
not recommendednot recommended. Only a limited set of ASCII
character values maymay appear within any field, depending on
the field type as specified below. There maymay be characters
in a table row that are not included in any field, (e.g., between
fields, or before the first field or after the last field). Any 7-bit
seven-bit ASCII character maymay occur in characters of a table
row that are not included in a defined field. A common conven-
tion is to include a space character between each field for added
legibility if the table row is displayed verbatim. It is also permis-
sible to add control characters, such as a carriage return or line
feed line-feed character, following the last field in each row as a
way of formatting the table if it is printed or displayed by a text
editing text-editing program.

7.2.5. Entries

All data in an ASCII table extension field shallASCII-table ex-
tension field shall be ASCII text in a format that conforms to
the rules for fixed field input in Fortran (?) format, as described
below. The only possible formats shallshall be those specified
in Table ??. If values of −0 and +0 need to be distinguished,
then the sign character shouldshould appear in a separate field in
character format. TNULLnTNULLn keywords maymay be used
to specify a character string that represents an undefined value
in each field. The characters representing an undefined value
maymay differ from field to field but mustmust be the same
within a field. Writers of ASCII tables shouldshould select a
format for each field that is appropriate to the form, range of
values, and accuracy of the data in that field. This standard
Standard does not impose an upper limit on the number of
digits of precision, nor any limit on the range of numeric val-
ues. Software packages that read or write data according to this
standard Standard could be limited, however, in the range of val-
ues and exponents that are supported (e.g., to the range that can
be represented by 32-bit or 64-bit binary numbers).

The value of each entry shallshall be interpreted as described
in the following paragraphs.

Character fields. The value of a character-formatted (AwAw)
field is a character string of width w w containing the characters
in columns TBCOLnthrough TBCOLn+w − 1TBCOLn through
TBCOLn + w − 1. The character string shallshall be composed of
the restricted set of ASCII text ASCII-text characters with deci-

mal values in the range 32 through 126 (hexadecimal 20 through
7E).

Integer fields. The value of an integer-formatted (IwIw) field is
a signed decimal integer contained in columns TBCOLnthrough
TBCOLn+w − 1 Columns TBCOLn through TBCOLn + w − 1
consisting of a single optionalsign (‘+’or ‘-’optional sign (’+’
or ’-’) followed by one or more decimal digits (‘0’through
‘9’’0’ through ’9’). Non-significant space characters may may
precede and/or follow the integer value within the field. A blank
field has value 0. All characters other than leading and trailing
spaces, a contiguous string of decimal digits, and a single lead-
ing sign character are forbidden.

Real fields. The value of a real-formatted field (Fw.d, Ew.d,
Dw.dFw.d, Ew.d, Dw.d) is a real number determined from the
wcharacters from columns TBCOLnthrough TBCOLn+w − 1w
characters from Columns TBCOLn through TBCOLn + w − 1. The
value is formed by

1. discarding any trailing space characters in the field and right-
justifying the remaining characters,

2. interpreting the first non-space characters as a numeric
string consisting of a single optionalsign (‘+’or ‘-’optional
sign (’+’ or ’-’) followed by one or more decimal dig-
its (‘0’through ‘9’’0’ through ’9’) optionally containing a
single decimal point (‘.’’.’). The numeric string is termi-
nated by the end of the right-justified field or by the occur-
rence of any character other than a decimal point (‘.’’.’)
and the decimal integers (‘0’through ‘9’’0’ through ’9’).
If the string contains no explicit decimal point, then the im-
plicit decimal point is taken as immediately preceding the
rightmost d digits of the string, with leading zeros assumed
if necessary. The use of implicit decimal points is depre-
cated and is strongly discouraged because of the possibility
that FITSreading FITS-reading programs will misinterpret
the data value. Therefore, real-formatted fields shouldshould
always contain an explicit decimal point.

3. If the numeric string is terminated by a

(a) ‘+’or ‘-’’+’ or ’-’, interpreting the following string as
an exponent in the form of a signed decimal integer, or

(b) ‘E’, or ‘D’’E’, or ’D’, interpreting the following string
as an exponent of the form Eor DE or D followed by an
optionally signed decimal integer constant.

4. The exponent string, if present, is terminated by the end of
the right-justified string.

5. Characters other than those specified above, including em-
bedded space characters, are forbidden.

The numeric value of the table field is then the value of
the numeric string multiplied by ten (10) to the power
of the exponent string, i.e., value = numeric string ×

10(exponent string)10(exponent string). The default exponent is zero and
a blank field has value zero. There is no difference between the
F, D, and EF, D, and E formats; the content of the string de-
termines its interpretation. Numbers requiring more precision
and/or range than the local computer can support maymay be
represented. It is good form to specify a Dformat in TFORMnD
format in TFORMn for a column of an ASCII table when that col-

23

D
R

AF
T

24

umn will contain numbers that cannot be accurately represented
in 32-bit IEEE binary format (see Appendix ??).

7.3. Binary table Binary-table extension

The binary table binary-table extension is similar to the ASCII
table in that it provides a means of storing catalogs and tables of
astronomical data in FITSFITS format, however, it offers more
features and provides more-efficient data storage than ASCII ta-
bles. The numerical values in binary tables are stored in more-
compact binary formats rather than coded into ASCII, and each
field of a binary table can contain an array of values rather than
a simple scalar as in ASCII tables. The first keyword in a binary
table extension shallrecord in a binary-table extension shall be
XTENSION= 'BINTABLE'XTENSION= 'BINTABLE'.

7.3.1. Mandatory keywords

The XTENSIONXTENSION keyword is the first keyword of all
binary table binary-table extensions. The seven keywords fol-
lowing (BITPIX. . . TFIELDS) mustBITPIX . . .TFIELDS) must
be in the order specified in Table ??, with no intervening key-
words.

XTENSIONXTENSION keyword. The value field shallshall
contain the character string 'BINTABLE''BINTABLE'.

BITPIXBITPIX keyword. The value field shallshall contain the
integer 88, denoting that the array is an array of 8-bit eight-bit
bytes.

NAXISNAXIS keyword. The value field shallshall contain the
integer 22, denoting that the included data array is two-
dimensional: rows and columns.

NAXIS1NAXIS1 keyword. The value field shallshall contain a
non-negative integer, giving the number of 8-bit eight-bit bytes
in each row of the table.

NAXIS2NAXIS2 keyword. The value field shallshall contain a
non-negative integer, giving the number of rows in the table.

PCOUNTPCOUNT keyword. The value field shallshall contain
the number of bytes that follow the table in the supplemental
data area called the heap.

GCOUNTGCOUNT keyword. The value field shallshall contain
the integer 11; the data blocks contain a single table.

TFIELDSTFIELDS keyword. The value field shallshall contain
a non-negative integer representing the number of fields in each
row. The maximum permissible value is 999.

TFORMnTFORMn keywords. The TFORMnkeywords
mustTFORMn keywords must be present for all values n =
1, ..., TFIELDSn = 1, . . . , TFIELDS and for no other values of

Table 18: Valid TFORMnTFORMn data types in
BINTABLEBINTABLE extensions.

TFORMnTFORMn value Description 8-bit Eight-bit Bytes
L ’L’ Logical 1
X ’X’ Bit †
B ’B’ Unsigned byte 1
I ’I’ 16-bit integer 2
J ’J’ 32-bit integer 4
K ’K’ 64-bit integer 8
A ’A’ Character 1
E ’E’ Single precision Single-precision floating point 4
D ’D’ Double precision Double-precision floating point 8
C ’C’ Single precision Single-precision complex 8
M ’M’ Double precision Double-precision complex 16
P ’P’ Array Descriptor (32-bit) 8
Q ’Q’ Array Descriptor (64-bit) 16

Notes. (†) Number of eight-bit bytes needed to contain all bits.

nn. The value field of this indexed keyword shallshall contain
a character string of the form rTaTa. The repeat count r is the
ASCII representation of a non-negative integer specifying the
number of elements in field nField n. The default value of r is
11; the repeat count need not be present if it has the default
value. A zero element count, indicating an empty field, is per-
mitted. The data type TT specifies the data type of the contents
of field nField n. Only the data types in Table ?? are permitted.
The format codes mustmust be specified in upper case. For
fields of type Por QP or Q, the only permitted repeat counts are 0
and 1. 0 and 1. The additional characters a are optionaloptional
and are not further defined in this standardStandard. Table ??
lists the number of bytes each data type occupies in a table row.
The first field of a row is numbered 1. The total number of bytes
nrow nrow in a table row is given by

nrowrow =
∑
i=1

TFIELDSTFIELDSribi (8)

where ri is the repeat count for field Field i, bi is the number of
bytes for the data type in field Field i, and TFIELDSTFIELDS
is the value of that keyword, mustmust equal the value of
NAXIS1NAXIS1.

ENDEND keyword. This keyword has no associated value.
Bytes 9 through 80 shallshall contain ASCII spaces (decimal 32
or hexadecimal 20).

7.3.2. Other reserved keywords

In addition to the reserved keywords defined in Sect. ?? (ex-
cept for EXTENDand BLOCKEDEXTEND and BLOCKED), the
following other reserved keywords maymay be used to describe
the structure of a binary table binary-table data array. They are
optionaloptional, but if they appear within a binary table binary-
table extension header, they mustmust be used as defined in this
section of this standardStandard.

TTYPEnTTYPEn keywords. The value field for this indexed
keyword shallshall contain a character string giving the name
of field nField n. It is strongly recommended that every field of

24

D
R

AF
T

25

Table 17: Mandatory keywords in binary table binary-table extensions.

Position Keyword
1 XTENSION= 'BINTABLE'
2 BITPIX BITPIX = 88
3 NAXIS NAXIS = 22
4 NAXIS1NAXIS1
5 NAXIS2NAXIS2
6 PCOUNTPCOUNT
7 GCOUNT GCOUNT = 11
8 TFIELDSTFIELDS

...
(other keywords, including (if TFIELDSTFIELDS is not zero) . . .)
TTYPEn, n=1, 2, . . . , k where k TTYPEn, n = 1, 2, . . . , k, where k is the value of TFIELDS(RecommendedTFIELDS (recommended)
TFORMn, n=1, 2, . . . , k where k TFORMn, n = 1, 2, . . . , k, where k is the value of TFIELDS(RequiredTFIELDS (required)
...

last ENDEND

the table be assigned a unique, case-insensitive name with this
keyword, and it is recommendedrecommended that the charac-
ter string be composed only of upper and lower case upper-
and lower-case letters, digits, and the underscore (‘ ’’ ’, dec-
imal 95, hexadecimal 5F) character. Use of other characters is
not recommendednot recommended because it may be difficult
to map the column names into variables in some languages (e.g.,
any hyphens, ‘*’ or ‘+’ ’*’ or ’+’ characters in the name may
be confused with mathematical operators). String comparisons
with the TTYPEnkeyword values should notTTYPEn keyword
values should not be case sensitive (e.g., ’TIME’ and ’Time’
should’TIME’ and ’Time’ should be interpreted as the same
name).

TUNITnTUNITn keywords. The value field shallshall contain
a character string describing the physical units in which the
quantity in field nField n, after any application of TSCALnand
TZEROnTSCALn and TZEROn, is expressed. Units mustmust
follow the prescriptions in Sect. ??.

TSCALnTSCALn keywords. This indexed keyword shallshall
be used, along with the TZEROnTZEROn keyword, to linearly
scale the values in the table field nField n to transform them
into the physical values that they represent using Eq. ??. It must
notmust not be used if the format of field nis A, L, or XField n is
’A’, ’L’, or ’X’. For fields with all other data types, the value
field shallshall contain a floating-point number representing the
coefficient of the linear term in Eq. ??, which is used to compute
the true physical value of the field, or, in the case of the complex
data types Cand M’C’ and ’M’, of the real part of the field, with
the imaginary part of the scaling factor set to zero. The default
value for this keyword is 1.01.0. For fields of type Por Q’P’
or ’Q’, the values of TSCALnand TZEROnTSCALn and TZEROn
are to be applied to the values in the data array in the heap area,
not the values of the array descriptor (see Sect. ??).

TZEROnTZEROn keywords. This indexed keyword shallshall
be used, along with the TSCALnTSCALn keyword, to linearly
scale the values in the table field nField n to transform them
into the physical values that they represent using Eq. ??. It must
notmust not be used if the format of field nis A, L, or XField n is

’A’, ’L’, or ’X’. For fields with all other data types, the value
field shallshall contain a floating-point number representing the
true physical value corresponding to a value of zero in field nof
the FITSField n of the FITS file, or, in the case of the complex
data types Cand M’C’ and ’M, in the real part of the field, with
the imaginary part set to zero. The default value for this keyword
is 0.00.0. Equation ?? is used to compute a true physical value
from the quantity in field nField n. For fields of type Por Q’P’
or ’Q’, the values of TSCALnand TZEROnTSCALn and TZEROn
are to be applied to the values in the data array in the heap area,
not the values of the array descriptor (see Sect. ??).

In addition to its use in representing floating-point values as
scaled integers, the TZEROnTZEROn keyword is also used when
storing unsigned integer values in the field. In this special case
the TSCALnkeyword shallTSCALn keyword shall have the de-
fault value of 1.0 and the TZEROnkeyword shall1.0 and the
TZEROn keyword shall have one of the integer values shown in
Table ??.

Since the binary table binary-table format does not support a
native unsigned integer data type (except for the unsigned 8-bit
’B’eight-bit ’B’ column type), the unsigned values are stored in
the field as native signed integers with the appropriate integer
offset specified by the TZEROnTZEROn keyword value shown
in the table. For the byte column type, the converse technique
can be used to store signed byte values as native unsigned val-
ues with the negative TZEROnTZEROn offset. In each case, the
physical value is computed by adding the offset specified by the
TZEROnTZEROn keyword to the native data type value that is
stored in the table field.

TNULLnTNULLn keywords. The value field for this indexed
keyword shallshall contain the integer that represents an unde-
fined value for field nof data type B, I, Jor K, or Por Qarray
descriptorField n of Data Type B, I, J or K, or P or Q array-
descriptor fields (Sect. ??) that point to B, I, Jor KB, I, J, or
K integer arrays. The keyword must notmust not be used if field
nField n is of any other data type. The value of this keyword cor-
responds to the table column values before applying any trans-
formation indicated by the TSCALnand TZEROnTSCALn and
TZEROn keywords.

If the TSCALnand TZEROnTSCALn and TZEROn keywords
do not have the default values of 1.0 and 0.01.0 and 0.0, re-

25

D
R

AF
T

26

Table 19: Usage of TZEROnTZEROn to represent non-default integer data types.

TFORMnTFORMn Native Physical TZEROnTZEROn
data type data type

B ’B’ unsigned signed byte -128-128 (−27)
I’I’ signed unsigned 16-bit 3276832768 (215)
J’J’ signed unsigned 32-bit 21474836482147483648 (231)
K’K’ signed unsigned 64-bit 92233720368547758089223372036854775808 (263)

spectively, then the value of the TNULLnkeyword mustTNULLn
keyword must equal the actual value in the FITSFITS file that
is used to represent an undefined element and not the corre-
sponding physical value (computed from Eq. ??). To cite a spe-
cific, common example, unsigned 16-bit integers are represented
in a signed integer column (with TFORMn TFORMn =’I’ ’I’)
by setting TZEROn TZEROn =32768and TSCALn 32768 and
TSCALn =1 1. If it is desired to use elements that have an
unsigned value (i.e., the physical value) equal to 0 to repre-
sent undefined elements in the field, then the TNULLnkeyword
mustTNULLn keyword must be set to the value -32768 -32768
because that is the actual value stored in the FITSFITS file for
those elements in the field.

TDISPnTDISPn keywords. The value field of this indexed key-
word shallshall contain a character string describing the for-
mat recommended for displaying an ASCII text ASCII-text
representation of the contents of field nField n. If the table
value has been scaled, the physical value, derived using Eq. ??,
shallshall be displayed. All elements in a field shallshall be dis-
played with a single, repeated format. For purposes of display,
each byte of bit (type XType X) and byte (type BType B) arrays
is treated as an unsigned integer. Arrays of type AmayType A
may be terminated with a zero byte. Only the format codes in
Table ??, interpreted as Fortran (?) output formats, and discussed
in more detail in Sect. ??, are permitted for encoding. The for-
mat codes mustmust be specified in upper case. If the Bw.m,
Ow.m, and Zw.mBw.m, Ow.m, and Zw.m formats are not readily
available to the reader, the Iw.mdisplay format mayIw.m display
format may be used instead, and if the ENw.dand ESw.dENw.d
and ESw.d formats are not available, Ew.dmayEw.d may be
used. In the case of fields of type Por Q, the TDISPnType P or
Q, the TDISPn value applies to the data array pointed to by the
array descriptor (Sect. ??), not the values in the array descriptor
itself.

THEAPTHEAP keyword. The value field of this keyword
shallshall contain an integer providing the separation, in bytes,
between the start of the main data table and the start of a sup-
plemental data area called the heap. The default value, which is
also the minimum allowed value, shallshall be the product of the
values of NAXIS1NAXIS1 and NAXIS2NAXIS2. This keyword
shall notshall not be used if the value of PCOUNTis zeroPCOUNT
is 0. The use of this keyword is described in in Sect. ??.

TDIMnTDIMn keywords. The value field of this indexed key-
word shallshall contain a character string describing how to in-
terpret the contents of field nField n as a multi-dimensional ar-
ray with a format of ’(l,m, n. . .)’where l, m, n’(l,m,n...)’,
where l, m, n, . . . are the dimensions of the array. The data are
ordered such that the array index of the first dimension given

(ll) is the most rapidly varying, and that of the last dimension
given is the least rapidly varying. The total number of elements
in the array equals the product of the dimensions specified in the
TDIMnTDIMn keyword. The size mustmust be less than or equal
to the repeat count on the TFORMnin the TFORMn keyword, or,
in the case of columns that have a ’P’or ’Q’TFORMn’P’ or ’Q’
TFORMn data type, less than or equal to the array length spec-
ified in the variable-length array descriptor (see Sect. ??). In
the special case where the variable-length array descriptor has a
size of zero, then the TDIMnTDIMn keyword is not applicable.
If the number of elements in the array implied by the TDIMnis
less TDIMn is fewer than the allocated size of the array in the
FITSFITS file, then the unused trailing elements shouldshould
be interpreted as containing undefined fill values.

A character string is represented in a binary table by a
one-dimensional character array, as described under ‘Character’
in the list of data types in Sect. ??. For example, a Fortran
CHARACTER*20CHARACTER*20 variable could be repre-
sented in a binary table as a character array declared as
TFORMn TFORMn = ’20A’. Arrays of strings, i.e., multi-
dimensional character arrays, maymay be represented using the
TDIMnTDIMn notation. For example, if TFORMn TFORMn =and
TDIMn = '(5,4,3)' ’60A’ and TDIMn = ’(5,4,3)’, then
the entry consists of a 4 × 3 array of strings of five charac-
terseacheach comprising five characters.

The following four keywords maymay be used to specify mini-
mum and maximum values in numerical columns of a FITSFITS
ASCII or binary table. These keywords mustmust have the same
data type as the physical values in the associated column (either
an integer or a floating point floating-point number). Any unde-
fined elements in the column or any other IEEE special values
in the case of floating point columns shallfloating-point columns
shall be excluded when determining the value of these keywords.

TDMINnTDMINn keywords. The value field shallshall contain
a number giving the minimum physical value contained in
column nColumn n of the table. This keyword is analogous to
the DATAMINDATAMIN keyword that is defined for arrays in
Sect. ??.5.

TDMAXnTDMAXn keywords. The value field shallshall contain
a number giving the maximum physical value contained in
column nColumn n of the table. This keyword is analogous to
the DATAMAXDATAMAX keyword that is defined for arrays in
Sect. ??.5.

TLMINnTLMINn keywords. The value field shallshall contain
a number that specifies the minimum physical value in column
nColumn n that has a valid meaning or interpretation. The col-

26

D
R

AF
T

27

Table 20: Valid TDISPnTDISPn format values in BINTABLEBINTABLE extensions.

Field Value Data type
Aw Aw Character
Lw Lw Logical

Iw.m Iw.m Integer
Bw.m Bw.m Binary, integers only
Ow.m Ow.m Octal, integers only
Zw.m Zw.m Hexadecimal, integers only
Fw.d Fw.d Floating-point, fixed decimal notation

Ew.dEe Ew.dEe Floating-point, exponential notation
ENw.d ENw.d Engineering; E format with exponent multiple of three
ESw.d ESw.d Scientific; same as EN but non-zero leading digit if not zero

Gw.dEe Gw.dEe General; appears as F if significance not lost, else E.
Dw.dEe Dw.dEe Floating-point, exponential notation

Notes. w is the width in characters of displayed values, m is the minimum number of digits displayed, d is the number of digits to right of decimal,
and e is number of digits in exponent. The .m and Ee fields are optional.

umn is not required required to actually contain any elements
that have this value, and the column may may contain elements
with physical values less than TLMINnTLMINn, however, the in-
terpretation of any such out-of-range column elements is not de-
fined.

TLMAXnTLMAXn keywords. The value field shallshall contain
a number that specifies the maximum physical value in column
nColumn n that has a valid meaning or interpretation. The col-
umn is not required required to actually contain any elements
that have this value, and the column may may contain elements
with physical values greater than TLMAXnTLMAXn, however,
the interpretation of any such out-of-range column elements is
not defined.

The TLMINnand TLMAXnTLMINn and TLMAXn keywords are
commonly used when constructing histograms of the data values
in a column. For example, if a table contains columns that give
the X and Y X and Y pixel location of a list of photons that were
detected by a photon counting photon-counting device, then the
TLMINnand TLMAXnTLMINn and TLMAXn keywords could be
used respectively to specify the minimum and maximum values
that the detector is capable of assigning to the X and Y X and Y
columns.

7.3.3. Data sequence

The data in a binary table extension shallbinary-table extension
shall consist of a main data tablewhich may, which may, but
need not, be followed by additional bytes in the supplemental
data area. The positions in the last data block after the last addi-
tional byte, or, if there are no additional bytes, the last character
of the last row of the main data table, shallshall be filled by set-
ting all bits to zero.

7.3.3.1. Main data table

The table is constructed from a two-dimensional byte ar-
ray. The number of bytes in a row shallshall be specified by the
value of the NAXIS1NAXIS1 keyword and the number of rows
shallshall be specified by the NAXIS2NAXIS2 keyword of the

associated header. Within a row, fields shallshall be stored in
order of increasing column number, as determined from the nof
the TFORMnn of the TFORMn keywords. The number of bytes in
a row and the number of rows in the table shallshall determine
the size of the byte array. Every row in the array shallshall
have the same number of bytes. The first row shallshall begin
at the start of the data block immediately following the last
header block. Subsequent rows shallshall begin immediately
following the end of the previous row, with no intervening bytes,
independent of the FITSFITS block structure. Words need not
be aligned along word boundaries.

Each row in the array shallshall consist of a sequence of
from 0 to 999 fields as specified by the TFIELDSTFIELDS key-
word. The number of elements in each field and their data type
shallshall be specified by the TFORMnTFORMn keyword in the
associated header. A separate format keyword mustmust be pro-
vided for each field. The location and format of fields shallshall
be the same for every row. Fields maymay be empty, if the repeat
count specified in the value of the TFORMnTFORMn keyword of
the header is 0. 0. Writers of binary tables shouldshould select a
format appropriate to the form, range of values, and accuracy of
the data in the table. The following data types, and no others, are
permitted.

Logical. If the value of the TFORMnkeyword specifies data
type LTFORMn keyword specifies Data Type ’L’, the contents of
field nshallField n shall consist of ASCII TT indicating true or
ASCII FF, indicating false. A 0 byte (hexadecimal 00) indicates
a NULL value.

Bit array. If the value of the TFORMnTFORMn keyword spec-
ifies data type X’X’, the contents of field nshallField n shall
consist of a sequence of bits starting with the most significant
most-significant bit; the bits following shallshall be in order of
decreasing significance, ending with the least significant bit. A
bit array shallshall be composed of an integral number of bytes,
with those bits following the end of the data set to zero. No null
value is defined for bit arrays.

Character. If the value of the TFORMnkeyword specifies data
type A, field nshallTFORMn keyword specifies Data Type ’A’,

27

D
R

AF
T

28

Field n shall contain a character string of zero or more zero-
or-more members, composed of the restricted set of ASCII text
ASCII-text characters. This character string maymay be termi-
nated before the length specified by the repeat count by an ASCII
NULL (hexadecimal code 00). Characters after the first ASCII
NULL are not defined. A string with the number of charac-
ters specified by the repeat count is not NULL terminated. Null
strings are defined by the presence of an ASCII NULL as the
first character.

Unsigned 8-Bit integer. If the value of the TFORMnkeyword
specifies data type BTFORMn keyword specifies Data Type ’B’,
the data in field nshallField n shall consist of unsigned 8-bit
eight-bit integers, withthe most significant the most-significant
bit first, and subsequent bits in order of decreasing signifi-
cance. Null values are given by the value of the associated
TNULLnTNULLn keyword. Signed integers can be represented
using the convention described in Sect. ??.

16-Bit integer. If the value of the TFORMnkeyword specifies
data type ITFORMn keyword specifies Data Type ’I’, the data
in field nshallField n shall consist of two’s complement signed
16-bit integers, contained in two bytes. The most significant byte
shallmost-significant byte shall be first (big-endian byte order).
Within each byte the most significant bit shallmost-significant
bit shall be first, and subsequent bits shallshall be in order of
decreasing significance. Null values are given by the value of the
associated TNULLnTNULLn keyword. Unsigned integers can be
represented using the convention described in Sect. ??.

32-Bit integer. If the value of the TFORMnkeyword specifies
data type JTFORMn keyword specifies Data Type ’J’, the data in
field nshallField n shall consist of two’s complement signed 32-
bit integers, contained in four bytes. The most significant byte
shallmost-significant byte shall be first, and subsequent bytes
shallshall be in order of decreasing significance (big-endian byte
order). Within each byte, the most significant bit shallmost-
significant bit shall be first, and subsequent bits shallshall be
in order of decreasing significance. Null values are given by the
value of the associated TNULLnTNULLn keyword. Unsigned in-
tegers can be represented using the convention described in Sect.
??.

64-Bit integer. If the value of the TFORMnkeyword specifies
data type KTFORMn keyword specifies Data Type ’K’, the data in
field nshallField n shall consist of two’s complement signed 64-
bit integers, contained in eight bytes. The most significant byte
shallmost-significant byte shall be first, and subsequent bytes
shallshall be in order of decreasing significance. Within each
byte, the most significant bit shallmost-significant bit shall be
first, and subsequent bits shallshall be in order of decreasing sig-
nificance (big-endian byte order). Null values are given by the
value of the associated TNULLnTNULLn keyword. Unsigned in-
tegers can be represented using the convention described in Sect.
??.

Single precision Single-precision floating point. If the value
of the TFORMnkeyword specifies data type ETFORMn keyword
specifies Data Type ’E’, the data in field nshallField n shall

consist of ANSI/IEEE-754 (?) 32-bit floating-point numbers, in
big-endian byte order, as described in Appendix ??. All IEEE
special values are recognized. The IEEE NaN is used to repre-
sent null values.

Double precision Double-precision floating point. If the value
of the TFORMnkeyword specifies data type DTFORMn keyword
specifies Data Type ’D’, the data in field nshallField n shall
consist of ANSI/IEEE-754 (?) 64-bit double precision double-
precision floating-point numbers, in big-endian byte order, as
described in Appendix ??. All IEEE special values are recog-
nized. The IEEE NaN is used to represent null values.

Single precision complex. If the value of the
TFORMnkeyword specifies data type CTFORMn keyword
specifies Data Type ’C’, the data in field nshallField n shall
consist of a sequence of pairs of 32-bit single precision single-
precision floating-point numbers. The first member of each pair
shallshall represent the real part of a complex number, and the
second member shallshall represent the imaginary part of that
complex number. If either member contains an IEEE NaN, the
entire complex value is null.

Double precision Double-precision complex. If the value of
the TFORMnkeyword specifies data type MTFORMn keyword
specifies Data Type ’M’, the data in field nshallField n shall
consist of a sequence of pairs of 64-bit double precision double-
precision floating-point numbers. The first member of each pair
shallshall represent the real part of a complex number, and the
second member of the pair shallshall represent the imaginary
part of that complex number. If either member contains an IEEE
NaN, the entire complex value is null.

Array descriptor. The repeat count on the Pand Qarray descrip-
tor fields must P and Q array-descriptor fields must either have a
value of 0 0 (denoting an empty field of zero bytes) or 1. 1. If
the value of the TFORMnkeyword specifies data type 1PTFORMn
keyword specifies Data Type ’1P’, the data in field nshallField n
shall consist of one pair of 32-bit integers. If the value of the
TFORMnkeyword specifies data type 1QTFORMn keyword spec-
ifies Data Type ’1Q’, the data in field nshallField n shall consist
of one pair of 64-bit integers. The meaning of these integers is
defined in Sect. ??.

7.3.3.2. Bytes following main table

The main data table maymay be followed by a supplemen-
tal data area called the heap. The size of the supplemental data
area, in bytes, is specified by the value of the PCOUNTPCOUNT
keyword. The use of this data area is described in Sect. ??.

7.3.4. Data display

The indexed TDISPnkeyword mayTDISPn keyword may be used
to describe the recommended format for displaying an ASCII
text ASCII-text representation of the contents of field nField n.
The permitted display format codes for each type of data (i.e.,
character strings, logical, integer, or real) are given in Table ??
and described below.

28

D
R

AF
T

29

Character data. If the table column contains a character string
(with TFORMn TFORMn =’rA’ ’rA’) then the TDISPnformat
code mustbe ’Aw’where w TDISPn format code must be Aw,
where w is the number of characters to display. If the charac-
ter datum has length less than or equal to ww, it is represented on
output right-justified in a string of ww characters. If the charac-
ter datum has length greater than ww, the first ww characters of
the datum are represented on output in a string of ww characters.
Character data are not surrounded by single or double quotation
single- or double-quotation marks unless those marks are them-
selves part of the data value.

Logical data. If the table column contains logical data (with
TFORMn TFORMn =’rL’ ’rL’) then the TDISPnformat code
mustbe ’Lw’where w TDISPn format code must be Lw, where
w is the width in characters of the display field. Logical data are
represented on output with the character TT for true or FF for
false right-justified in a space-filled string of ww characters. A
null value maymay be represented by a string of ww space char-
acters.

Integer data. If the table column contains integer data (with
TFORMn TFORMn =’rX’, ’rB’, ’rI’, ’rJ’, or ’rK’ ’rX’, ’rB’,
’rI’, ’rJ’, or ’rK’) then the TDISPnformat code mayTDISPn
format code may have any of these forms: Iw.m, Bw.m, Ow.m,
or Zw.mIw.m, Bw.m, Ow.m, or Zw.m. The default value of mm
is one and the ‘.m’is optional’.m’ is optional. The first letter
of the code specifies the number base for the encoding with II
for decimal (10), BB for binary (2), OO for octal (8), and ZZ for
hexadecimal (16). Hexadecimal format uses the upper-case let-
ters A through F to represent decimal values 10 through 15. The
output field consists of wcharacters containing zero or more w
characters containing zero-or-more leading spaces followed by
a minus sign if the internal datum is negative (only in the case
of decimal encoding with the II format code), followed by the
magnitude of the internal datum in the form of an unsigned inte-
ger unsigned-integer constant in the specified number base, with
only as many leading zeros as are needed to have at least mm
numeric digits. Note that mm ≤ ww is allowed if all values are
positive, but mm < wis required w is required if any values are
negative. If the number of digits required to represent the integer
datum exceeds ww, then the output field consists of a string of
wasterisk (*w asterisk (*) characters.

Real data. If the table column contains real data (with
TFORMn TFORMn =’rE’, or ’rD’ ’rE’, or ’rD’) or contains in-
teger data (with any of the TFORMnTFORMn format codes listed
in the previous paragraph)which are recommended , which are
recommended to be displayed as real values (i.e., especially in
cases where the integer values represent scaled physical values
using Eq. ??), then the TDISPnformat code mayTDISPn format
code may have any of these forms: Fw.d, Ew.dEe, Dw.dEe,
ENw.d, or ESw.dFw.d, Ew.dEe, Dw.dEe, ENw.d, or ESw.d. In
all cases, the output is a string of ww characters including the
decimal point, any sign characters, and any exponent including
the exponent’s indicators, signs, and values. If the number of
digits required to represent the real datum exceeds ww, then the
output field consists of a string of wasterisk (*w asterisk (*) char-
acters. In all cases, dd specifies the number of digits to appear to
the right of the decimal point.

The FF format code output field consists of w− d− 1 charac-
ters containing zero or more leading spacesw − d − 1 characters
containing zero-or-more leading spaces, followed by a minus
sign if the internal datum is negative, followed by the absolute
magnitude of the internal datum in the form of an unsigned inte-
ger unsigned-integer constant. These characters are followed by
a decimal point (‘.’) and d’.’) and d characters giving the frac-
tional part of the internal datum, rounded by the normal rules of
arithmetic to dd fractional digits.

For the Eand DE and D format codes, an exponent is taken
such that the fraction 0.1 ≤ |datum|/10exponent < 1.00.1 ≤
|datum|/10exponent < 1.0. The fraction (with appropriate sign) is
output with an FF format of width w − e − 2 characters with
dw − e − 2 characters with d characters after the decimal fol-
lowed by an Eor DE or D followed by the exponent as a signed
e + 1 e + 1 character integer with leading zeros as needed. The
default value of eis 2 when the Eee is 2 when the Ee portion of
the format code is omitted. If the exponent value will not fit in
e+1 e+1 characters but will fit in e+2 then the E(or De+2 then
the E (or D) is omitted and the wider field used. If the exponent
value will not fit (with a sign character) in e+ 2 e+ 2 characters,
then the entire ww-character output field is filled with asterisks
(**).

The ESES format code is processed in the same manner as
the EE format code except that the exponent is taken so that 1.0 ≤
fraction < 101.0 ≤ fraction < 10.

The ENEN format code is processed in the same manner as
the EE format code except that the exponent is taken to be an in-
teger multiple of three and so that 1.0 ≤ fraction < 1000.01.0 ≤
fraction < 1000.0. All real format codes have number base 10.
There is no difference between Eand DE and D format codes on
input other than an implication with the latter of greater preci-
sion in the internal datum.

The Gw.dEeformat code mayGw.dEe format code may be
used with data of any type. For data of type integer, logical, or
character, it is equivalent to Iw, Lw, or AwIw, Lw, or Aw, respec-
tively. For data of type real, it is equivalent to an FF format (with
different numbers of characters after the decimal) when that for-
mat will accurately represent the value and is equivalent to an
EE format when the number (in absolute value) is either very
small or very large. Specifically, for real values outside the range
0.1− 0.5×10−d−1 ≤ value < 10d − 0.50.1− 0.5×10−d−1 ≤ value <
10d − 0.5, it is equivalent to Ew.dEeEw.dEe. For real values
within the above range, it is equivalent to Fw′.d′ followed by 2+e
Fw′.d′ followed by 2+e spaces, where w′ = w−e−2 and d′ = d−k
for k = 0, 1, . . . , d w′ = w−e−2 and d′ = d−k for k = 0, 1, . . . , d
if the real datum value lies in the range 10k−1

(
1 − 0.5×10−d

)
≤

value ≤ 10k
(
1 − 0.5×10−d

)
10k−1

(
1 − 0.5×10−d

)
≤ value ≤

10k
(
1 − 0.5×10−d

)
.

Complex data. If the table column contains complex data (with
TFORMn TFORMn =’rC’, or ’rM’) then the may ’rC’, or ’rM’)
then they may be displayed with any of the real data formats
as described above. The same format is used for the real and
imaginary parts. It is recommendedrecommended that the two
values be separated by a comma and enclosed in parentheses
with a total field width of 2w + 32w + 3.

29

D
R

AF
T

30

7.3.5. Variable-length arrays

One of the most attractive features of binary tables is that any
field of the table can be an array. In the standard case this is
a fixed-size array, i.e., a fixed amount of storage is allocated in
each row for the array data—whether it is used or not. This is fine
so long as the arrays are small or a fixed amount of array data
will be stored in each field, but if the stored array length varies
for different rows, it is necessary to impose a fixed upper limit
on the size of the array that can be stored. If this upper limit is
made too large excessive wasted space can result and the binary
table binary-table mechanism becomes seriously inefficient. If
the limit is set too low then storing certain types of data in the
table could become impossible.

The variable-length array construct presented here was de-
vised to deal with this problem. Variable-length arrays are imple-
mented in such a way that, even if a table contains such arrays, a
simple reader program that does not understand variable-length
arrays will still be able to read the main data table (in other words
a table containing variable-length arrays conforms to the basic
binary table binary-table standard). The implementation chosen
is such that the rows in the main data table remain fixed in size
even if the table contains a variable-length array field, allowing
efficient random access to the main data table.

Variable-length arrays are logically equivalent to regular
static arrays, the only differences being 1) the length of the stored
array can differ for different rows, and 2) the array data are not
stored directly in the main data table. Since a field of any data
type can be a static array, a field of any data type can also be
a variable-length array (excluding the type Pand QType P and
Q variable-length array descriptors themselves, which are not a
data type so much as a storage-class specifier). Other established
FITSFITS conventions that apply to static arrays will generally
apply as well to variable-length arrays.

A variable-length array is declared in the table header with
one of the following two special field data type specifiers data-
type specifiers

rPt(emax)rPt(emax)

rQt(emax)rQ t(emax)

where the ‘P’or ‘Q’’P’ or ’Q’ indicates the presence of an array
descriptor (described below), the element count rshouldbe 0, 1r
should be 0, 1, or absent, tt is a character denoting the data type
of the array data (L, X, B, I, J, KL, X, B, I, J, K, etc., but not
Por QP or Q), and emax emax is a quantity guaranteed to be equal
to or greater than the maximum number of elements of type tt
actually stored in any row of the table. There is no built-in upper
limit on the size of a stored array (other than the fundamental
limit imposed by the range of the array descriptor, defined be-
low); emax emax merely reflects the size of the largest array ac-
tually stored in the table, and is provided to avoid the need to
preview the table when, for example, reading a table contain-
ing variable-length elements into a database that supports only
fixed-size arrays. There maymay be additional characters in the
TFORMnTFORMn keyword following the emaxemax.

For example,

TFORM8 = ’PB(1800)’ / Variable byte arrayTFORM8 = ’PB(1800)’ / Variable byte array

indicates that fieldField 8 of the table is a variable-length array
of type byte, with a maximum stored array length not to exceed
1800 array elements (bytes in this case).

The data for the variable-length arrays in a table are not
stored in the main data table; they are stored in a supplemental
data area, the heap, following the main data table. What is stored
in the main data table field is an array descriptor. This consists
of two 32-bit signed integer values in the case of ‘P’’P’ array
descriptors, or two 64-bit signed integer values in the case of
‘Q’’Q’ array descriptors: the number of elements (array length)
of the stored array, followed by the zero-indexed byte offset of
the first element of the array, measured from the start of the heap
area. The meaning of a negative value for either of these integers
is not defined by this standardStandard. Storage for the array is
contiguous. The array descriptor for field Field N as it would ap-
pear embedded in a table row is illustrated symbolically below:
.

. . . [field Field N–1] [(nelem,offset)] [field Field N+1] . . .

If the stored array length is zero, there is no array data, and
the offset value is undefined (it shouldshould be set to zero). The
storage referenced by an array descriptor mustmust lie entirely
within the heap area; negative offsets are not permitted.

A binary table containing variable-length arrays consists of
three principal segments, as follows: .

[table header] [main data table] (optional gap) [heap area]

The table header consists of one or more 2880-byte header
blocks with the last block indicated by the keyword ENDEND
somewhere in the block. The main data table begins with the
first data block following the last header block and is NAXIS1 ×
NAXIS2 NAXIS1 × NAXIS2 bytes in length. The zeroindexed
-indexed byte offset to the start of the heap, measured from
the start of the main data table, may may be given by the
THEAPTHEAP keyword in the header. If this keyword is miss-
ing then the heap begins with the byte immediately following
main data table (i.e., the default value of THEAPis NAXIS1 ×
NAXIS2THEAP is NAXIS1 × NAXIS2). This default value is the
minimum allowed value for the THEAPTHEAP keyword, be-
cause any smaller value would imply that the heap and the main
data table overlap. If the THEAPTHEAP keyword has a value
larger than this default value, then there is a gap between the end
of the main data table and the start of the heap. The total length
in bytes of the supplemental data area following the main data
table (gap plus heap) is given by the PCOUNTPCOUNT keyword
in the table header.

For example, suppose a table contains five rows which that
are each 168 bytes long, with a heap area 3000 bytes long, be-
ginning at an offset of 2880, thereby aligning the main data table
and heap areas on data block boundaries (this alignment is not
necessarily recommended but is useful for this example). The
data portion of the table consists of three 2880-byte data blocks:
the first block contains the 840 bytes from the five rows of the
main data table followed by 2040 fill bytes; the heap completely
fills the second block; the third block contains the remaining 120
bytes of the heap followed by 2760 fill bytes. PCOUNTPCOUNT
gives the total number of bytes from the end of the main data
table to the end of the heap, and in this example has a value of
2040 + 2880 + 120 = 5040. This is expressed in the table header
as : shown below.

NAXIS1 = 168 / Width of table row in bytes
NAXIS2 = 5 / Number of rows in table
PCOUNT = 5040 / Random parameter count

30

D
R

AF
T

31

...
THEAP = 2880 / Byte offset of heap area

The values of TSCALnand TZEROnTSCALn and TZEROn for
variable-length array column entries are to be applied to the val-
ues in the data array in the heap area, not the values of the array
descriptor. These keywords can be used to scale data values in
either static or variable-length arrays.

7.3.6. Variable-length-array guidelines

While the above description is sufficient to define the required
features of the variable-length array implementation, some hints
regarding usage of the variable-length array facility might also
be useful.

Programs that read binary tables should take care to not as-
sume more about the physical layout of the table than is required
required by the specification. For example, there are no require-
ments on the alignment of data within the heap. If efficient run-
time access is a concern one might want to design the table
so that data arrays are aligned to the size of an array element.
In another case one might want to minimize storage and forgo
any efforts at alignment (by careful design it is often possible
to achieve both goals). Variable-length array data maymay be
stored in the heap in any order, i.e., the data for row N+1 are not
necessarily stored at a larger offset than that for row N. There
maymay be gaps in the heap where no data are stored. Pointer
aliasing is permitted, i.e., the array descriptors for two or more
arrays maymay point to the same storage location (this could be
used to save storage if two or more arrays are identical).

Byte arrays are a special case because they can be used to
store a ‘typeless’ data sequence. Since FITSFITS is a machine-
independent storage format, some form of machine-specific data
conversion (byte swapping, floating-point format conversion) is
implied when accessing stored data with types such as integer
and floating, but byte arrays are copied to and from external stor-
age without any form of conversion.

An important feature of variable-length arrays is that it is
possible that the stored array length maymay be zero. This makes
it possible to have a column of the table for which, typically, no
data are present in each stored row. When data are present, the
stored array can be as large as necessary. This can be useful when
storing complex objects as rows in a table.

Accessing a binary table stored on a random access random-
access storage medium is straightforward. Since the rows of data
in the main data table are fixed in size they can be randomly
accessed given the row number, by computing the offset. Once
the row has been read in, any variable-length array data can be
directly accessed using the element count and offset given by the
array descriptor stored in that row.

Reading a binary table stored on a sequential access
sequential-access storage medium requires that a table of array
descriptors be built up as the main data table rows are read in.
Once all the table rows have been read, the array descriptors are
sorted by the offset of the array data in the heap. As the heap
data are read, arrays are extracted sequentially from the heap and
stored in the affected rows using the back pointers to the row and
field from the table of array descriptors. Since array aliasing is
permitted, it might be necessary to store a given array in more
than one field or row.

Variable-length arrays are more complicated than regular
static arrays and might not be supported by some software sys-
tems. The producers of FITSFITS data products should consider
the capabilities of the likely recipients of their files when de-
ciding whether or not to use this format, and as a general rule
should use it only in cases where it provides significant advan-
tages over the simpler fixed-length array format. In particular,
the use of variable-length arrays might present difficulties for
applications that ingest the FITSFITS file via a sequential input
stream, because the application cannot fully process any rows in
the table until after the entire fixed-length table, and potentially
the entire heap has been transmitted as outlined in the previous
paragraph.

8. World coordinate World-coordinate systems

Representations of the mapping between image coordinates and
physical (i.e., world) coordinate systems (WCSs) may may be
represented within FITSFITS HDUs. The keywords that are used
to express these mappings are now rigorously defined in a se-
ries of papers on world coordinate world-coordinate systems (?),
celestial coordinate celestial-coordinate systems (?), spectral co-
ordinate spectral-coordinate systems (?), and time coordinate
time-coordinate systems (?). An additional spherical projection,
called HEALPix, is defined in reference (?). These WCS pa-
pers have been formally approved by the IAUFWG and there-
fore are incorporated by reference as an official part of this
Standard. The reader should refer to these papers for additional
details and background information that cannot be included here.
Various updates and corrections to the primary WCS papers have
been compiled by the authors, and are reflected in this section.
Therefore, where conflicts exist, the description in this Standard
will prevail.

8.1. Basic concepts

Rather than store world coordinates separately for each datum,
the regular lattice structure of a FITSFITS image offers the pos-
sibility of defining rules for computing world coordinates at each
point. As stated in Sect. ?? and depicted in Fig. ??, image ar-
ray data are addressed via integral array indices that range in
value from 1 to NAXISj on axis Axis j. Recognizing that image
data values may have an extent, for example an angular separa-
tion, spectral channel width or time span, and thus that it may
make sense to interpolate between them, these integral array
indices may may be generalized to floating-point pixel coordi-
nates. Integral pixel coordinate pixel-coordinate values coincide
with the corresponding array indices, while fractional pixel coor-
dinate pixel-coordinate values lie between array indices and thus
imply interpolation. Pixel coordinate Pixel-coordinate values are
defined at all points within the image lattice and outside it (ex-
cept along conventional axes, see Sect. ??). They form the basis
of the world coordinate formalism in FITSworld-coordinate for-
malism in FITS depicted schematically in Fig. ??.

The essence of representing world coordinate systems in
FITSworld-coordinate systems in FITS is the association of var-
ious reserved keywords with elements of a transformation (or
a series of transformations), or with parameters of a projection
function. The conversion from pixel coordinates in the data array
to world coordinates is simply a matter of applying the specified
transformations (in order) via the appropriate keyword values;

31

D
R

AF
T

32

Fig. 2: A schematic view of converting pixel coordinates to
world coordinates.

conversely, defining a WCS for an image amounts to solving
for the elements of the transformation matrix(es) or coefficients
of the function(s) of interest and recording them in the form
of WCS keyword values. The description of the WCS systems
and their expression in FITSFITS HDUs is quite extensive and
detailed, but is aided by a careful choice of notation. Key ele-
ments of the notation are summarized in Table ??, and are used
throughout this section. The formal definitions of the keywords
appear in the following subsections.

The conversion of image pixel coordinates to world coordi-
nates is a multi-step process, as illustrated in Fig. ??.

For all coordinate types, the first step is a linear transfor-
mation applied via matrix multiplication of the vector of pixel
coordinate pixel-coordinate elements, p j:

qi =

N∑
j=1

mi j(p j − r j) (9)

where r j are the pixel coordinate pixel-coordinate elements of
the reference point, j indexes the pixel axis, and i the world
axis. The mi j matrix is a non-singular, square matrix of di-
mension N × N, where N is the number of world coordinate
world-coordinate axes. The elements qi of the resulting interme-
diate pixel coordinate vector are offsets, in dimensionless pixel
units, from the reference point along axes coincident with those
of the intermediate world coordinates. Thus, the conversion of
qi to the corresponding intermediate world coordinate element
Intermediate-world-coordinate Element xi is a simple scale:

xi = siqi. (10)

There are three conventions for associating FITSFITS
keywords with the above transformations. In the first formal-
ism, the matrix elements mi j are encoded in the PCi j keywords

and the scale factors si are encoded in the CDELTi keywords,
which mustmust have non-zero values. In the second formalism
Eqs. (??) and (??) are combined as

xi =

N∑
j=1

(simi j)(p j − r j) (11)

and the CDi j keywords encode the product simi j. The third
convention was widely used before the development of the
two previously described conventions and uses the CDELTi key-
words to define the image scale and the CROTA2keyword to
define CROTA2 keyword to specify a bulk rotation of the im-
age plane. Use of the CROTA2CROTA2 keyword is now dep-
recated, and instead the newer PCi j or CDi j keywords are
recommendedrecommended because they allow for skewed axes
and fully general rotation of multi-dimensional arrays. The
CDELTi and CROTA2keywords mayCROTA2 keywords may co-
exist with the CDi j keywords (but the CROTA2must notCROTA2
must not occur with the PCi j keywords) as an aid to old
FITSFITS interpreters, but these keywords mustmust be ignored
by software that supports the CDi j keyword convention. In all
these formalisms the reference pixel coordinates r j are encoded
in the CRPIXi keywords, and the world coordinates at the refer-
ence point are encoded in the CRVALi keywords. For additional
details, see ?.

The third step of the process, computing the final world co-
ordinates, depends on the type of coordinate system, which is
indicated with the value of the CTYPEi keyword. For some sim-
ple, linear cases an appropriate choice of normalization for the
scale factors allows the world coordinates to be taken directly
(or by applying a constant offset) from the xi (e.g., some spec-
tra). In other cases it is more complicated, and may require the
application of some non-linear algorithm (e.g., a projection, as
for celestial coordinates), which may require the specification of
additional parameters. Where necessary, numeric parameter val-
ues for non-linear algorithms mustmust be specified via PVi m
keywords and character-valued parameters will be specified via
PSi m keywords, where m is the parameter number.

The application of these formalisms to coordinate systems of
interest is discussed in the following sub-sections: Sect. ?? de-
scribes general WCS representations (see ?), Sect. ?? describes
celestial coordinate ?? describes celestial-coordinate systems
(see ?)), Sect. ?? describes spectral coordinate ?? describes
spectral-coordinate systems (see ?), and Sect. ?? describes the
representation of time coordinates (see ?).

8.2. World coordinate system World-coordinate-system
representations

A variety of keywords have been reserved for computing the
coordinate values that are to be associated with any pixel lo-
cation within an array. The full set is given in Table ??; those in
most common usage are defined in detail below for convenience.
Coordinate system specifications may Coordinate-system speci-
fications may appear in HDUs that contain simple images in the
primary array or in an image IMAGE extension. Images may may
also be stored in a multi-dimensional vector cell of a binary ta-
ble, or as a tabulated list of pixel locations (and optionally, the
pixel value) in a table. In these last two types of image represen-
tations, the WCS keywords have a different naming convention,
which reflects the needs of the tabular data structure and the 8-
character eight-character limit for keyword lengths, but other-

32

D
R

AF
T

33

Table 21: WCS and celestial coordinates notation.

Variable(s) Meaning Related FITS FITS keywords
i Index variable for world coordinates
j Index variable for pixel coordinates
a Alternative WCS version code
p j Pixel coordinates
r j Reference pixel coordinates CRPIXja
mi j Linear transformation Linear-transformation matrix CDi ja or PCi ja
si Coordinate scales CDELTia
(x, y) Projection plane coordinates
(φ, θ) Native longitude and latitude
(α, δ) Celestial longitude and latitude
(φ0, θ0) Native longitude and latitude of the fiducial point PVi 1a† , PVi 2a†
(α0, δ0) Celestial longitude and latitude of the fiducial point CRVALia
(αp, δp) Celestial longitude and latitude of the native pole
(φp, θp) Native longitude and latitude of the celestial pole LONPOLEa (=PVi 3a†),

LATPOLEa (=PVi 4a†)

Notes. † Associated with Longitude Axis i.

wise follow exactly the same rules for type, usage, and default
values. See reference ? for example usage of these keywords.
All forms of these reserved keywords mustmust be used only as
specified in this Standard.

In the case of the binary table binary-table vector repre-
sentation, it is possible that the images contained in a given
column of the table have different coordinate transformation
values. Table 9 of ? illustrates a technique (commonly known
as the “Green Bank Convention10”), which utilizes additional
columns in the table to record the coordinate transformation
coordinate-transformation values that apply to the corresponding
image in each row of the table. More information is provided in
Appendix ??.

The keywords given below constitute a complete set of fun-
damental attributes for a WCS description. Although their in-
clusion in an HDU is optional, FITSwriters shouldFITS writers
should include a complete set of keywords when describing a
WCS. In the event that some keywords are missing, default val-
ues mustmust be assumed, as specified below.

WCSAXES – [integer; default: NAXIS, or larger of WCS indexes
indices i or j]. Number of axes in the WCS description. This
keyword, if present, mustmust precede all WCS keywords
except NAXIS in the HDU. The value of WCSAXES maymay
exceed the number of pixel axes for the HDU.

CTYPEi – [string; indexed; default: ' ' (i.e. a linear, un-
defined axis)]. Type for the intermediate coordinate axis
Intermediate-coordinate Axis i. Any coordinate type that is
not covered by this standard Standard or an officially recog-
nized FITSconvention shallFITS convention shall be taken to
be linear. All non-linear coordinate system names mustmust
be expressed in ‘4–3’ form: the first four characters spec-
ify the coordinate type, the fifth character is a hyphen (‘--’),
and the remaining three characters specify an algorithm code
for computing the world coordinate value. Coordinate types
with names of less fewer than four characters are padded on
the right with hyphens, and algorithm codes with less fewer

10 Named after a meeting held in Green Bank, West Virginia, USA
in 1989 to develop standards for the interchange of single dish radio
astronomy single-dish radio-astronomy data.

than three characters are padded on the right with blanks11.
Algorithm codes shouldshould be three characters.

CUNITi – [string; indexed; default: ' ' (i.e., undefined)].
Physical units of CRVAL and CDELT for axis iAxis i. Note that
units shouldshould always be specified (see Sect. ??). Units
for celestial coordinate systems defined in this Standard
mustmust be degrees.

CRPIXj – [floating point; indexed; default: 0.00.0]. Location of
the reference point in the image for axis Axis j correspond-
ing to r j in Eq. (??). Note that the reference point maymay
lie outside the image and that the first pixel in the image has
pixel coordinates (1.0, 1.0, . . .).

CRVALi – [floating point; indexed; default: 0.00.0]. World
Coordinate World-coordinate value at the reference point of
axis Axis i.

CDELTi – [floating point; indexed; default: 1.01.0]. Increment
of the world coordinate at the reference point for axis Axis i.
The value must notmust not be zero.

CROTAi – [floating point; indexed; default: 0.00.0]. The amount
of rotation from the standard coordinate system to a different
coordinate system. Further use of this of this keyword is dep-
recated, in favor of the newer formalisms that use the CDi j
or PCi j keywords to define the rotation.

PCi j – [floating point; defaults: 1.0 1.0 when i = j, 0.0 0.0
otherwise]. Linear transformation matrix between pixel axes
Pixel Axes j and intermediate coordinate axes Intermediate-
coordinate Axes i. The PCi j matrix must notmust not be sin-
gular.

CDi j – [floating point; defaults: 0.00.0, but see below].
Linear transformation matrix (with scale) between pixel axes
Pixel Axes j and intermediate coordinate axes Intermediate-
coordinate Axes i. This nomenclature is equivalent to PCi j
when CDELTi is unity. The CDi j matrix must notmust not be
singular. Note that the CDi j formalism is an exclusive al-
ternative to PCi j, and the CDi j and PCi j keywords must
notmust not appear together within an HDU.

In addition to the restrictions noted above, if any CDi j key-
words are present in the HDU, all other unspecified CDi j key-
words shallshall default to zero. If no CDi j keywords are present

11 Example: ‘RA---UV ’’RA---UV ’.

33

D
R

AF
T

34

Table 22: Reserved WCS keywords (continues on next page)

BINTABLE vector Pixel list
Keyword Description Global Image Primary Alternative Primary Alternative
Coordinate dimensionality WCSAXESa WCAXna . . .
Axis type CTYPEia iCTYPn iCTYna TCTYPn TCTYna
Axis units CUNITia iCUNIn iCUNna TCUNIn TCUNna
Reference value CRVALia iCRVLn iCRVna TCRVLn TCRVna
Coordinate increment CDELTia iCDLTn iCDEna TCDLTn TCDEna
Reference point CRPIXja jCRPXn jCRPna TCRPXn TCRPna
Coordinate rotation1 CROTAi iCROTn TCROTn
Transformation matrix2 PCi ja ijPCna TPCn ka or TPn ka
Transformation matrix2 CDi ja ijCDna TCDn ka or TCn ka
Coordinate parameter PVi ma iPVn ma or iVn ma TPVn ma or TVn ma
Coordinate parameter array . . . iVn Xa ...
Coordinate parameter PSi ma iPSn ma or iSn ma TPSn ma or TSn ma
Coordinate name WCSNAMEa WCSNna WCSna or TWCSna
Coordinate axis name CNAMEia iCNAna TCNAna
Random error CRDERia iCRDna TCRDna
Systematic error CSYERia iCSYna TCSYna
WCS cross-reference target . . . WCSTna ...
WCS cross reference . . . WCSXna ...
Coordinate rotation LONPOLEa LONPna LONPna
Coordinate rotation LATPOLEa LATPna LATPna
Coordinate epoch EQUINOXa EQUIna EQUIna
Coordinate epoch3 EPOCH EPOCH EPOCH
Reference frame RADECSYSRADECSYS4 RADESYSa RADEna RADEna
Line rest frequency (Hz) RESTFREQ4 RESTFRQa RFRQna RFRQna
Line rest vacuum wavelength (m) RESTWAVa RWAVna RWAVna
Spectral reference frame SPECSYSa SPECna SPECna
Spectral reference frame SSYSOBSa SOBSna SOBSna
Spectral reference frame SSYSSRCa SSRCna SSRCna
Observation X (m) OBSGEO-X5 OBSGXn OBSGXn
Observation Y (m) OBSGEO-Y5 OBSGYn OBSGYn
Observation Z (m) OBSGEO-Z5 OBSGZn OBSGZn
Radial velocity (m s−1) VELOSYSa VSYSna VSYSna
Redshift of source ZSOURCEa ZSOUna ZSOUna
Angle of true velocity VELANGLa VANGna VANGna

Date-time related keywords (see Sect.??)
Date of HDU creation DATE
Date/time of observation DATE-OBS DOBSn DOBSn

MJD-OBS MJDOBn MJDOBn
BEPOCH
JEPOCH

Average date/time of observation DATE-AVG DAVGn DAVGn
MJD-AVG MJDAn MJDAn

Start date/time of observation DATE-BEG
MJD-BEG
TSTART

End date/time of observation DATE-END
MJD-END
TSTOP

Net exposure duration XPOSURE Wall clock
Wall-clock exposure duration TELAPSE
Time scale TIMESYS CTYPEia iCTYPn iCTYna TCTYPn TCTYna
Time zero-point zero point (MJD) MJDREF6

Time zero-point zero point (JD) JDREF6

Time zero-point zero point (ISO) DATEREF
Reference position TREFPOS TRPOSn TRPOSn
Reference direction TREFDIR TRDIRn TRDIRn
Solar system System ephemeris PLEPHEM
Time unit TIMEUNIT CUNITia iCUNIn iCUNna TCUNIn TCUNna
Time offset TIMEOFFS
Time absolute error TIMSYER CSYERia iCSYEn iCSYna TCSYn TCSYna
Time relative error TIMRDER CRDERia iCRDEn iCRDna TCRDn TCRDna
Time resolution TIMEDEL
Time location in pixel TIMEPIXR
Phase axis Phase-axis zero point CZPHSia iCZPHn iCZPna TCZPHn TCZPna
Phase axis Phase-axis period CPERIia iCPERn iCPRna TCPERn TCPRna

34

D
R

AF
T

35

Table ?? (continued)

Notes. The indices j and i are pixel and intermediate-world-coordinate axis numbers, respectively. Within a table, the index n refers to a column
number, and m refers to a coordinate parameter number. The index k also refers to a column number. The indicator a is either blank (for the primary
coordinate description) or a character A through Z that specifies the coordinate version. See the text.
(1) CROTAi form is deprecated but still in use. It must not be used with PC i j, PV i m, and PS i m. (2) PCi j and CDi j forms of the transformation matrix
are mutually exclusive, and must not appear together in the same HDU. (3) EPOCH is deprecated. Use EQUINOX instead. (4) These eight-character
keywords are deprecated; the seven-character forms, which can include an alternate version code letter at the end, should be used instead. (5) For
the purpose of time reference position, geodetic latitude/longitude/elevation OBSGEO-B, OBSGEO-L, OBSGEO-H or an orbital-ephemeris keyword
OBSORBIT can be also used (see Sect. ??). (6) [M]JDREF can be split in integer and fractional values [M]JDREFI and [M]JDREFF as explained in
Sect. ??.

then the header shallshall be interpreted as being in PCi j form
whether or not any PCi j keywords are actually present in the
HDU.

Some non-linear algorithms that describe the transforma-
tion between pixel and intermediate coordinate intermediate-
coordinate axes require parameter values. A few non-linear al-
gorithms also require character-valued parameters, e.g., table
lookups require the names of the table extension and the columns
to be used. Where necessary parameter values mustmust be spec-
ified via the following keywords: .

PVi m – [floating point]. Numeric parameter values for
intermediate world coordinate axis Intermediate-world-
coordinate Axis i, where m is the parameter number. Leading
zeros must notmust not be used, and m may may have only
values in the range 0 through 99, and that are defined for the
particular non-linear algorithm.

PSi m – [string]. Character-valued parameters for intermediate
world coordinate axis Intermediate-world-coordinate Axis i,
where m is the parameter number. Leading zeros must
notmust not be used, and m may may have only values in
the range 0 through 99, and that are defined for the particular
non-linear algorithm.

The following keywords, while not essential for a complete
specification of an image WCS, can be extremely useful for read-
ers to interpret the accuracy of the WCS representation of the
image.

CRDERi – [floating point; default: 0.00.0]. Random error in
coordinate Coordinate i, which mustmust be non-negative.

CSYERi – [floating point; default: 0.00.0]. Systematic error in
coordinate Coordinate i, which mustmust be non-negative.

These values shouldshould give a representative average value
of the error over the range of the coordinate in the HDU. The
total error in the coordinates would be given by summing the
individual errors in quadrature.

8.2.1. Alternative WCS axis descriptions

In some cases it is useful to describe an image with more than
one coordinate type12. Alternative WCS descriptions maymay be
added to the header by adding the appropriate sets of WCS key-
words, and appending to all keywords in each set an alphabetic
code in the range Athrough ZA through Z. Keywords that may be
used in this way to specify a coordinate system version are in-
dicated in Table ?? with the suffix a. All implied keywords with

12 Examples include the frequency, velocity, and wavelength along a
spectral axis (only one of which, of course, could be linear), or the po-
sition along an imaging detector in both meters and degrees on the sky.

this encoding are reserved keywords, and mustonly must only be
used in FITSFITS HDUs as specified in this Standard. The axis
numbers mustmust lie in the range 1 through 99, and the coor-
dinate parameter m mustmust lie in the range 0 through 99, both
with no leading zeros.

The primary version of the WCS description is that specified
with aa as the blank character13. Alternative axis descriptions
are optional, but must notmust not be specified unless the pri-
mary WCS description is also specified. If an alternative WCS
description is specified, all coordinate keywords for that version
mustmust be given even if the values do not differ from those of
the primary version. Rules for the default values of alternative
coordinate descriptions are the same as those for the primary de-
scription. The alternative descriptions are computed in the same
fashion as the primary coordinates. The type of coordinate de-
pends on the value of CTYPEia, and may be linear in one of the
alternative descriptions and non-linear in another.

The alternative version codes are selected by the FITSFITS
writer; there is no requirement that the codes be used in alpha-
betic sequence, nor that one coordinate version differ in its pa-
rameter values from another. An optional keyword WCSNAMEa is
also defined to name, and otherwise document, the various ver-
sions of WCS descriptions: .

WCSNAMEa – [string; default for aa: ' ' (i.e., blank, for the
primary WCS, else a character Athrough ZA through Z that
specifies the coordinate version]. Name of the world coordi-
nate world-coordinate system represented by the WCS key-
words with the suffix aa. Its primary function is to provide
a means by which to specify a particular WCS if multiple
versions are defined in the HDU.

8.3. Celestial coordinate system Celestial-coordinate-system
representations

The conversion from intermediate world coordinates (x, y) in the
plane of projection to celestial coordinates involves two steps: a
spherical projection to native longitude and latitude (φ, θ), de-
fined in terms of a convenient coordinate system (i.e., native
spherical coordinates), followed by a spherical rotation of these
native coordinates to the required celestial coordinate system
(α, δ). The algorithm to be used to define the spherical projection
mustmust be encoded in the CTYPEi keyword as the three-letter
algorithm code, the allowed values for which are specified in
Table ?? and defined in references ? and ?. The target celestial

13 There are a number of keywords (e.g. ijPCna) where the aa could
be pushed off the 8-char eight-character keyword name for plausible
values of ii, jj, kk, nn, and mm. In such cases aa is still said to be ‘blank’
although it is not the blank character.

35

D
R

AF
T

36

Table 23: Reserved celestial coordinate algorithm celestial-coordinate-algorithm codes.

Default
Code φ0 θ0 Properties1 Projection name

Zenithal (azimuthal) projections
AZP 0◦ 90◦ Sect. 5.1.1 Zenithal perspective
SZP 0◦ 90◦ Sect. 5.1.2 Slant zenithal perspective
TAN 0◦ 90◦ Sect. 5.1.3 Gnomonic
STG 0◦ 90◦ Sect. 5.1.4 Stereographic
SIN 0◦ 90◦ Sect. 5.1.5 Slant orthographic
ARC 0◦ 90◦ Sect. 5.1.6 Zenithal equidistant
ZPN 0◦ 90◦ Sect. 5.1.7 Zenithal polynomial
ZEA 0◦ 90◦ Sect. 5.1.8 Zenithal equal-area
AIR 0◦ 90◦ Sect. 5.1.9 Airy

Cylindrical projections
CYP 0◦ 0◦ Sect. 5.2.1 . Cylindrical perspective
CEA 0◦ 0◦ Sect. 5.2.2 Cylindrical equal area
CAR 0◦ 0◦ Sect. 5.2.3 Plate carrée
MER 0◦ 0◦ Sect. 5.2.4 Mercator

Pseudo-cylindrical and related projections
SFL 0◦ 0◦ Sect. 5.3.1 Samson-Flamsteed
PAR 0◦ 0◦ Sect. 5.3.2 Parabolic
MOL 0◦ 0◦ Sect. 5.3.3 Mollweide
AIT 0◦ 0◦ Sect. 5.3.4 Hammer-Aitoff

Conic projections
COP 0◦ θa Sect. 5.4.1 Conic perspective
COE 0◦ θa Sect. 5.4.2 Conic equal-area
COD 0◦ θa Sect. 5.4.3 Conic equidistant
COO 0◦ θa Sect. 5.4.4 Conic orthomorphic

Polyconic and pseudoconic projections
BON 0◦ 0◦ Sect. 5.5.1 Bonne’s equal area
PCO 0◦ 0◦ Sect. 5.5.2 Polyconic

Quad-cube projections
TSC 0◦ 0◦ Sect. 5.6.1 Tangential spherical cube
CSC 0◦ 0◦ Sect. 5.6.2 COBE quadrilateralized spherical cube
QSC 0◦ 0◦ Sect. 5.6.3 Quadrilateralized spherical cube

HEALPix grid projection
HPX 0◦ 0◦ Sect. 62 HEALPix grid

(1) Refer to the indicated section in ? for a detailed description. (2) This projection is defined in ?.

coordinate celestial-coordinate system is also encoded into the
left-most portion of the CTYPEi keyword as the coordinate type.

For the final step, the parameter LONPOLEa must must be
specified, which is the native longitude of the celestial pole, φp.
For certain projections (such as cylindricals and conics, which
are less commonly used in astronomy), the additional keyword
LATPOLEa must must be used to specify the native latitude of the
celestial pole. See ? for the transformation equations and other
details.

The accepted celestial coordinate celestial-coordinate
systems are: the standard equatorial (RA-- and DEC-RA--
and DEC-), and others of the form xLONLON and xLATLAT
for longitude-latitude pairs, where x is GG for Galactic, EE
for ecliptic, HH for helioecliptic and SS for supergalactic
coordinates. Since the representation of planetary, lunar, and
solar coordinate planetary-, lunar-, and solar-coordinate systems
could exceed the 26 possibilities afforded by the single character
x, pairs of the form yzLNLN and yzLTmayLT may be used as
well.

RADESYSa – [string; default: ’FK4’, ’FK5’, or ’ICRS’’FK4’,
’FK5’, or ’ICRS’: see below]. Name of the reference frame
of equatorial or ecliptic coordinates, whose value mustmust
be one of those specified in Table ??. The default value is
FK4 ’FK4’ if the value of EQUINOXa < 1984.0, FK5 if ’FK5’
if ’EQUINOX’a ≥ 1984.0, or ICRS if ’ICRS’ if ’EQUINOX’a
is not given.

EQUINOXa – [floating point; default: see below]. Epoch of the
mean equator and equinox in years, whose value mustmust
be non-negative. The interpretation of epoch depends upon
the value of RADESYSa if present: Besselian if the value is
FK4 or FK4-NO-E’FK4’ or ’FK4-NO-E’, Julian if the value
is FK5; ’FK5’; and not applicable if the value is ICRS or
GAPPT’ICRS’ or ’GAPPT’.

EPOCH – [floating point]. This keyword is deprecated and
should notshould not be used in new FITSFITS files. It is re-
served primarily to prevent its use with other meanings. The
EQUINOXEQUINOX keyword shallshall be used instead. The
value field of this keyword was previously defined to contain
a floating-point number giving the equinox in years for the

36

D
R

AF
T

37

celestial coordinate celestial-coordinate system in which po-
sitions are expressed.

DATE-OBS – [floating point]. This reserved keyword is defined
in Sect. ??.

MJD-OBS – [floating point; default: DATE-OBS if given, other-
wise no default]. Modified Julian Date (JD – − 2,400,000.5)
of the observation, whose value corresponds (by default) to
the start of the observation, unless another interpretation is
explained in the comment field. No specific time system (e.g.
UTC, TAI, etc.) is defined for this or any of the other time-
related keywords. It is recommendedrecommended that the
TIMESYS keyword, as defined in Sect. ?? be used to specify
the time system. See also Sect. ??.

LONPOLEa – [floating point; default: φ0 if δ0 ≥ θ0, φ0 + 180◦
otherwise]. Longitude in the native coordinate system of the
celestial system’s north pole. Normally, φ0 is zero unless a
non-zero value has been set for PVi 1aPVi 1a, which is as-
sociated with the longitude axis. This default applies for all
values of θ0, including θ0 = 90◦, although the use of non-
zero values of θ0 are discouraged in that case.

LATPOLEa – [floating point; default: 90◦, or no default if
(θ0, δ0, φp − φ0) = (0, 0,±90◦)]. Latitude in the native co-
ordinate system of the celestial system’s north pole, or
equivalently, the latitude in the celestial coordinate celestial-
coordinate system of the native system’s north pole. May
This keyword may be ignored or omitted in cases where
LONPOLEa completely specifies the rotation to the target ce-
lestial system.

8.4. Spectral coordinate system Spectral-coordinate-system
representations

This section discusses the conversion of intermediate world co-
ordinates to spectral coordinates with common axes such as fre-
quency, wavelength, and apparent radial velocity (represented
here with the coordinate variables ν, λ, or v). The key point for
constructing spectral WCS in FITSFITS is that one of these coor-
dinates mustmust be sampled linearly in the dispersion axis; the
others are derived from prescribed, usually non-linear transfor-
mations. Frequency and wavelength axes maymay also be sam-
pled linearly in their logarithm.

Following the convention for the CTYPEia keyword, when
i is the spectral axis the first four characters mustmust specify
a code for the coordinate type; for non-linear algorithms the
fifth character mustmust be a hyphen, and the next three char-
acters mustmust specify a predefined algorithm for computing
the world coordinates from the intermediate physical coordi-
nates. The coordinate type mustmust be one of those specified
in Table ??. When the algorithm is linear, the remainder of the
CTYPEia keyword mustmust be blank. When the algorithm is
non-linear, the 3-letter algorithm code mustthree-letter algorithm
code must be one of those specified in Table ??. The relation-
ships between the basic physical quantities ν, λ, and v, as well as
the relationships between various derived quantities are given in
reference ?.

The generality of the algorithm for specifying the spectral
coordinate spectral-coordinate system and its representation
suggests that some additional description of the coordinate may
be helpful beyond what can be encoded in the first four charac-
ters of the CTYPEia keyword; CNAMEia is reserved for this pur-
pose. Note that this keyword provides a name for an axis in a

Table 24: Allowed values of RADESYSa.

Value Definition
’ICRS’ International Celestial Reference System
’FK5’ Mean place, new (IAU 1984) system
’FK4’1 Mean place, old (Bessel-Newcomb) system
’FK4-NO-E’1 Mean place: but without eccentricity terms
’GAPPT’ Geocentric apparent place, IAU 1984 system

(1) New FITS files should avoid using these older reference systems.

particular WCS, while the WCSNAMEa keyword names the partic-
ular WCS as a whole. In order to convert between some form of
radial velocity and either frequency or wavelength, the keywords
RESTFRQa and RESTWAVa, respectively, are reserved.

CNAMEia – [string; default: default: ' ' (i.e. a linear, un-
defined axis)]. Spectral coordinate description which must
notSpectral-coordinate description that must not exceed 68
characters in length.

RESTFRQa – [floating point; default: none]. Rest frequency
of the of the spectral feature of interest. The physical unit
mustmust be Hz.

RESTWAVa – [floating point; default: none]. Vacuum rest wave-
length of the of the spectral feature of interest. The physical
unit mustmust be m.

One or the other of RESTFRQa or RESTWAVa shouldshould be
given when it is meaningful to do so.

8.4.1. Spectral coordinate Spectral-coordinate reference
frames

Frequencies, wavelengths, and apparent radial velocities are al-
ways referred to some selected standard of rest (i.e., reference
frame). While the spectra are obtained they are, of necessity, in
the observer’s rest frame. The velocity correction from topocen-
tric (the frame in which the measurements are usually made)
to standard reference frames (which mustmust be one of those
given in Table ??) are dependent on the dot product with time-
variable velocity vectors. That is, the velocity with respect to
a standard reference frame depends upon direction, and the ve-
locity (and frequency and wavelength) with respect to the lo-
cal standard of rest is a function of the celestial coordinate
within the image. The keywords SPECSYSa and SSYSOBSa are
reserved and, if used, mustmust describe the reference frame in
use for the spectral axis spectral-axis coordinate(s) and the spec-
tral reference frame that was held constant during the observa-
tion, respectively. In order to compute the velocities it is neces-
sary to have the date and time of the observation; the keywords
DATE-AVG and MJD-AVG are reserved for this purpose. See also
Sect. ??.

DATE-AVG – [string; default: none]. Calendar date of the mid-
point of the observation, expressed in the same way as the
DATE-OBS keyword.

MJD-AVG – [floating point; default: none]. Modified Julian Date
(JD – − 2,400,000.5) of the mid-point of the observation.

SPECSYSa – [string; default: none]. The reference frame in use
for the spectral axis spectral-axis coordinate(s). Valid values
are given in Table ??.

SSYSOBSa – [string; default: ’TOPOCENT’’TOPOCENT’]. The
spectral reference frame that is constant over the range of

37

D
R

AF
T

38

Table 25: Reserved spectral coordinate spectral-coordinate type codes.

Code1 Type Symbol Assoc. variableAssociated Default units
variable

FREQ Frequency ν ν Hz
ENER Energy E ν J
WAVN Wavenumber κ ν m−1

VRAD Radio velocity2 V ν m s−1

WAVE Vacuum wavelength λ λ m
VOPT Optical velocity2 Z λ m s−1

ZOPT Redshift z λ ...
AWAV Air wavelength λa λa m
VELO Apparent radial velocity v v m s−1

BETA Beta factor (v/c) β v ...

(1) Characters 1 through 4 of the value of the keyword CTYPEia. (2) By convention, the ‘radio’ velocity is given by c(ν0 − ν)/ν0 and the ‘optical’
velocity is given by c(λ − λ0)/λ0.

the non-spectral world coordinates. Valid values are given in
Table ??.

The transformation from the rest frame of the observer to a
standard reference frame requires a specification of the location
on Earth14 of the instrument used for the observation in order to
calculate the diurnal Doppler correction due to the Earth’s ro-
tation. The location, if specified, shallshall be represented as a
geocentric Cartesian triple with respect to a standard ellipsoidal
geoid at the time of the observation. While the position can of-
ten be specified with an accuracy of a meter or better, for most
purposes positional errors of several kilometers will have neg-
ligible impact on the computed velocity correction. For details,
see reference ?.

OBSGEO-X – [floating point; default: none]. X−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinate mustmust
be valid at the epoch MJD-AVG or DATE-AVG.

OBSGEO-Y – [floating point; default: none]. Y−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinate mustmust
be valid at the epoch MJD-AVG or DATE-AVG.

OBSGEO-Z – [floating point; default: none]. Z−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinate mustmust
be valid at the epoch MJD-AVG or DATE-AVG.

Information on the relative radial velocity between the ob-
server and the selected standard of rest in the direction of the
celestial reference coordinate maymay be provided, and if so
shallshall be given by the VELOSYSa keyword. The frame of rest
defined with respect to the emitting source may be represented
in FITSFITS; for this reference frame it is necessary to define
the velocity with respect to some other frame of rest. The key-
words SPECSYSa and ZSOURCEa are used to document the choice
of reference frame and the value of the systemic velocity of the
source, respectively.

14 The specification of location for an instrument on a spacecraft in
flight requires an ephemeris; keywords that might be required in this
circumstance are not defined here.

Table 26: Non-linear spectral algorithm codes.

Code1 Regularly sampled in Expressed as
F2W Frequency Wavelength
F2V Apparent radial velocity
F2A Air wavelength
W2F Wavelength Frequency
W2V Apparent radial velocity
W2A Air wavelength
V2F Apparent radial vel. Frequency
V2W Wavelength
V2A Air wavelength
A2F Air wavelength Frequency
A2W Wavelength
A2V Apparent radial velocity

LOG Logarithm Any four-letter type code
GRI Detector Any type code from Table ??
GRA Detector Any type code from Table ??
TAB Not regular Any four-letter type code
(1) Characters 6 through 8 of the value of the keyword CTYPEia.

SSYSSRCa – [string; default: none]. Reference frame for the
value expressed in the ZSOURCEa keyword to document the
systemic velocity of the observed source. Value mustmust be
one of those given in Table ?? except for SOURCE’SOURCE’.

VELOSYSa – [floating point; default: none]. Relative radial ve-
locity between the observer and the selected standard of rest
in the direction of the celestial reference coordinate. Units
mustmust be m s−1. The CUNITia keyword is not used for
this purpose since the WCS version Version a might not be
expressed in velocity units.

ZSOURCEa – [floating point; default: none]. Radial velocity
with respect to an alternative frame of rest, expressed as a
unitless redshift (i.e., velocity as a fraction of the speed of
light in vacuum). Used in conjunction with SSYSSRCa to
document the systemic velocity of the observed source.

VELANGLa – [floating point; default:+90.+90.]. In the case of
relativistic velocities (e.g., a beamed astrophysical jet) the
transverse velocity component is important. This keyword
may may be used to express the orientation of the space
velocity vector with respect to the plane of the sky. See
Appendix A of reference ? for further details.

38

D
R

AF
T

39

Table 27: Spectral reference systems.

Value Definition
’TOPOCENT’ Topocentric
’GEOCENTR’ Geocentric
’BARYCENT’ Barycentric
’HELIOCEN’ Heliocentric
’LSRK’ Local standard of rest (kinematic)
’LSRD’ Local standard of rest (dynamic)
’GALACTOC’ Galactocentric
’LOCALGRP’ Local Group
’CMBDIPOL’ Cosmic microwave background Cosmic-microwave-background dipole
’SOURCE’ Source rest frame

Notes. These are the allowed values of the SPECSYSa, SSYSOBSa, and
SSYSSRCa keywords.

Table 28: Example keywords keyword records for a 100 element
100-element array of complex values.

Keyword records
SIMPLE = T
BITPIX = -32
NAXIS = 2
NAXIS1 = 2
NAXIS2 = 100
CTYPE1 = 'COMPLEX'
CRVAL1 = 0.
CRPIX1 = 0.
CDELT1 = 1.
END

8.5. Conventional coordinate Conventional-coordinate types

The first FITSFITS paper (?) listed a number of ‘suggested
values’ for the CTYPEi keyword. Two of these have the at-
tribute the associated world coordinates can assume only in-
teger values and that the meaning of these integers is only
defined by convention. The first ‘conventional’ coordinate is
CTYPEia =’COMPLEX’ ’COMPLEX’ to specify that complex
values (i.e., pairs of real and imaginary components) are stored
in the data array (along with an optional weight factor). Thus, the
complex axis of the data array will contain two values (or three if
the weight is specified). By convention, the real component has
a coordinate value of 1, the imaginary component has a coordi-
nate value of 2, and the weight, if any, has a coordinate value of
3. Table ?? illustrates the required keywords for an array of 100
complex values (without weights).

The second conventional coordinate is
CTYPEia =’STOKES’ ’STOKES’ to specify the polariza-
tion of the data. Conventional values, their symbols, and
polarizations are given in Table ??.

9. Representations of time coordinates

Time as a dimension in astronomical data presents challenges
for its representation in FITS FITS files. This section formulates
the representation of the time axis, or possibly multiple time
axes, into the World Coordinate System world-coordinate sys-
tem (WCS) described in Sect. ??. Much of the basic structure is
employed, while extensions are developed to cope with the dif-
ferences between time and spatial dimensions; notable amongst

Table 29: Conventional Stokes values.

Value Symbol Polarization
1 I ’I’ Standard Stokes unpolarized
2 Q ’Q’ Standard Stokes linear
3 U ’U’ Standard Stokes linear
4 V ’V’ Standard Stokes circular
−1 RR ’RR’ Right-right circular
−2 LL ’LL’ Left-left circular
−3 RL ’RL’ Right-left cross-circular
−4 LR ’LR’ Left-right cross-circular
−5 XX ’XX’ X X parallel linear
−6 YY ’YY’ Y Y parallel linear
−7 XY ’XY’ XY XY cross linear
−8 YX ’YX’ YX YX cross linear

these differences is the huge dynamic range, covering the highest
resolution timing relative to the age of the Universeuniverse.

The precision with which any time stamp conforms to any
conventional time scale is highly dependent on the character-
istics of the acquiring system. The definitions of many conven-
tional time scales vary over their history along with the precision
that can be attributed to any time stamp. The meaning of any
time stamp may be ambiguous if a time scale is used for dates
prior to its definition by a recognized authority, or for dates af-
ter that definition is abandoned. However, common sense should
prevail: the precision in the description of the time coordinate
should should be appropriate to the accuracy of the temporal in-
formation in the data.

9.1. Time values

The three most common ways to specify time are: ISO-8601
(?), Julian Date (JD), or Modified Julian Date (MJD = JD −
2, 400, 000.5; see ?). Julian Dates are counted from Julian pro-
leptic calendar date 1 January 4713 BCE at noon, or Gregorian
proleptic calendar date 24 November 4714 BCE, also at noon.
For an explanation of the calendars, see ?. Even though it is com-
mon to think of certain representations of time as absolute, time
values in FITS FITS files shall all be considered relative: elapsed
time since a particular reference point in time. It may help to
view the “absolute” values as merely relative to a globally ac-
cepted zero point. For a discussion of the precision required to
represent time values in floating-point numbers, see ?.

9.1.1. ISO-8601 datetimedatetime strings

FITS FITS datetime strings conform to a subset of ISO-8601
(which in itself does not imply a particular time scale) for several
time-related keywords (?), such as . Here datetimeDATE-xxxx.
Here datetime will be used as a pseudo data type to indicate
its use, although its values mustmust be written as a character
string in ’A’ format. The full specification for the format of the
datetimedatetime string has been:

CCYY-MM-DD[Thh:mm:ss[.s...]]

All in which all of the time part may be omitted (just leaving
the date) or the decimal seconds may be omitted. Leading zeroes
must notzeros must not be omitted and timezone designators are
not allowed. This definition is extended to allow five-digit years

39

D
R

AF
T

40

with a mandatory sign, in accordance with ISO-8601. That is,
one shall use either the unsigned four-digit year format, or the
signed five-digit year format : shown below.

[±C]CCYY-MM-DD[Thh:mm:ss[.s...]]

Note the following: .

– In counting years, ISO-8601 follows the convention of in-
cluding year zeroYear Zero. Consequently, for negative year
numbers there is an offset of one from BCE dates, which do
not recognize a year zero. Thus year Year Zero. Thus Year 1
corresponds to 1 CE, year Year 0 to 1 BCE, year Year −1 to
2 BCE, and so on.

– The earliest date that may be represented in the
four-digit year format is 0000-01-01T00:00:00
’0000-01-01T00:00:00’ (in the year 1 BCE); the latest
date is 9999-12-31T23:59:59’9999-12-31T23:59:59’.
This representation of time is tied to the Gregorian calendar.
In conformance with the present ISO-8601:2004(E) standard
(?) dates prior to 1582 mustmust be interpreted according to
the proleptic application of the rules of Gregorius XIII. For
dates not covered by that range the use of Modified Julian
Date (MJD) or Julian Date (JD) numbers or the use of the
signed five-digit year format is recommendedrecommended.

– In the five-digit year format the earliest and latest dates are
-99999-01-01T00:00:00 ’-99999-01-01T00:00:00’
(i.e., −100 000 BCE) and
+99999-12-31T23:59:59’+99999-12-31T23:59:59’.

– The origin of JD can be written as:
-04713-11-24T12:00:00’-04713-11-24T12:00:00’.

– In time scale UTC the UTC time scale the integer part of the
seconds field runs from 00 to 60 (in order to accommodate
leap seconds); in all other time scales the range is 00 to 59.

– The ISO-8601 datetimedatetime data type is not allowed in
image axis descriptions since is required image-axis descrip-
tions since CRVAL is required to be a floating point floating-
point value.

– ISO-8601 datetimedatetime does not imply the use of any
particular time scale (see SectionSect. ??).

– As specified by ?, time zones are explicitly not supported
in FITS FITS and, consequently, appending the letter ‘Z’
to a FITS ’Z’ to a FITS ISO-8601 string is not allowed.
The rationale for this rule is that its role in the ISO stan-
dard is that of a time zone time-zone indicator, not a time
scale time-scale indicator. As the concept of a time zone is
not supported in FITSFITS, the use of time zone time-zone
indicator is inappropriate.

9.1.2. Julian and Besselian epochs

In a variety of contexts epochs are provided with astronomical
data. Until 1976 these were commonly based on the Besselian
year (see Sect. ??), with standard epochs B1900.0 and B1950.0.
After 1976 the transition was made to Julian epochs based on
the Julian year of 365.25 days, with the standard epoch J2000.0.
They are tied to time scales the ET and TDB time scales, respec-
tively. Note that the Besselian epochs are scaled by the variable
length of the Besselian year (see Sect. ?? and its cautionary note,
which also applies to this context). The Julian epochs are easier
to calculate, as long as one keeps track of leap days.

9.2. Time coordinate frame

9.2.1. Time scale

The time scale defines the temporal reference frame, and is spec-
ified in the header in one of a few ways, depending upon the con-
text. When recorded as a global keyword, the time scale shall be
specified by : the following keyword.

TIMESYS – [string; default: ’UTC’’UTC’]. The value field
of this keyword shallcontain a character string contain a
character-string code for the time scale of the time-related
keywords. The recommendedrecommended values for this
keyword in Table?? have well defined ?? have well-defined
meanings, but other values may be used. If this keyword is
absent, ’UTC’ mustmust be assumed.

In relevant contexts (e.g., time axes in image arrays, table
columns, or random groups) TIMESYS may be overridden by
a time scale recorded in CTYPEia, its binary table binary-table
equivalents, or PTYPEi (see Table ??).

The keywords TIMESYS, CTYPEia, TCTYPn, and TCTYna or
binary table binary-table equivalent may assume the values listed
in Table ??. In addition, for backward compatibility, all except
TIMESYS and PTYPEi may also assume the value ’TIME’ (case-
insensitive), whereupon the time scale shall be that recorded in
TIMESYS or, in its absence, its default value, ’UTC’. As noted
above, local time scales other than those listed in Table ?? may
be used, but their use should be restricted to alternate coordi-
nates in order that the primary coordinates will always refer to a
properly recognized time scale.

See ?, Appendix A, for a detailed discussion of the various
time scales. In cases where high-precision timing is important
one may may append a specific realization, in parentheses, to
the values in the table; e.g., , , ’TT(TAI)’, ’TT(BIPM08)’,
’UTC(NIST)’. Note that linearity is not preserved across all
time scales. Specifically, if the reference position remains un-
changed (see Section Sect. ??), the first ten, with the exception
of ’UT1’, are linear transformations of each other (excepting
leap seconds), as are and ’TDB’ and ’TCB’. On average ’TCB’
runs faster than ’TCG’ by approximately 1.6×10−8, but the trans-
formation from or ’TT’ or ’TCG’ (which are linearly related) is
to be achieved through a time ephemeris as provided by ?.

The relations between coordinate time scales and their dy-
namical equivalents have been defined as:

T (TCG) = T (TT) + LG × 86400 × (JD(TT) − JD0)
T (TDB) = T (TCB)−LB×86400×(JD(TCB)−JD0)+T DB0,

where:
T is in seconds
LG = 6.969290134 × 10−10

LB = 1.550519768 × 10−8

JD0 = 2443144.5003725
T DB0 = −6.55 × 10−5 s.

Linearity is virtually guaranteed since images and individual ta-
ble columns do not allow more than one reference position to be
associated with them, and since there is no overlap between ref-
erence positions that are meaningful for the first nine time scales
on the one hand, and for the barycentric ones on the other. All
use of the time scale GMT in FITS GMT time scale in FITS
files shall be taken to have its zero point at midnight, confor-
mant with UT, including dates prior to 1925. For high-precision
timing prior to 1972, see ?, Appendix A.

40

D
R

AF
T

41

Table 30: Recognized Time Scale Values

Value Meaning
’TAI’ (International Atomic Time): atomic time atomic-

time standard maintained on the rotating geoid
’TT’ (Terrestrial Time; IAU standard): defined on the ro-

tating geoid, usually derived as TAI + 32.184 s
’TDT’ (Terrestrial Dynamical Time): synonym for TT (dep-

recated)
’ET’ (Ephemeris Time): continuous with TT; should not

should not be used for data taken after 1984-01-01
’IAT’ synonym for TAI (deprecated)
’UT1’ (Universal Time): Earth rotation time
’UTC’ (Universal Time, Coordinated; default): runs syn-

chronously with TAI, except for the occasional in-
sertion of leap seconds intended to keep UTC within
0.9 s of UT1; as of 2015 -07-01 2015-07-01 UTC =
TAI − 36 s

’GMT’ (Greenwich Mean Time): continuous with UTC; its
use is deprecated for dates after 1972-01-01

UT()1 UT()1 (Universal Time, with qualifier): for high-precision
use of radio signal radio-signal distributions between
1955 and 1972; see ?, Appendix A

’GPS’ (Global Positioning System): runs (approximately)
synchronously with TAI; GPS ≈ TAI − 19 s

’TCG’ (Geocentric Coordinate Time): TT reduced to the
geocenter, corrected for the relativistic effects of
the Earth’s rotation and gravitational potential; TCG
runs faster than TT at a constant rate

’TCB’ (Barycentric Coordinate Time): derived from TCG
by a 4-dimensional four-dimensional transformation,
taking into account the relativistic effects of the grav-
itational potential at the barycenter (relative to that
on the rotating geoid) as well as velocity time dila-
tion time-dilation variations due to the eccentricity
of the Earth’s orbit, thus ensuring consistency with
fundamental physical constants; ? provide a time
ephemeris

’TDB’ (Barycentric Dynamical Time): runs slower than
TCB at a constant rate so as to remain approximately
in step with TT; runs therefore quasi-synchronously
with TT, except for the relativistic effects intro-
duced by variations in the Earth’s velocity relative
to the barycenter. When referring to celestial ob-
servations, a pathlength correction to the barycenter
may be needed, which requires the Time Reference
Direction used in calculating the pathlength correc-
tion.

’LOCAL’ for simulation data and for free-running clocks.

1Specific realization codes may be appended to these values, in
parentheses; see the text. For a more-detailed discussion of time
scales, see ?, Appendix A.

Some time scales in use are not listed in Table ?? because
they are intrinsically unreliable or ill-defined. When used, they
should be tied to one of the existing scales with appropriate spec-
ification of the uncertainties; the same is true for free-running
clocks. However, a local time scale such as MET (Mission
Elapsed Time) or OET (Observation Elapsed Time) may be de-
fined for practical reasons. In those cases the time reference
value (see Section ??) shall notSect. ??) shall not be applied to
the values, and it is strongly recommendedthat such timescales
recommended that such time scales be provided as alternate time
scales, with a defined conversion to a recognized time scale.

It is useful to note that while UT1 is, in essence, an angle (of
the Earth’s rotation – i.e., a clock), the others are SI-second coun-
ters (chronometers); UTC, by employing leap seconds, serves as
a bridge between the two types of time scales.

9.2.2. Time reference value

The time reference value is not requirednot required to be
present in an HDU. However, if the time reference point is spec-
ified explicitly it mustmust be expressed in one of ISO-8601,
JD, or MJD. These reference values mustonly only be applied
to time values associated with one of the recognized time scales
listed in Table ??, and that time scale mustmust be specified ex-
plicitly or implicitly as explained in Sect. ??.

The reference point in time, to which all times in the HDU
are relative, shall be specified through one of three keywords :
specified below.

MJDREF – [floating-point]; default: 0.00.0] The value field of
this keyword shall contain the value of the reference time in
MJD.

JDREF – [floating-point; default: none] The value field of this
keyword shall contain the value of the reference time in JD.

DATEREF – [datetime; default: none] The value field of this
keyword shallcontain a character string contain a character-
string representation of the reference time in ISO-8601 for-
mat.

MJDREF and JDREF maymay, for clarity or precision reasons, be
split into two keywords holding the integer and fractional parts
separately: .

MJDREFI – [integer; default: 00] The value field of this keyword
shall contain the integer part of reference time in MJD.

MJDREFF – [floating-point; default: 0.00.0] The value field of
this keyword shall contain the fractional part of reference
time in MJD.

JDREFI – [integer; default: none] The value field of this key-
word shall contain the integer part of reference time in JD.

JDREFF – [floating-point; default: none] The value field of this
keyword shall contain the fractional part of reference time in
JD.

If [M]JDREF and both [M]JDREFI and [M]JDREFF are
present, the integer and fractional values shall shall have prece-
dence over the single value. If the single value is present with
one of the two parts, the single value shall shall have precedence.
In the following, MJDREF and JDREF refer to their literal mean-
ing or the combination of their integer and fractional parts. If a
header contains more than one of these keywords, JDREF shall
have precedence over DATEREF and MJDREF shall have prece-
dence over both the others. If none of the three keywords is
present, there is no problem as long as all times in the HDU are
expressed in ISO-8601; otherwise MJDREF =0.0 must 0.0 must
be assumed. If TREFPOS =’’ (Section ??) ’CUSTOM’ (Sect. ??),
it is legitimate for none of the reference time reference-time
keywords to be present, as one may assume the data are from
a simulation. Note that the value of the reference time has global
validity for all time values, but it does not have a particular time
scale associated with it.

41

D
R

AF
T

42

9.2.3. Time reference position

An observation is an event in space-time. The reference position
specifies the spatial location at which the time is valid, either
where the observation was made or the point in space for which
light-time corrections have been applied. When recorded as a
global keyword, the time reference position shall be specified
by : the following keyword.

TREFPOS – [string; default: ’TOPOCENTER’’TOPOCENTER’].
The value field of this keyword shallcontain a character
string contain a character-string code for the spatial loca-
tion at which the observation time is valid. The value should
be one of those given in Table ??. This keyword shallapply
to time coordinate apply to time-coordinate axes in images
as well.

In binary tables, different columns may represent completely
different Time Coordinate Frames. However, each column can
have only one time reference position, thus guaranteeing linear-
ity (see Section Sect. ??).

TRPOSn – [string; default: ’TOPOCENTER’’TOPOCENTER’] The
value field of this keyword shallcontain a character string
contain a character-string code for the spatial location at

which the observation time is valid. This table keyword shall
override TREFPOS.

The reference position value may be a standard location
(such as or ’GEOCENTER’ or ’TOPOCENTER’) or a point in space
defined by specific coordinates. In the latter case one should be
aware that a (3-D) spatial coordinate three-dimensional) spatial-
coordinate frame needs to be defined that is likely to be different
from the frame(s) that with which the data are associatedwith.
Note that ’TOPOCENTER’ is only moderately informative if no
observatory location is provided or indicated. The commonly
allowed standard values are shown in Table ??. Note that for
the gaseous planets the barycenters of their planetary systems,
including satellites, are used for obvious reasons. While it is
preferable to spell the location names out in full, in order to be
consistent with the practice of ? the values are allowed to be
truncated to eight characters. Furthermore, in order to allow for
alternative spellings, only the first three characters of all these
values shall be considered significant. The value of the keyword
shall be case-sensitive.

The reader is cautioned that time scales and reference posi-
tions cannot be combined arbitrarily if one wants a clock that
runs linearly at TREFPOS. Table ?? provides a summary of com-
patible combinations. ’BARYCENTER’ should only be used in
conjunction with time scales and ’TDB’ and ’TCB’, and should
be the only reference position used with these time scales.
With proper care , , and ’GEOCENTER’, ’TOPOCENTER’, and
’EMBARYCENTER’ are appropriate for the first ten time scales
in Table ??. However, relativistic effects introduce a (generally
linear) scaling in certain combinations; highly eccentric space-
craft orbits are the exceptions. Problems will arise when using
a reference position on another solar system Solar System body
(including ’HELIOCENTER’). Thereforeit is recommended, it is
recommended to synchronize the local clock with one of the time
scales defined on the Earth’s surface, , , , or ’TT’, ’TAI’, ’GPS’,
or ’UTC’ (in the last case: beware of leap seconds). This is com-
mon practice for spacecraft clocks. Locally, such a clock will
not appear to run at a constant rate, because of variations in the

Table 31: Standard Time Reference Position Values

Value1 Meaning
’TOPOCENTER’ Topocenter: the location from where the ob-

servation was made (default)
’GEOCENTER’ Geocenter
’BARYCENTER’ Barycenter of the Solar System

’RELOCATABLE’ Relocatable: to be used for simulation data
only

’CUSTOM’ A position specified by coordinates that is
not the observatory location

Less-common, but allowed standard values

’HELIOCENTER’ Heliocenter
’GALACTIC’ Galactic center

’EMBARYCENTER’ Earth-Moon barycenter
’MERCURY’ Center of Mercury
’VENUS’ Center of Venus
’MARS’ Center of Mars

’JUPITER’ Barycenter of the Jupiter system
’SATURN’ Barycenter of the Saturn system
’URANUS’ Barycenter of the Uranus system
’NEPTUNE’ Barycenter of the Neptune system

Notes. (1)Recognized values for TREFPOS, TRPOSn; only the first three
characters of the values are significant and Solar System locations are
as specified in the ephemerides.

Table 32: Compatibility of Time Scales and Reference Positions

Reference Time scale1

Position TT, TDT TCG TDB TCB LOCAL
TAI, IAT

GPS
UTC, GMT

’TOPOCENTER’ t ls
’GEOCENTER’ ls c
’BARYCENTER’ ls c
’RELOCATABLE’ c
Other2 re re

Notes. (1)Legend (combination is not recommended if there is no entry);
c: correct match; reference position coincides with the spatial origin of
the space-time coordinates; t: correct match on Earth’s surface, other-
wise usually linear scaling; ls: linear relativistic scaling; re: non-linear
relativistic scaling. (2)All other locations in the Solar System.

gravitational potential and in motions with respect to Earth, but
the effects can be calculated and are probably small compared
with errors introduced by the alternative: establishing a local
time standard.

In order to provide a complete description, ’TOPOCENTER’
requires the observatory’s coordinates to be specified. There are
three options: (a)(a) the ITRS Cartesian coordinates defined in
Sect. ?? (OBSGEO-X, OBSGEO-Y, OBSGEO-Z), which are strongly
preferred; (b)(b) a geodetic latitude/longitude/elevation triplet
(defined below); or (c)(c) a reference to an orbit ephemeris orbit-
ephemeris file. A set of geodetic coordinates is recognized : by
the following keywords.

OBSGEO-B – [floating-point] The value field of this keyword
shall contain the latitude of the observation in deg, with
North positive.

42

D
R

AF
T

43

OBSGEO-L – [floating-point] The value field of this keyword
shall contain the longitude of the observation in deg, with
East positive.

OBSGEO-H – [floating-point] The value field of this keyword
shall contain the altitude of the observation in meters.

An orbital ephemeris orbital-ephemeris file can instead be
specified: .

OBSORBIT – [string] The value field of this keyword shall
contain the character-string URI, URL, or the name of an
orbit ephemeris orbit-ephemeris file.

Beware that only one set of coordinates is allowed in a given
HDU. Cartesian ITRS coordinates are the preferred coordinate
system; however, when using these in an environment requir-
ing nanosecond accuracy, one should take care to distinguish
between meters consistent with TCG or with TT. If one uses
geodetic coordinates, the geodetic altitude OBSGEO-H is mea-
sured with respect to the IAU 1976 ellipsoid, which is defined
as having a semi-major axis of 6 378 140 m and an inverse flat-
tening of 298.2577.

A non-standard location indicated by must’CUSTOM’ must
be specified in a manner similar to the specification of the obser-
vatory location (indicated by ’TOPOCENTER’). One should be
careful with the use of the ’CUSTOM’ value and not confuse it
with ’TOPOCENTER’, as use of the latter imparts additional in-
formation on the provenance of the data.

ITRS coordinates (X,Y,ZX,Y ,Z) may be derived from geode-
tic coordinates (L,B,HL,B,H) through:

X = (N(B) + H) cos(L) cos(B)

Y = (N(B) + H) sin(L) cos(B)

Z = (N(B)(1 − e2) + H) sin(B)

where:

N(B) =
a√

1 − e2 sin2(B)

e2 = 2 f − f 2

a is the semi-major axis, and f is the inverse of the in-
verse flattening. Nanosecond precision in timing requires that
OBSGEO-[BLH] be expressed in a geodetic reference frame de-
fined after 1984 in order to be sufficiently accurate.

9.2.4. Time reference direction

If any pathlength corrections have been applied to the time
stamps (i.e., if the reference position is not ’TOPOCENTER’ for
observational data), the reference direction that is used in calcu-
lating the pathlength delay should be provided in order to main-
tain a proper analysis trail of the data. However, this is useful
only if there is also information available on the location from
where the observation was made (the observatory location). The
direction will usually be provided in a spatial coordinate spatial-
coordinate frame that is already being used for the spatial meta-
data, although it is conceivable that multiple spatial frames are
involved, e.g., spherical ICRS coordinates for celestial positions,
and Cartesian FK5 for spacecraft ephemeris. The time reference

direction does not by itself provide sufficient information to per-
form a fully correct transformation; however, within the context
of a specific analysis environment it should suffice.

The uncertainty in the reference direction affects the errors
in the time stamps. A typical example is provided by barycentric
corrections where the time error is related to the position error:

terrerr(ms) ≤ 2.4 poserrerr(arcsec).

The reference direction is indicated through a reference to spe-
cific keywords. These keywords may hold the reference direction
explicitly or (for data in BINTABLEsBINTABLE extensions) in-
dicate columns holding the coordinates. In event lists where the
individual photons are tagged with a spatial position, those co-
ordinates may have been used for the reference direction and the
reference will point to the columns containing these coordinate
values. The time reference direction shall be specified by the
keyword: following keyword.

TREFDIR – [string] The value field of this keyword shall
contain a character string composed of: the name of the key-
word containing the longitudinal coordinate, followed by a
comma, followed by the name of the keyword containing the
latitudinal coordinate. This reference direction shallapply to
time coordinate apply to time-coordinate axes in images as
well.

In binary tables, different columns may represent completely
different Time Coordinate Frames. However, also in that situ-
ation the condition holds that each column can have only one
Time Reference Direction. Hence, the following keyword may
may override TREFDIR: .

TRDIRn – [string] The value field of this keyword shall contain
a character string consisting of the name of the keyword or
column containing the longitudinal coordinate, followed by
a comma, followed by the name of the keyword or column
containing the latitudinal coordinate. This reference direc-
tion shallapply to time coordinate apply to time-coordinate
axes in images as well.

9.2.5. Solar System Ephemerisephemeris

If applicable, the Solar System ephemeris used for calculating
pathlength delays should be identified. This is particularly perti-
nent when the time scale is or ’TCB’ or ’TDB’. The ephemerides
that are currently most often used are those from ??.

The Solar System ephemeris used for the data (if required)
shall be indicated by the following keyword: .

PLEPHEM – [string; default: ’DE405’] The value field of
this keyword shall contain a character string that should
represent a recognized designation for the Solar System
ephemeris. Recognized designations for JPL Solar System
ephemerides that are often used are listed in Table ??.

Future ephemerides in this series shall be accepted and rec-
ognized as they are released. Additional ephemerides designa-
tions may may be recognized by the IAUFWG upon request.

9.3. Time unit

When recorded as a global keyword, the unit used to express
time shall be specified by : the following keyword.

43

D
R

AF
T

44

Table 33: Valid solar system Solar System ephemerides

Value Reference
’DE200’ ?; considered obsolete, but still in use
’DE405’ ?; default
’DE421’ ?
’DE430’ ?
’DE431’ ?
’DE432’ ?

TIMEUNIT – [string; default: ’s’’s’] The value field of this
keyword shall contain a character string that specifies the
time unit; the value should be one of those given in Table ??.
This time unit shall apply to all time instances and durations
that do not have an implied time unit (such as is the case
for JD, MJD, ISO-8601, J and B epochs). If this keyword is
absent, ’s’ shall be assumed.

In an appropriate context, e.g., when an image has a time axis,
TIMEUNIT may be overridden by the CUNITia keywords and
their binary table binary-table equivalents (see Table ??).

The specification of the time unit allows the values defined
in ?, shown in Table ??, with the addition of the century. See
also Sect. ?? for generalities about units.

Table 34: Recommended time units

Value Definition
’s’ second (default)
’d’ day (= 86,400 s)
’a’ (Julian) year (= 365.25 d)
’cy’ (Julian) century (= 100 a)

The following values are also acceptable.

’min’ minute (= 60 s)
’h’ day (= 86,400 s)
’yr’ (Julian) year (= ’a’ = 365.25

d)
’ta’ tropical year
’Ba’ Besselian year

The use of and ’ta’ and ’Ba’ is not encouraged, but there
are data and applications that require the use of tropical years
or Besselian epochs (see Section Sect. ??). The length of the
tropical year, ’ta’, in days is:

1 ta = 365.24219040211236 − 0.00000615251349 T
−6.0921 × 10−10 T 2 + 2.6525 × 10−10 T 3 (d)

where T is in Julian centuries since J2000, using time scale TDB.
The length of the Besselian year in days is:

1Ba = 365.2421987817 − 0.00000785423 T (d)

where T is in Julian centuries since J1900, using time scale ET,
although for these purposes the difference with TDB is negligi-
ble.

Readers are cautioned that the subject of tropical and
Besselian years presents a particular quandary for the specifi-
cation of standards. The expressions presented here are the most
accurate available, but are applicable for use when creating data
files (which is strongly discouraged), rather than for interpreting

existing data that are based upon these units. But However, there
is no guarantee that the authors of the data applied these particu-
lar definitions. Users are therefore advised to pay close attention
and attempt to ascertain what the authors of the data really used.

9.4. Time offset, binning, and errors

9.4.1. Time offset

A uniform clock correction may may be applied in bulk with the
following single keyword.

TIMEOFFS – [floating-point; default: 0.00.0] The value field
of this keyword shall contain the value of the offset in time
that shall be added to the reference time, given by one of:
MJDREF, JDREF, or DATEREF.

The time offset may serve to set a zero-point offset to a rela-
tive time series, allowing zero-relative times, or just higher pre-
cision, in the time stamps. Its default value is zero. The value of
this keyword affects the values of TSTART, and TSTOP, as well
as any time pixel values in a binary table. However, this con-
struct may only be used in tables and must notmust not be used
in images.

9.4.2. Time resolution and binning

The resolution of the time stamps (the width of the time sam-
pling function) shall be specified by : the following keyword.

TIMEDEL – [floating-point] The value field of this keyword
shall contain the value of the time resolution in the units
of TIMEUNIT. This construct, when present, shall onlyshall
only be used in tables and must notmust not be used in im-
ages.

In tables this may, for instance, be the size of the bins for time
series time-series data or the bit precision of the time stamp time-
stamp values.

When data are binned in time bins (or, as a special case,
events are tagged with a time stamp of finite precision) it is im-
portant to know to the position within the bin (or pixel) to which
the time stamp refers. Coordinate values normally correspond
to the center of all pixels (see Sect. ??); yet clock readings are
effectively truncations, not rounded values, and therefore corre-
spond to the lower bound of the pixel.

TIMEPIXR – [floating-point; default: 0.50.5] The value field of
this keyword shall contain the value of the position within
the pixel, from 0.0 to 1.0, to which the time-stamp refers.
This construct, when present, shall onlyshall only be used in
tables and must notmust not be used in images.

A value of 0.0 0.0 may be more common in certain contexts,
e.g. when truncated clock readings are recorded, as is the case
for almost all event lists.

9.4.3. Time errors

The absolute time error is the equivalent of a systematic error,
shall be given by the following keyword: .

44

D
R

AF
T

45

TIMSYER – [floating-point; default: 0.0.] The value field of this
keyword shall contain the value of the absolute time error, in
units of TIMESYS.

This keyword may be overridden, in appropriate context (e.g.,
time axes in image arrays or table columns; by the CSYERia key-
words and their binary table binary-table equivalents (see Table
??).

The relative time error specifies accuracy of the time stamps
relative to each other. This error will usually be much smaller
than the absolute time error. This error is equivalent to a random
error, and shall be given by the following keyword: .

TIMRDER – [floating-point; default: 0.0.] The value field of this
keyword shall contain the value of the relative time error, i.e.
the random error between time stamps, in units of TIMESYS.

This keyword may be overridden, in appropriate context (e.g.,
time axes in image arrays or table columns; by the CRDERia key-
words and their binary table binary-table equivalents (see Table
??).

9.5. Global time keywords

The time keywords in Table ?? are likely to occur in headers
even when there are no time axes in the data. Except for DATE,
they provide the top-level temporal bounds of the data in the
HDU. As noted before, they may also be implemented as table
columns. Keywords not previously described are defined below;
all are included in the summary Table ??.

Table 35: Keywords for global time values

Keyword Notes
DATE Defined in Sect. ??.
DATE-OBS Defined in Sect. ??. Keyword value was not restricted

to mean the start time of an observation, and has
historically also been used to indicate some form of
mean observing date and time. To avoid ambiguity use
DATE-BEG instead.

DATE-BEG Defined in this section.
DATE-AVG Defined in Sect. ??. The method by which aver-

age times should be calculated is not defined by this
Standard.

DATE-END Defined in this section.
MJD-OBS Defined in Sect. ??.
MJD-BEG Defined in this section.
MJD-AVG Defined in Sect. ??. The method by which aver-

age times should be calculated is not defined by this
Standard.

MJD-END Defined in this section.
TSTART Defined in this section.
TSTOP Defined in this section.

DATE-BEG – [datetime] The value field of this keyword shall
contain a character string in ISO-8601 format that specifies
the start time of data acquisition in the time system specified
by the TIMESYS keyword.

DATE-END – [datetime] The value field of this keyword shall
contain a character string in ISO-8601 format that specifies
the stop time of data acquisition in the time system specified
by the TIMESYS keyword.

MJD-BEG – [floating-point] The value field of this keyword
shall contain the value of the MJD start time of data acquisi-
tion in the time system specified by the TIMESYS keyword.

MJD-END – [floating-point] The value field of this keyword
shall contain the value of the MJD stop time of data acquisi-
tion in the time system specified by the TIMESYS keyword.

TSTART – [floating-point] The value field of this keyword shall
contain the value of the start time of data acquisition in units
of TIMEUNIT, relative to MJDREF, JDREF, or DATEREF and
TIMEOFFS, in the time system specified by the TIMESYS key-
word.

TSTOP – [floating-point] The value field of this keyword shall
contain the value of the stop time of data acquisition in units
of TIMEUNIT, relative to MJDREF, JDREF, or DATEREF and
TIMEOFFS, in the time system specified by the TIMESYS key-
word.

The alternate-axis equivalent keywords for
BINTABLEsBINTABLE extensions, DOBSn, MJDOBn, DAVGn,
and MJDAn, as defined in Table ??, are also allowed. Note that
of the above only TSTART and TSTOP are relative to the time
reference value. As in the case of the time reference value (see
Section Sect. ??), the JD values supersede DATE values, and
MJD values supersede both, in cases where conflicting values
are present.

It should be noted that, although they do not represent global
time values within an HDU, the CRVALia and CDELTia keywords,
and their binary table binary-table equivalents (see Table ??),
also represent (binary) time values. They should be handled with
the same care regarding precision when combining them with the
time reference value, as any other time value.

Finally, Julian and Besselian epochs (see Sections ??and
Sects. ?? and ??) may be expressed by these two keywords –
to be used with great caution, as their definitions are more com-
plicated and hence their use more prone to confusion: .

JEPOCH – [floating-point] The value field of this keyword shall
contain the value of the Julian epoch, with an implied time
scale of ’TDB’.

BEPOCH – [floating-point] The value field of this keyword shall
contain the value of the Besselian epoch, with an implied
time scale of ’ET’.

When these epochs are used as time stamps in a table
column, their interpretation will be clear from the context. When
the keywords appear in the header without obvious context,
they mustmust be regarded as equivalents of and DATE-OBS and
MJD-OBS, i.e., with no fixed definition as to what part of the
dataset they referto.

9.6. Other time coordinate time-coordinate axes

There are a few coordinate axes that are related to time and that
are accommodated in this standardStandard: (temporal) phase,
timelag, and frequency. Phase results from folding a time series
on a given period, and can appear in parallel with time as an
alternate description of the same axis. Timelag is the coordinate
of cross- and auto-correlation spectra. The temporal frequency
is the Fourier transform equivalent of time and, particularly, the
coordinate axis of power spectra; spectra where the dependent
variable is the electromagnetic field are excluded here, but see ?.

45

D
R

AF
T

46

These coordinate axes shall be specified by giving CTYPEi and
its binary table binary-table equivalents one of the values: , , or
’PHASE’, ’TIMELAG’, or ’FREQUENCY’.

Timelag units are the regular time units, and the basic unit
for frequency is ’Hz’. Neither of these two coordinates is a lin-
ear or scaled transformation of time, and therefore cannot appear
in parallel with time as an alternate description. That is, a given
vector of values for an observable can be paired with a coordi-
nate vector of time, or timelag, or frequency, but not with more
than one of these; the three coordinates are orthogonal.

Phase can appear in parallel with time as an alternate descrip-
tion of the same axis. Phase shall be recorded in the following
keywords: .

CZPHSia – [floating-point] The value field of this keyword shall
contain the value of the time at the zero point of a phase axis.
Its units maybe , , or be ’deg’, ’rad’, or ’turn’.

CPERIia – [floating-point] The value field of this keyword, if
present shall contain the value of the period of a phase axis.
This keyword can be used only if the period is a constant; if
that is not the case, this keyword should either be absent or
set to zero.

CZPHSia may may instead appear in binary table binary-table
forms TCZPHn, TCZPna, iCZPHn, and iCZPna. CPERIia may
may instead appear in binary table binary-table forms TCPERn,
TCPRna, iCPERn, and iCPRna. The Phase, periodphase, period,
and zero point shall be expressed in the globally valid time ref-
erence frame and unit as defined by the global keywords (or their
defaults) in the header.

9.7. Durations

There is an extensive collection of header keywords that indi-
cate time durations, such as exposure times, but there are many
pitfalls and subtleties that make this seemingly simple concept
treacherous. Because of their crucial role and common use, key-
words are defined below to record exposure and elapsed time.

XPOSURE – [floating-point] The value field of this keyword
shall contain the value for the effective exposure duration
for the data, corrected for dead time and lost time in the units
of TIMEUNIT. If the HDU contains multiple time slices, this
value shall be the total accumulated exposure time over all
slices.

TELAPSE – [floating-point] The value field of this keyword
shall contain the value for the amount of time elapsed, in
the units of TIMEUNIT, between the start and the end of the
observation or data stream.

Durations must notmust not be expressed in ISO-8601 for-
mat, but only as actual durations (i.e., numerical values) in the
units of the specified time unit.

Good-Time-Interval (GTI) tables are common for exposures
with gaps in them, particularly photon-event files, as they make
it possible to distinguish time intervals with “no signal de-
tected” from “no data taken.” GTI tables in BINTABLE exten-
sions mustBINTABLE extensions must contain two mandatory
columns, and START and STOP, and maycontain one optional col-
umn, contain one optional column, WEIGHT. The first two define
the interval, the third, with a value between 0 and 1, the quality
of the interval; i.e., a weight of 0 indicates a Bad-Time-Interval.

WEIGHT has a default value of 1. Any time interval not covered
in the table shall shall be considered to have a weight of zero.

9.8. Recommended best practices

The following guidelines should be helpful in creating data prod-
ucts with a complete and correct time representation.

– The presence of the informational DATE keyword is strongly
recommended in all HDUs.

– One or more of the informational keywords DATE-xxxx
and/or MJD-xxxx should be present in all HDUs whenever a
meaningful value can be determined. This also applies, e.g.,
to catalogs derived from data collected over a well-defined
time range.

– The global keyword TIMESYS is strongly recommended.
– The global keywords MJDREF or JDREF or DATEREF are

recommendedrecommended.
– The remaining informational and global keywords should be

present whenever applicable.
– All context-specific keywords shall be present as needed and

required required by the context of the data.

9.8.1. Global keywords and overrides

For reference to the keywords that are discussed here, see
Table ??. The globally applicable keywords listed in section
Sect. B of the table serve as default values for the correspond-
ing C* and TC* keywords in that same section, but only when
axis and column specifications (including alternate coordinate
definitions) use a time scale listed in Table?? ??, or when the
corresponding CTYPE or TTYPE keywords are set to the value
’TIME’. Any alternate coordinate specified in a non-recognized
time scale assumes the value of the axis pixels or the column
cells, optionally modified by applicable scaling and/or reference
value keywords; see also Section Sect. ??.

9.8.2. Restrictions on alternate descriptions

An image will have at most one time axis as identified by hav-
ing the CTYPEi value of ’TIME’ or one of the values listed in
Table ??. Consequently, as long as the axis is identified through
CTYPEi, there is no need to have axis number axis-number
identification on the global time-related keywords. It is expressly
prohibited to specify more than one time reference position on
this axis for alternate time coordinate time-coordinate frames,
since this would give rise to complicated model-dependent non-
linear relations between these frames. Hence, time scales and
(or ’TDB’ and ’TCB’ (or ’ET’, to its precision) may may be
specified in the same image, but cannot be combined with any
of the first nine time scales in Table ??; those first nine can be
expressed as linear transformations of each other, too, provided
the reference position remains unchanged. Time scale ’LOCAL’
is by itself, intended for simulations, and should not should not
be mixed with any of the others.

9.8.3. Image time axes

SectionSect. ?? requires keywords CRVALia to be numeric and
they cannot be expressed in ISO-8601 format. Therefore it is

46

D
R

AF
T

47

requiredrequired that CRVALia contain the elapsed time in units
of TIMEUNIT or CUNITia, even if the zero point of time is speci-
fied by DATEREF. If the image does not use a matrix for scaling,
rotation, and shear (?), CDELTia provides the numeric value for
the time interval. If the PC form of scaling, rotation, and shear (?)
is used, CDELTia provides the numeric value for the time interval,
and PCi j, where i = j = the index of the time axis (in the typical
case of an image cube with axis Axis 3 being time, i = j = 3)
would take the exact value 1, the default (?). When the CDi j
form of mapping is used, CDi j provides the numeric value for
the time interval. If one of the axes is time and the matrix form
is used, then the treatment of the PCi ja (or CDi ja) matrices in-
volves at least a Minkowsky metric and Lorentz transformations
(as contrasted with Euclidean and Galilean).

10. Representations of compressed data

Minimizing data volume is important in many contexts, partic-
ularly for publishers of large astronomical data collections. The
following sections describe compressed representations of data
in FITS images and BINTABLES FITS images and BINTABLE
extensions that preserve metadata and allow for full or partial
extraction of the original data as necessary. The resulting FITS
FITS file structure is independent of the specific data compres-
sion data-compression algorithm employed. The implementa-
tion details for some compression algorithms that are widely
used in astronomy are defined in Sect. ??, but other compres-
sion techniques could also be supported. See the FITS FITS
convention by ? for details of the compression techniques, but
beware that the specifications in this Standard shall supersede
those in the registered convention.

Compression of FITS Compression of FITS files can be ben-
eficial for sites that store or distribute large quantities of data;
the present section provides a standard framework that addresses
such needs. As implementation of compression/decompression
codes can be quite complex, not all FITS software for reading
and writing software FITS is necessarily expected to support
these capabilities. External utilities are available to compress and
uncompress FITS decompress FITS files15.

10.1. Tiled Image Compressionimage compression

The following describes the process for compressing
n−dimensional FITS FITS images and storing the result-
ing byte stream in a variable-length column in a FITS FITS
binary table, and for preserving the image header keywords
in the table header. The general principle is to first divide the
n−dimensional image into a rectangular grid of subimages or
“tiles.” Each tile is then compressed as a block of data, and
the resulting compressed byte stream is stored in a row of a
variable length variable-length column in a FITS FITS binary
table (see SectionSect. ??). By dividing the image into tiles it
is possible to extract and uncompress decompress subsections
of the image without having to uncompress decompress the
whole image. The default tiling pattern treats each row of a
2-dimensional two-dimensional image (or higher dimensional
higher-dimensional cube) as a tile, such that each tile contains

15 e.g. fpack/funpack, see https://heasarc.gsfc.nasa.gov/
fitsio/fpack/

NAXIS1 pixels. This default may not be optimal for some ap-
plications or compression algorithms, so any other rectangular
tiling pattern may may be defined using keywords that are
defined below. In the case of relatively small images it may
suffice to compress the entire image as a single tile, resulting
in an output binary table with containing a single row. In the
case of 3-dimensional three-dimensional data cubes, it may be
advantageous to treat each plane of the cube as a separate tile
if application software typically needs to access the cube on a
plane-by-plane basis.

10.1.1. Required Keywordskeywords

In addition to the mandatory keywords for BINTABLE
BINTABLE extensions (see Sect. ??) the following keywords are
reserved for use in the header of a FITS binary table FITS binary-
table extension to describe the structure of a valid compressed
FITS FITS image. All are mandatory.

ZIMAGE – [logical; value ’T’T] The value field of this key-
word shall contain the logical value ’T’ T to indicate that
the FITS binary table FITS binary-table extension contains a
compressed image, and that logically this extension should
be interpreted as an image rather than a table.

ZCMPTYPE – [string; default: none] The value field of this key-
word shall contain a character string giving the name of the
algorithm that was used to compress the image. Only the val-
ues given in Table ?? are permitted; the corresponding algo-
rithms are described in Sect. ??. Other algorithms may be
added in the future.

ZBITPIX – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
BITPIX keyword in the uncompressed FITS FITS image.

ZNAXIS – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
NAXIS keyword (i.e., the number of axes) in the uncom-
pressed FITS FITS image.

ZNAXISn – [integer; indexed; default: none) The value field of
these keywords shall contain a positive integer that gives the
value of the corresponding NAXISn keywords (i.e., the size
of axis nAxis n) in the uncompressed FITS FITS image.

The comment fields for the BITPIX, NAXIS, and NAXISn
keywords in the uncompressed image should be copied to the
corresponding fields in the ZBITPIX, ZNAXIS, and ZNAXISn
keywords.

10.1.2. Other Reserved Keywordsreserved keywords

The compressed image tiles mustmust be stored in the binary ta-
ble in the same order that the first pixel in each tile appears in the
FITS FITS image; the tile containing the first pixel in the image
mustmust appear in the first row of the table, and the tile contain-
ing the last pixel in the image mustmust appear in the last row of
the binary table. The following keywords are reserved for use in
describing compressed images stored in BINTABLE BINTABLE
extensions; they may be present in the header, and their values
depend upon the type of image compression employed.

ZTILEn – [integer; indexed; default: 1 1 for n > 1] The value
field of these keywords (where n is a positive integer index

47

https://heasarc.gsfc.nasa.gov/fitsio/fpack/
https://heasarc.gsfc.nasa.gov/fitsio/fpack/

D
R

AF
T

48

that ranges from 1 to ZNAXIS) shall contain a positive inte-
ger representing the number of pixels along axis nAxis n of
the compressed tiles. Each tile of pixels mustmust be com-
pressed separately and stored in a row of a variable-length
vector column in the binary table. The size of each image di-
mension (given by ZNAXISn) need not be an integer multiple
of ZTILEn, and if it is not, then the last tile along that dimen-
sion of the image will contain fewer image pixels than the
other tiles. If the ZTILEn keywords are not present then the
default “row-by-row” tiling will be assumed, i.e., ZTILE1
ZTILE1 =ZNAXIS1 ZNAXIS1, and the value of all the other
ZTILEn keywords mustequal 1. must equal 1.

ZNAMEi – [string; indexed; default: none] The value field
of these keywords (where i is a positive integer index
starting with 1) shall supply the names of up to 999
algorithm-specific parameters that are needed to compress
or uncompress decompress the image. The order of the com-
pression parameters may be significant, and may be defined
as part of the description of the specific decompression algo-
rithm.

ZVALi – [string; indexed; default: none] The value field of these
keywords (where i is a positive integer index starting with
1) shall contain the values of up to 999 algorithm-specific
parameters with the same index i. The value of ZVALi may
may have any valid FITS FITS data type.

ZMASKCMP – [string; default: none] The value field of this key-
word shall contain the name of the image compression algo-
rithm that was used to compress the optional null-pixel data
mask. This keyword may may be omitted if no null-pixel data
masks appear in the table. See Sect. ?? for details.

ZQUANTIZ – [string; default: ’NO DITHER’] The value field of
this keyword shall contain the name of the algorithm that was
used to quantize floating-point image pixels into integer val-
ues, which were then passed to the compression algorithm as
discussed further in Sect. ??. If this keyword is not present,
the default is to assume that no dithering was applied during
quantization.

ZDITHER0 – [integer; default: none] The value field of this key-
word shall contain a positive integer (that may range from 1
to 10000 inclusive) that gives the seed value for the random
dithering pattern that was used when quantizing the floating-
point pixel values. This keyword may be absent if no dither-
ing was applied. See Sect. ?? for further discussion.

The following keywords are reserved to preserve a verbatim
copy of the value and comment fields for keywords in the orig-
inal uncompressed FITS FITS image that were used to describe
its strructurestructure. These optional keywords, when present,
shallshall be used when reconstructing an identical copy of the
original FITS FITS HDU of the uncompressed image. They
should notshould not appear in the compressed image header
unless the corresponding keywords were present in the uncom-
pressed image.

ZSIMPLE – [logical; value ’T’T] The value field of this key-
word mustmust contain the value of the original SIMPLE key-
word in the uncompressed image.

ZEXTEND – [string] The value field of this keyword mustmust
contain the value of the original EXTEND keyword in the un-
compressed image.

ZBLOCKED – [logical] The value field of this keyword mustmust
contain the value of the original BLOCKED keyword in the
uncompressed image.

ZTENSION – [string] The value field of this keyword mustmust
contain the original XTENSION keyword in the uncompressed
image.

ZPCOUNT – [integer] The value field of this keyword mustmust
contain the original PCOUNT keyword in the uncompressed
image.

ZGCOUNT – [integer] The value field of this keyword mustmust
contain the original GCOUNT keyword in the uncompressed
image.

ZHECKSUM – [string] The value field of this keyword mustmust
contain the original CHECKSUM keyword (see Sect. ??.7) in
the uncompressed image.

ZDATASUM – [string] The value field of this keyword mustmust
contain the original DATASUM keyword (see Sect. ??.7) in the
uncompressed image.

The ZSIMPLE, ZEXTEND, and ZBLOCKED keywords must
notmust not be used unless the original uncompressed image
was contained in the primary array of a FITS FITS file. The
ZTENSION, ZPCOUNT, and ZGCOUNT keywords must notmust not
be used unless the original uncompressed image was contained
in an IMAGE IMAGE extension.

The FITS FITS header of the compressed image may contain
other keywords. If a FITS FITS primary array or IMAGE IMAGE
extension is compressed using the procedure described here, it
is strongly recommended that all the keywords (including com-
ment fields) in the header of the original image, except for the
mandatory keywords mentioned above, be copied verbatim and
in the same order into the header of the binary table binary-table
extension that contains the compressed image. All these key-
words will have the same meaning and interpretation as they did
in the original image, even in cases where the keyword is not nor-
mally expected to occur in the header of a binary table binary-
table extension (e.g., the BSCALE and BZERO keywords, or the
World Coordinate System world-coordinate-system keywords
such as CTYPEn, CRPIXn, and CRVALn).

10.1.3. Table Columnscolumns

Two columns in the FITS FITS binary table are defined below to
contain the compressed image tiles; the order of the columns in
the table is not significant. One of the table columns describes
optional content; but when this column appears it mustmust be
used as defined in this section. The column names (given by the
TTYPEn keyword) are reserved; they are shown here in upper
case upper-case letters, but case is not significant.

COMPRESSED DATACOMPRESSED DATA – [required;
variable-length; required] Each row of this column
mustmust contain the byte stream that is generated as a
result of compressing the corresponding image tile. The
data type of the column (as given by the TFORMn keyword)
mustmust be one of ’1PB’, ’1PI’, or ’1PJ’’1PB’, ’1PI’,
or ’1PJ’ (or the equivalent ’1QB’, ’1QI’, or ’1QJ’’1QB’,
’1QI’, or ’1QJ’), depending on whether the compression
algorithm generates an output stream of 8-bit bytes, or
integers of 16-, or 32-bits16, or 32 bits respectively.

48

D
R

AF
T

49

When using the quantization method to compress floating-
point images that is described in Sect. ??, it sometimes may not
be possible to quantize some of the tiles (e.g., if the range of pix-
els values is too large or if most of the pixels have the same value
and hence the calculated RMS noise level in the tile is close
to zero). There also may be other rare cases where the nominal
compression algorithm cannot be applied to certain tiles. In these
cases, an alternate technique may be used in which the raw pixel
values are losslessly compressed with the GZIP Gzip algorithm.

GZIP COMPRESSED DATAGZIP COMPRESSED DATA
[optional; variable-length; optional] If the raw pixel values
in an image tile are losslessly compressed with the GZIP
Gzip algorithm, the resulting byte stream mustmust be
stored in this column (with a ’1PB’or ’1QB’’1PB’ or ’1QB’
variable-length array column array-column format). The
corresponding COMPRESSED DATACOMPRESSED DATA
column for these tiles mustmust contain a null pointer (i.e.,
the pair of integers that constitute the descriptor for the
column must both have the value zero: see Sect. ??).

The compressed data columns described above may use ei-
ther the ’1P’ or ’1Q’ variable-length array FITS FITS column
format if the size of the heap in the compressed FITS FITS file
is < 2.1 GB. If the the heap is larger than 2.1 GB, then the ’1Q’
format (which uses 64-bit pointers) mustmust be used.

When using the optional optional quantization method de-
scribed in Sect. ?? to compress floating-point images, the fol-
lowing columns are requiredrequired.

ZSCALE – [floating-point; optionaloptional] This column shall
be used to contain linear scale factors that, along with ZZERO,
transform the floating-point pixel values in each tile to inte-
gers via,

Formula − ok − gives − latexdi f f − errors (12)

where Ii and Fi are the integer and (original) floating-point
values of the image pixels, respectivelyand the round, and
the round function rounds the result to the nearest integer
value.

ZZERO – [floating-point; optional] This column shall be used to
contain zero point zero-point offsets that are used to scale the
floating-point pixel values in each tile to integers via Eq. ??.

Do not confuse the ZSCALE and ZZEROZSCALE and ZZERO
columns with the BSCALE and BZERO keywords (defined in
Sect. ??) which that may be present in integer FITS FITS
images. Any such integer images should should normally be
compressed without any further scaling, and the BSCALEand
BZEROBSCALE and BZERO keywords should be copied verba-
tim into the header of the binary table containing the compressed
image.

Some images contain undefined pixel values; in uncom-
pressed floating-point images these pixels have an IEEE NaN
value. However, these pixel values will be altered when using the
quantization method described in Sect. ?? to compress floating-
point images. The value of the undefined pixels may be pre-
served in the following way.

ZBLANKZBLANK – [integer; optionaloptional] When
present, this column shall be used to store the inte-
ger value that represents undefined pixels in the scaled
integer array. The recommendedvalue for ZBLANKis
−2147483648recommended value for ZBLANK is
−2147483648, the largest negative 32-bit integer. If
the same null value is used in every tile of the image, then
ZBLANKZBLANK may be given in a header keyword instead
of a table column; if both a keyword and a table column
named ZBLANKZBLANK are present, the values in the table
column mustmust be used. If there are no undefined pixels
in the image then is not requiredZBLANK is not required to
be present either as a table column or a keyword.

If the uncompressed image has an integer data type
(ZBITPIX > 0) then the value of undefined pixels is given by
the BLANK keyword (see Sect. ??), which should be used instead
of ZBLANK. ZBLANK.

When using some compression techniques that do not ex-
actly preserve integer pixel values, it may be necessary to store
the location of the undefined pixels prior to compressing the im-
age. The locations may be stored in an image mask, which must
itself be compressed and stored in a table column with the fol-
lowing definition. See Sect. ?? for more details.

NULL PIXEL MASKNULL PIXEL MASK – [integer array;
optionaloptional] When present, this column shall be used
to store, in compressed form, an image mask with the same
original dimensions as the uncompressed image, that records
the location of the undefined pixels. The process defined
in Sect. ?? shall be used to construct the compressed pixel
mask.

Additional columns may be present in the table to supply
other parameters that relate to each image tile. However, these
parameters should notshould not be recorded in the image HDU
when the uncompressed image is restored.

10.2. Quantization of Floating-Point Datafloating-point data

While floating-point format images may be losslessly com-
pressed, noisy images often do not compress very well. Higher
compression can only be achieved by removing some of this
noise without losing the useful information content. One com-
monly used technique for reducing the noise is to scale the
floating-point values into quantized integers using Eq. ??, and
using the ZSCALEand ZZEROZSCALE and ZZERO columns to
record the two scaling coefficients that are used for each tile.
Note that the absence of these two columns in a tile-compressed
floating-point image is an indication that the image was not
scaled, and was instead losslessly compressed.

An effective scaling algorithm for preserving a specified
amount of noise in each pixel value is described by ? and by ?.
With this method, the ZSCALE ZSCALE value (which is numer-
ically equal to the spacing between adjacent quantization levels)
is calculated to be some fraction, QQ, of the RMS noise as mea-
sured in background regions of the image. ? shows that the num-
ber of binary bits of noise that are preserved in each pixel value
is given by log2(Q) + 1.792. Q results directly related to The Q
value directly affects the compressed file size: decreasing Q Q
by a factor of 2 two will decrease the file size by about 1 bit /one

49

D
R

AF
T

50

bit per pixel. In order to achieve the greatest amount of compres-
sion, one should use the smallest value of Q Q that still preserves
the required amount of photometric and astrometric precision in
the image. Image quality will remain comparable regardless of
the noise level.

A potential problem when applying this scaling method to
astronomical images, in particular, is that it can lead to a system-
atic bias in the measured intensities in faint parts of the image:
. As the image is quantized more coarsely, the measured inten-
sity of the background regions of the sky will tend to be biased
towards the nearest quantize level. One very effective technique
for minimizing this potential bias is to dither the quantized pixel
values by introducing random noise during the quantization pro-
cess. So instead of simply scaling every pixel value in the same
way using Eq. ??, the quantized levels are randomized by using
this slightly modified equation:

Formula − ok − gives − latexdi f f − errors (13)

where Ri is a random number between 0.0 and 1.0, and 0.5 is
subtracted so that the mean quantity equals 0. Then restoring the
floating-point value, the same Ri is used with the inverse for-
mula:

Fi = ((Ii − Ri + 0.5) ∗ ZSCALEZSCALE) + ZZEROZZERO. (14)

This “subtractive dithering” technique has the effect of dithering
the zero-point zero point of the quantization grid on a pixel by
pixel pixel-by-pixel basis without adding any actual noise to the
image. The net effect of this is that the mean (and median) pixel
value in faint regions of the image more closely approximate the
value in the original unquantized image than if all the pixels are
scaled without dithering.

The key requirement when using this subtractive dithering
subtractive-dithering technique is that the exact same random
number random-number sequence must must be used when
quantizing the pixel values to integers, and when restoring them
to floating point floating-point values. While most computer lan-
guages supply a function for generating random numbers, these
functions are not guaranteed to generate the same sequence of
numbers every time. An algorithm for generating a repeatable
sequence of pseudo random pseudo-random numbers is given
in Appendix ??; this algorithm must be used when applying a
subtractive dither.

10.2.1. Dithering Algorithmsalgorithms

The ZQUANTIZ keyword, if present, mustmust have one of the
following values to indicate the type of quantization, if any, that
was applied to the floating-point image for compression: .

NO DITHER’NO DITHER’ – No dithering was performed; the
floating-point pixels were simply quantized using Eq. ??.
This option shall be assumed if the ZQUANTIZ keyword is
not present in the header of the compressed floating-point
image.

SUBTRACTIVE DITHER 1’SUBTRACTIVE DITHER 1’ –
The basic subtractive dithering was performed, the algo-
rithm for which is described below. Note that an image
quantized using this technique can still be unquantized using
the simple linear scaling function given by Eq. ??, at the

cost of introducing slightly more noise in the image than if
the full subtractive dithering subtractive-dithering algorithm
were applied.

SUBTRACTIVE DITHER 2’SUBTRACTIVE DITHER 2’
– This dithering algorithm is identical to that for
’SUBTRACTIVE DITHER 1’, except that any pixels in
the floating-point image that are exactly equal to 0.0 are
represented by the reserved value −2147483647 in the
quantized integer array. When the image is subsequently
uncompressed decompressed and unscaled, these pixels
must be must be restored to their original value of 0.0. This
dithering option is useful if the zero-valued pixels have
special significance to the data analysis software, so that the
value of these pixels must notmust not be dithered.

The process for generating a subtractive dither for a floating-
point image is the following: .

1. Generate a sequence of 10000 single-precision floating-point
random numbers, RN, with a value between 0.0 and 1.0.
Since it could be computationally expensive to generate a
unique random number for every pixel of large images, sim-
ply cycle through this look-up table of random numbers.

2. Choose an integer in the range 1 to 10000 to serve as an
initial seed value for creating a unique sequence of random
numbers from the array that was calculated in the previous
step. The purpose of this is to reduce the chances of apply-
ing the same dithering pattern to two images that are sub-
sequently subtracted from each other (or co-added), because
the benefits of randomized dithering are lost if all the pixels
are dithered in phase with each other. The exact method for
computing this seed integer is not important as long as the
value is chosen more or less randomly.

3. Write the integer seed value that was selected in the previous
step as the value of the ZDITHER0ZDITHER0 keyword in the
header of the compressed image. This value is required to
recompute the same dithering pattern when uncompressing
decompressing the image.

4. Before quantizing each tile of the floating point floating-
point image, calculate an initial value for two offset parame-
ters, I0 and I1, with the following formulae:

I0 = modmod(N tiletile − 1 + ZDITHER0ZDITHER0, 10000)(15)
I1 = INT(RN(I0) ∗ 500.)(16)

where Ntile Ntile is the row number in the binary table
that is used to store the compressed bytes for that tile,
ZDITHER0ZDITHER0 is that value of that keyword, and
RN(I0) is the value of the Ith

0 Ith
0 random number in the se-

quence that was computed in the first step. Note that I0 has a
value in the range 0 to 9999 and I1 has a value in the range 0
to 499. This method for computing I0 and I1 was chosen so
that a different sequence of random numbers is used to com-
press successive tiles in the image, and so that the sequence
of I1 values has a length of order 100 million 100-million
elements before repeating.

5. Now quantize each floating-point pixel in the tile using
Eq. ?? and using random number RN(I1) for the first pixel.
Increment the value of I1 for each subsequent pixel in the
tile. If I1 reaches the upper limit of 500, then increment the
value of I0 and recompute I1 from Eq. ??. If I0 also reaches
the upper limit of 10000, then reset I0 to 0.

50

D
R

AF
T

51

If the floating-point pixel has an IEEE NaN value, then it is
not quantized or dithered but instead is set to the reserved
integer value specified by the ZBLANKZBLANK keyword.
For consistency, the value of I1 should should also be in-
cremented in this case even though it is not used.

6. Compress the array of quantized integers using the lossless
algorithm that is specified by the ZCMPTYPEZCMPTYPE
keyword (use RICE 1’RICE 1’ by default).

7. Write the compressed bytestream into the
COMPRESSED DATAbyte stream into the
COMPRESSED DATA column in the appropriate row of
the binary table corresponding to that tile.

8. Write the linear scaling and zero point zero-point values
that were used in Eq. ?? for that tile into the ZSCALEand
ZZEROZSCALE and ZZERO columns, respectively, in the
same row of the binary table.

9. Repeat Steps 4 through 8 for each tile of the image.

10.2.2. Preserving undefined pixels with lossy compression

The undefined pixels in integer images are flagged by a re-
served BLANK value and will be preserved if a lossless com-
pression algorithm is used. (ZBLANK is used for undefined pix-
els in floating-point images.) If the image is compressed with
a lossy algorithm, then some other technique must must be
used to identify the undefined pixels in the image. In this case
it is recommendedrecommended that the undefined pixels be
recorded with the following procedure: .

1. Create an integer data mask with the same dimensions as the
image tile.

2. For each undefined pixel in the image, set the corresponding
mask pixels to 1 and all the other pixels to 0.

3. Compress the mask array using a lossless algorithm such as
PLIO or GZIPGzip, and record the name of that algorithm
with the keyword ZMASKCMP.

4. Store the compressed byte stream in a variable-length array
column called ’NULL PIXEL MASK’ variable-length-array
column called NULL PIXEL MASK in the table row corre-
sponding to that image tile.

The data mask array pixels should have the shortest in-
teger data type that is supported by the compression algo-
rithm (i.e., usually 8-bit eight-bit bytes). When uncompressing
decompressing the image tile, the software mustmust check if
the corresponding compressed data mask exists with a length
greater than 0, and if so, uncompress decompress the mask and
set the corresponding undefined pixels in the image array to the
value given by the BLANK keyword.

10.3. Tiled Table Compressiontable compression

The following section describes the process for compressing the
content of BINTABLE BINTABLE columns. Some additional de-
tails of BINTABLE BINTABLE compression may be found in
?, but the specifications in this Standard shall supersede those
in the registered convention. The uncompressed table may may
be subdivided into tiles, each containing a subset of rows, then
each column of data within each tile is extracted, compressed,
and stored as a variable-length array of bytes in the output com-
pressed table. The header keywords from the uncompressed ta-
ble, with only a few limited exceptions, shall be copied verba-

tim to the header of the compressed table. The compressed ta-
ble must itself be a valid FITS FITS binary table (albeit one
where the contents cannot be interpreted without uncompressing
decompressing the contents) that contains the same number and
order of columns as in the uncompressed table, and that contains
one row for each tile of rows in the uncompressed table. Only
the compression algorithms specified in Sect. ?? are permitted.

10.3.1. Required Keywordskeywords

With only a few exceptions noted below, all the keywords and
corresponding comment fields from the uncompressed table
mustmust be copied verbatim, in order, into the header of the
compressed table. Note in particular that the values of the re-
served column descriptor keywords TTYPEn, TUNITn, TSCALn,
TZEROn, TNULLn, TDISPn, and TDIMn, as well as all the column-
specific WCS keywords defined in the FITS standard, mustFITS
Standard, must have the same values and data types in both the
original and in the compressed table, with the understanding that
these keywords apply to the uncompressed data values.

The only keywords that must notmust not be copied verba-
tim from the uncompressed table header to the compressed ta-
ble header are the mandatory NAXIS1, NAXIS2, PCOUNT, and
TFORMn keywords, and the optional CHECKSUM, DATASUM (see
Sect. ??.7), and THEAP keywords. These keywords must nec-
essarily describe the contents and structure of the compressed
table itself. The original values of these keywords in the uncom-
pressed table mustmust be stored in a new set of reserved key-
words in the compressed table header. Note that there is no need
to preserve a copy of the GCOUNT keyword because the value
is always equal to 1 for BINTABLES1 for BINTABLE exten-
sions. The complete set of keywords that have a reserved mean-
ing within a tile-compressed binary table are given below: .

ZTABLE – [logical; value: ’T’T] The value field of this key-
word shallbe ’T’ be T to indicate that the FITS bi-
nary table FITS binary-table extension contains a com-
pressed BINTABLEBINTABLE, and that logically this exten-
sion should be interpreted as a tile-compressed binary table.

ZNAXIS1 – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
NAXIS1 keyword in the original uncompressed FITS FITS
table header. This represents the width in bytes of each row
in the uncompressed table.

ZNAXIS2 – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
NAXIS2 keyword in the original uncompressed FITS FITS
table header. This represents the number of rows in the un-
compressed table.

ZPCOUNT – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
PCOUNT keyword in the original uncompressed FITS FITS
table header.

ZFORMn – [string; indexed; default: none] The value field of
these keywords shallcontain the character string contain the
character-string values of the corresponding TFORMn key-
words that defines the data type of column Column n in the
original uncompressed FITS FITS table.

ZCTYPn – [string; indexed; default: none] The value field of
these keywords shallcontain the character string contain the

51

D
R

AF
T

52

character-string value mnemonic name of the algorithm that
was used to compress column nColumn n of the table. The
only permitted values are given in Sect. ??, and the corre-
sponding algorithms are described in Sect. ??.

ZTILELEN – [integer; default: none] The value field of this key-
word shall contain an integer representing the number of
rows of data from the original binary table that are contained
in each tile of the compressed table. The number of rows in
the last tile may be less fewer than in the previous tiles. Note
that if the entire table is compressed as a single tile, then
the compressed table will only contains a single row, and the
ZTILELEN and ZNAXIS2 keywords will have the same value.

10.3.2. Procedure for Table Compressiontable compression

The procedure for compressing a FITS FITS binary table con-
sists of the following sequence of steps: .

1. Divide table into tiles (optional)
In order to limit the amount of data that must be managed at
one time, large FITS FITS tables may be divided into tiles,
each containing the same number of rows (except for the
last tile, which may contain fewer rows). Each tile of the
table is compressed in order, and each is stored in a single
row in the output compressed table. There is no fixed upper
limit on the allowed tile size, but for practical purposes it is
recommendedrecommended that it not exceed 100 MB.

2. Decompose each tile into the component columns

FITS FITS binary tables are physically stored in row-by-row
sequential order, such that the data values for the first row in
each column are followed by the values in the second row,
and so on (see Sect. ??). Because adjacent columns in binary
tables can contain very non-homogeneous types of data, it
can be challenging to efficiently compress the native stream
of bytes in the FITS FITS tables. For this reason, the table is
first decomposed into its component columns, and then each
column of data is compressed separately. This also allows
one to choose the most efficient most-efficient compression
algorithm for each column.

3. Compress each column of data
Each column of data must be compressed with one of the
lossless compression algorithms described in Sect. ??. If the
table is divided into tiles, then the same compression algo-
rithm must be applied to a given column in every tile. In
the case of variable-length array columns (where the data
are stored in the table heap: see Sect. ??), each individual
variable length vector mustvariable-length vector must be
compressed separately.

4. Store the compressed bytes
The compressed stream of bytes for each column mustmust
be written into the corresponding column in the output ta-
ble. The compressed table mustmust have exactly the same
number and order of columns as the input table, however,
the data type of the columns in the output table will
all have a variable-length byte data type, with TFORMn =
’1QB’TFORMn = ’1QB’. Each row in the compressed table
corresponds to a tile of rows in the uncompressed table.
In the case of variable-length array columns, the array of de-
scriptors that point to each compressed variable-length ar-
ray, as well as the array of descriptors from the input un-

compressed table, mustmust also be compressed and written
into the corresponding column in the compressed table. See
Sect. ?? for more details.

10.3.3. Compression Directive Keywordsdirective keywords

The following compression-directive keywords, if present in the
header of the table to be compressed, are reserved to provide
guidance to the compression software on how the table should be
compressed. The compression software should attempt to obey
these directives, but if that is not possible the software may may
disregard them and use an appropriate alternative. These key-
words are optional, but must must be used as specified below.

– FZTILELN – [integer] The value field of this keyword shall
contain an integer that specifies the requested number of ta-
ble rows in each tile which that are to be compressed as a
group.

– FZALGOR – [string] The value field of this keyword shall
contain a character string giving the mnemonic name of the
algorithm that is requested to be used by default to compress
every column in the table. The permitted values are given in
Sect. ??.

– FZALGn – [string; indexed] The value fields of these key-
words shall contain a character string giving the mnemonic
name of the algorithm that is requested to compress
column nColumn n of the table. The current allowed val-
ues are the same as for the FZALGORFZALGOR key-
word. The FZALGnFZALGn keyword takes precedence over
FZALGORFZALGOR in determining which algorithm to use
for a particular column if both keywords are present.

10.3.4. Other Reserved Keywordsreserved keywords

The following keywords are reserved to store a verbatim copy
of the value and comment fields for specific keywords in the
original uncompressed BINTABLEBINTABLE. These keywords,
if present, should be used to reconstruct an identical copy
of the uncompressed BINTABLE, and should notBINTABLE,
and should not appear in the compressed table header unless
the corresponding keywords were present in the uncompressed
BINTABLEBINTABLE.

ZTHEAP – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
THEAP keyword if present in the original uncompressed FITS
FITS table header.

ZHECKSUM – [string; default: none] The value field of this key-
word shall contain a character string that gives the value of
the CHECKSUM keyword (see Sect. ??.7) in the original un-
compressed FITS FITS HDU.

ZDATASUM – [string; default: none] The value field of this key-
word shall contain a character string that gives the value of
the DATASUM keyword (see Sect. ??.7) in the original uncom-
pressed FITS FITS HDU.

10.3.5. Supported Compression Algorithms compression
algorithms for Tablestables

The permitted algorithms for compressing BINTABLE columns
are , , and (plus BINTABLE columns are ’RICE 1’, ’GZIP 1’,

52

D
R

AF
T

53

and ’GZIP 2’ (plus ’NOCOMPRESS’), which are lossless and are
described in Sect. ??. Lossy compression could be allowed in
the future once a process is defined to preserve the details of the
compression.

10.3.6. Compressing Variable-Length Array
Columnsvariable-length array columns

Compression of BINTABLE BINTABLE tiles that contain
variable-length array (VLA) columns requires special consider-
ation because the array values in these columns are not stored
directly in the table, but are instead stored in a data heap,
which follows the main table (see Sect. ??). The VLA col-
umn in the original, uncompressed table only contains de-
scriptors, which are composed of comprise two integers that
give the size and location of the arrays in the heap. When
uncompressingdecompressing, these descriptor values will be
needed to write the uncompressed decompressed VLAs back
into the same location in the heap as in the original uncom-
pressed table. Thus, the following process must be followed, in
order, when compressing a VLA column within a tile: . Refer to
? for additional details.

1. For each VLA in the column:

– Read read the array from the input table, and compress
it using the algorithm specified by ZCTYP for this VLA
column. ;

– Write the resulting bytestream write the resulting byte
stream to the heap of the compressed table. ; and

– Store store (or append) the descriptors to the compressed
bytestream byte stream (which must be 64-bit Q-type) in
a temporary array.

2. Append the VLA descriptors from the uncompressed table
(which may be either Q-type or P-type) to the temporary ar-
ray of VLA descriptors for the compressed table.

3. Compress the combined array of descriptors using
’GZIP 1’, and write that byte stream into the corre-
sponding VLA column in the output table, so that the
compressed array is appended to the heap.

When uncompressing decompressing a VLA column, two
stages of uncompression decompression must be performed in
order: .

1. Uncompress Decompress the combined array of descriptors
using the Gzip algorithm.

2. For each descriptor to a compressed array:

– Read read the compressed VLA from the compressed
tableand uncompress , and decompress it using the al-
gorithm specified by ZCTYP for this VLA column. ; and

– Write write it to the correct location in the uncompressed
decompressed table.

Table 36: Valid mnemonic values for the ZCMPTYPE and ZCTYPn
keywords

Value Sect. Compression Type
’RICE 1’ ?? Rice algorithm for integer data
’GZIP 1’ ?? Combination of the LZ77 algorithm

and Huffman coding, used in Gnu
GZIP GNU Gzip

’GZIP 2’ ?? Like ’GZIP 1’, but with reshuffled
pixel byte values

’PLIO 1’ ?? IRAF PLIO algorithm for integer data
’HCOMPRESS 1’ ?? H-compress algorithm for 2-D two-

dimensional images
’NOCOMPRESS’ The HDU remains uncompressed

10.4. Compression Algorithmsalgorithms

The name of the permitted algorithms for compressing FITS
FITS HDUs, as recorded in the ZCMPTYPE keyword, are listed
in Table ??; if other types are later supported, they mustmust
be registered with the IAUFWG to reserve the keyword val-
ues. Keywords for the parameters of supported compression al-
gorithms have also been reserved, and are described with each
algorithm in the subsections below. If alternative compression
algorithms require keywords beyond those defined below, they
mustmust also be registered with the IAUFWG to reserve the
associated keyword names.

10.4.1. Rice compression

When ZCMPTYPE = ’RICE 1’ ZCMPTYPE = ’RICE 1’, the Rice
algorithm (?) shall be used for data (de)compression. When se-
lected, the keywords in Table ?? should also appear in the header
with one of the values indicated. If these keywords are absent,
then their default values mustmust be used. The Rice algorithm
is lossless, but can only be applied to integer-valued arrays. It
offers a significant performance advantage over the other com-
pression techniques (see ?).

Table 37: Keyword parameters for Rice compression

Values
Keyword Permitted Default Meaning
ZNAME1 ’BLOCKSIZE’ − Size of block in pixels
ZVAL1 16, 32 16, 32 32 32 No. of pixels in a block
ZNAME2 ’BYTEPIX’ − Size of pixel value in bytes
ZVAL2 1, 2, 4, 8 1, 2, 4, 8 4 4 No. 8-bit of eight-bit bytes per

original pixel value

10.4.2. GZIP Gzip compression

When ZCMPTYPE = ’GZIP 1’ the gzip ZCMPTYPE = ’GZIP 1’,
the Gzip algorithm shall be used for data (de)compression.
There are no algorithm parameters, so the keywords ZNAMEn and
ZVALn should notshould not appear in the header. The gzip Gzip
algorithm is used in the free GNU software compression util-
ity of the same name. It was created by J.-L. Gailly and M.
Adler, based on the DEFLATE algorithm (?), which is a com-
bination of LZ77 (?) and Huffman coding. The unix gzipUnix
gzip program accepts an integer parameter that provides a trade
between optimization for speed (1) and compression ratio (9),
which does not affect the format of the resultant data stream.

53

D
R

AF
T

54

The selection of this parameter is an implementation detail that
is not covered by this Standard.

When ZCMPTYPE = ’GZIP 2’ ZCMPTYPE = ’GZIP 2’, the
gzip2 algorithm shall be used for data (de)compression. The
gzip2 algorithm is a variation on ’GZIP 1’. There are no al-
gorithm parameters, so the keywords ZNAMEn and ZVALn should
notshould not appear in the header. In this case the bytes in the
array of data values are shuffled so that they are arranged in order
of decreasing significance before being compressed. For exam-
ple, a 5-element five-element contiguous array of 2-byte two-
byte (16-bit) integer values, with an original big-endian byte or-
der of:

A1A2B1B2C1C2D1D2E1E2

will have the following byte order after shuffling:

A1B1C1D1E1A2B2C2D2E2,

where A1, B1,C1,D1, and E1 are the most significant most-
significant bytes from each of the integer values. Byte shuf-
fling shallonly only be performed for integer or floating-
point numeric data types; logical, bit, and character types must
notmust not be shuffled.

10.4.3. IRAF/PLIO compression

When ZCMPTYPE = ’PLIO 1’ ZCMPTYPE = ’PLIO 1’. the
IRAF PLIO algorithm shall be used for data (de)compression.
There are no algorithm parameters, so the keywords ZNAMEn and
ZVALn should notshould not appear in the header. The PLIO al-
gorithm was developed to store integer-valued image masks in a
compressed form. The compression algorithm used is based on
run-length encoding, with the ability to dynamically follow level
changes in the image, in principle allowing a 16-bit encoding to
be used regardless of the image depth. However, this algorithm
has only been implemented in a way that supports image depths
of no more than 12 bits; therefore ’PLIO 1’’PLIO 1’ mustonly
only be used for integer image types with values between 0 and
224.

The compressed line lists are stored as variable length
variable-length arrays of type short integer (16 bits per list el-
ement), regardless of the mask depth. A line list consists of a
series of simple instructions, which are executed in sequence to
reconstruct a line of the mask. Each 16 bit 16-bit instruction con-
sists of the sign bit (not used), a three bit three-bit opcode, and
twelve bits of data, i.e. : as depicted below.

+--+--------+-------------------+
|16|15 13|12 1|
+--+--------+-------------------+
| | opcode | data |
+--+----------------------------+

The significance of the data depends upon the instruction. In
order to reconstruct a mask line, the application executing these
instructions is required required to keep track of two values, the
current high value and the current position in the output line. The
detailed operation of each instruction is given in Table ??.

The high value mustmust be set to 1 at the beginning of a line,
hence the IH,DH and IS,DS ’IH,DH’ and ’IS,DS’ instructions
are not normally needed for Boolean masks.

Table 38: PLIO Instructions

Instr. Opcode Meaning
’ZN’ ’00’ Zero the next N N output pixels.
’HN’ ’04’ Set the next N N output pixels to the current

high value.
’PN’ ’05’ Zero the next N-1 N − 1 output pixels, and

set pixel N Pixel N to the current high value.
’SH’ ’05’ Set the high value (absolute rather than in-

cremental), taking the high 15 bits from the
next word in the instruction stream, and the
low 12 bits from the current data value.

’IH,DH’ ’02,03’ Increment (IH’IH’) or decrement
(DH’DH’) the current high value by
the data value. The current position is not
affected.

’IS,DS’ ’06,07’ Increment (IS’IS’) or decrement (DS’DS’)
the current high value by the data value, and
step, i.e., output one high value.

10.4.4. H-Compress algorithm

When ZCMPTYPE = ’HCOMPRESS 1’
ZCMPTYPE = ’HCOMPRESS 1’, the H-compress algorithm
shall be used for data (de)compression. The algorithm was
described by ?, and can be applied only to images with two
dimensions. Briefly, the compression method is to apply, in
order:

1. a wavelet transform called the H-transform (a Haar trans-
form generalized to two dimensions), followed by

2. a quantization that discards noise in the image while retain-
ing the signal on all scales, followed by and finally

3. a quadtree coding of the quantized coefficients.

The H-transform is a two-dimensional generalization of the
Haar transform. The H-transform is calculated for an image of
size 2N × 2N as follows: .

1. Divide the image up into blocks of 2× 2 pixels. Call the four
pixel values in a block a00, a10, a01, and a11.

2. For each block compute four coefficients:
h0 = (a11 + a10 + a01 + a00)/(SCALE ∗ σ)
hx = (a11 + a10 − a01 − a00)/(SCALE ∗ σ)
hy = (a11 − a10 + a01 − a00)/(SCALE ∗ σ)
hc = (a11 − a10 − a01 + a00)/(SCALE ∗ σ)
where SCALE is an algorithm parameter defined below, and
σ characterizes the RMS noise in the uncompressed image.

3. Construct a 2N−1 × 2N−1 image from the h0 values for each
2×2 block. Divide that image up into 2×2 blocks and repeat
the above calculation. Repeat this process N times, reducing
the image in size by a factor of 2 two at each step, until only
one h0 value remains.

This calculation can be easily inverted to recover the original im-
age from its transform. The transform is exactly reversible using
integer arithmetic. Consequently, the program can be used for
either lossy or lossless compression, with no special approach
needed for the lossless case.

Noise in the original image is still present in the H-transform,
however. To compress noisy images, each coefficient can be di-
vided by SCALE ∗ σ, where SCALE ∼ 1 is chosen according to

54

D
R

AF
T

55

how much loss is acceptable. This reduces the noise in the trans-
form to 0.5/SCALE, so that large portions of the transform are
zero (or nearly zero) and the transform is highly compressible.

There is one user-defined parameter associated with the H-
Compress algorithm: a scale factor to the RMS noise in the
image that determines the amount of compression that can be
achieved. It is not necessary to know what scale factor was used
when compressing the image in order to uncompress decompress
it, but it is still useful to record it. The keywords in Table ??
should be recorded in the header for this purpose.

Table 39: Keyword parameters for H-compression

Values
Keyword Permitted Default Meaning
ZNAME1 ’SCALE’ − ’-’ Scale factor
ZVAL1 0.0 0.0 or larger 0.0 0.0 Scaling of the RMS noise; 0.0

yields lossless compression

Scale Factor – The floating-point scale parameter (whose value
is stored in Keyword ZVAL1) determines the amount of com-
pression; higher values result in higher compression, but
with greater loss of information. SCALE =0.0 0.0 is a special
case that yields lossless compression, i.e. the decompressed
image has exactly the same pixel values as the original im-
age. SCALE > 0.0 leads to lossy compression, where SCALE
determines how much of the noise is discarded.

55

D
R

AF
T

56

Appendix A: Syntax of keyword records

This Appendix appendix is not part of the FITSstandard FITS
Standard but is included for convenient reference.

:= means ‘is defined to be’
X | Y means one of X or Y X or Y

(no ordering relation is implied)
[X] means that X X is optional
X... means X X is repeated one or more times
‘B’ means the ASCII character B
‘A’–‘Z’ means one of the ASCII characters A

through Z in the ASCII collating
sequence, as shown in Appendix ??

\0xnn means the ASCII character associated
with the hexadecimal code nn

{...} expresses a constraint or a comment
(it immediately follows the syntax rule)

The following statements define the formal syntax used
in FITSFITS free-format keyword records, as well as for
long-string keywords spanning more than one keyword record).

FITS keyword :=
single record keyword |
long string keyword

single record keyword :=
FITS keyword record

FITS keyword record :=
FITS commentary keyword record |
FITS value keyword record

FITS commentary keyword record :=
COMMENT keyword [ascii text char...] |
HISTORY keyword [ascii text char...] |
BLANKFIELD keyword [ascii text char...] |
keyword field anychar but equal

[ascii text char...] |
keyword field ‘=’ anychar but space

[ascii text char...]
{Constraint: The total number of characters in a
FITS commentary keyword record mustmust be exactly
equal to 80.}

FITS value keyword record :=
keyword field value indicator [space...] [value]

[space...] [comment]
{Constraint: The total number of characters in a
FITS value keyword record mustmust be exactly equal to
80.}
{Comment: If the value field is not present, the value of the
FITSFITS keyword is not defined.}

long string keyword :=
initial kwd record [continuation kwd record...]
last continuation record

{Comment: the value of a long string keyword is recon-
structed by concatenating the partial string values of the
initial kwd record and of any continuation kwd records in
the order they occur, and the character string value of the

last continuation record.}

initial kwd record :=
keyword field value indicator [space...]
[partial string value] [space...] [comment]

{Constraint: The total number of characters in an ini-
tial kwd record must be exactly equal to 80.}

continuation kwd record :=
CONTINUE keyword [space...]
[partial string value] [space...] [comment]

{Constraint: The total number of characters in a continua-
tion kwd record must be exactly equal to 80.}

last continuation record :=
CONTINUE keyword [space...]
[character string value] [space...] [comment]

{Constraint: The total number of characters in a
last continuation record must be exactly equal to 80.}

keyword field :=
[keyword char...] [space...]

{Constraint: The total number of characters in the keyword field
mustmust be exactly equal to 8.}

keyword char :=
‘A’–‘Z’ | ‘0’–‘9’ | ‘ ’ | ‘-’

COMMENT keyword :=
‘C’ ‘O’ ‘M’ ‘M’ ‘E’ ‘N’ ‘T’ space

HISTORY keyword :=
‘H’ ‘I’ ‘S’ ‘T’ ‘O’ ‘R’ ‘Y’ space

BLANKFIELD keyword :=
space space space space space space space space

CONTINUE keyword :=
‘C’ ‘O’ ‘N’ ‘T’ ‘I’ ‘N’ ‘U’ ‘E’

value indicator :=
‘=’ space

space :=
‘ ’

comment :=
‘/’ [ascii text char...]

ascii text char :=
space–‘˜’

anychar but equal :=
space–‘<’ | ‘>’–‘˜’

anychar but space :=
‘!’–‘˜’

value :=
character string value | logical value |
integer value | floating value |

56

D
R

AF
T

57

complex integer value | complex floating value

character string value :=
begin quote [string text char...] end quote

{Constraint: The begin quote and end quote are not part of
the character string character-string value but only serve as
delimiters. Leading spaces are significant; trailing spaces are
not.}

partial string value :=
begin quote [string text char...] ampersand end quote

{Constraint: The begin quote, end quote, and ampersand are not
part of the character-string value but only serve respectively as
delimiters or continuation indicator. }

begin quote :=
quote

end quote :=
quote

{Constraint: The ending quote must notmust not be immediately
followed by a second quote.}

quote :=
\0x27

ampersand :=
‘&’

string text char :=
ascii text char

{Constraint: A string text char is identical to an ascii text char
except for the quote char; a quote char is represented by two
successive quote chars.}

logical value :=
‘T’ | ‘F’

integer value :=
[sign] digit [digit...]

{Comment: Such an integer value is interpreted as a signed
decimal number. It maymay contain leading zeros.}

sign :=
‘-’ | ‘+’

digit :=
‘0’–‘9’

floating value :=
decimal number [exponent]

decimal number :=
[sign] [integer part] [‘.’ [fraction part]]

{Constraint: At least one of the integer part and fraction part
mustmust be present.}

integer part :=
digit | [digit...]

fraction part :=
digit | [digit...]

exponent :=
exponent letter [sign] digit [digit...]

exponent letter :=
‘E’ | ‘D’

complex integer value :=
‘(’ [space...] real integer part [space...] ‘,’ [space...]
imaginary integer part [space...] ‘)’

real integer part :=
integer value

imaginary integer part :=
integer value

complex floating value :=
‘(’ [space...] real floating part [space...] ‘,’ [space...]
imaginary floating part [space...] ‘)’

real floating part :=
floating value

imaginary floating part :=
floating value

Appendix B: Suggested time scale time-scale
specification

The content of this Appendix appendix has been superseded by
SectionSect. ?? of the formal Standard, which derives from ?.

57

D
R

AF
T

58

Appendix C: Summary of keywords

This Appendix appendix is not part of the FITSstandardFITS Standard, but is included for convenient reference.
All of the mandatory and reserved keywords that are defined in the standardStandard, except for the reserved WCS keywords

that are discussed separately in Sect. ??, are listed in Tables ??, ??, and ??. An alphabetized alphabetical list of these keywords and
their definitions is available online: http://heasarc.gsfc.nasa.gov/docs/fcg/standard_dict.html.

Table C.1:

Mandatory FITSFITS keywords for the structures described in this document.
Primary Conforming Image ASCII-table Binary-table Compressed Compressed Random-groups

HDU extension extension extension extension images6 tables6 records
SIMPLE SIMPLE XTENSIONXTENSION XTENSIONXTENSION1 XTENSIONXTENSION2 XTENSIONXTENSION3 ZIMAGE =T ZTABLE =T SIMPLESIMPLE
BITPIXBITPIX BITPIXBITPIX BITPIXBITPIX BITPIX = 8 BITPIX = 8 ZBITPIXZBITPIX ZNAXIS1ZNAXIS1 BITPIXBITPIX
NAXISNAXIS NAXISNAXIS NAXISNAXIS NAXIS = 2 NAXIS = 2 ZNAXISZNAXIS ZNAXIS2ZNAXIS2 NAXISNAXIS
NAXISnNAXISn4 NAXISnNAXISn4 NAXISnNAXISn4 NAXIS1NAXIS1 NAXIS1NAXIS1 ZNAXISnZNAXISn ZPCOUNTZPCOUNT NAXIS1 = 0
END END PCOUNTPCOUNT PCOUNT = 0 NAXIS2NAXIS2 NAXIS2NAXIS2 ZCMPTYPEZCMPTYPE ZFORMnZFORMn NAXISnNAXISn4

GCOUNTGCOUNT GCOUNT = 1 PCOUNT = 0 PCOUNTPCOUNT ZCTYPnZCTYPn GROUPS = T
ENDEND ENDEND GCOUNT = 1 GCOUNT = 1 ZTILELENZTILELEN PCOUNTPCOUNT

TFIELDSTFIELDS TFIELDSTFIELDS GCOUNTGCOUNT
TFORMnTFORMn5 TFORMnTFORMn5 ENDEND
TBCOLnTBCOLn5 ENDEND
ENDEND

(1)XTENSION= 'IMAGE ' XTENSION= 'IMAGE ' for the image extension. (2)XTENSION= 'TABLE ' for the ASCII table
XTENSION= 'TABLE ' for the ASCII-table extension. (3)XTENSION= 'BINTABLE' for the binary table XTENSION= 'BINTABLE' for
the binary-table extension. (4)Runs from 1 through the value of NAXISNAXIS. (5)Runs from 1 through the value of TFIELDSTFIELDS. (6)required
Required in addition to the mandatory keywords for binary tables.

Table C.2:

Reserved FITSFITS keywords for the structures described in this document.
All1 Array2 ASCII-table Binary-table Compressed Compressed Random-groups

HDUs HDUs extension extension images tables records
DATE DATE EXTNAMEEXTNAME BSCALEBSCALE TSCALnTSCALn TSCALnTSCALn ZTILEnZTILEn FZTILELNFZTILELN PTYPEnPTYPEn
DATE-OBSDATE-OBS EXTVEREXTVER BZEROBZERO TZEROnTZEROn TZEROnTZEROn ZNAMEiZNAMEi FZALGORFZALGOR PSCALnPSCALn
ORIGINORIGIN EXTLEVELEXTLEVEL BUNITBUNIT TNULLnTNULLn TNULLnTNULLn ZVALiZVALi FZALGnFZALGn PZEROnPZEROn
AUTHORAUTHOR EQUINOXEQUINOX BLANKBLANK TTYPEnTTYPEn TTYPEnTTYPEn ZMASKCMPZMASKCMP
REFERENCREFERENC EPOCHEPOCH3 DATAMAXDATAMAX TUNITnTUNITn TUNITnTUNITn ZQUANTIZZQUANTIZ
COMMENTCOMMENT BLOCKEDBLOCKED3 DATAMINDATAMIN TDISPnTDISPn TDISPnTDISPn ZDITHER0ZDITHER0
HISTORYHISTORY EXTENDEXTEND4 TDMAXnTDMAXn TDIMnTDIMn ZSIMPLEZSIMPLE ZTHEAPZTHEAP
 TELESCOPTELESCOP TDMINnTDMINn THEAPTHEAP ZEXTENDZEXTEND
OBJECTOBJECT INSTRUMEINSTRUME TLMAXnTLMAXn TDMAXnTDMAXn ZBLOCKEDZBLOCKED
OBSERVEROBSERVER TLMINnTLMINn TDMINnTDMINn ZTENSIONZTENSION
CONTINUECONTINUE TLMAXnTLMAXn ZPCOUNTZPCOUNT
INHERITINHERIT 5 TLMINnTLMINn ZGCOUNTZGCOUNT
CHECKSUMCHECKSUM ZHECKSUMZHECKSUM ZHECKSUMZHECKSUM
DATASUMDATASUM ZDATASUMZDATASUM ZDATASUMZDATASUM

(1)These keywords are further categorized in Table C.3. (2)Primary HDU, image IMAGE extension, user-defined HDUs with same array structure.
(3)Deprecated. (4)Only permitted in the primary HDU. (5)Only permitted in extension HDUs, immediately following the mandatory keywords.

58

http://heasarc.gsfc.nasa.gov/docs/fcg/standard_dict.html

D
R

AF
T

59

Table C.3:

General reserved FITSFITS keywords described in this document.
Production Bibliographic Commentary Observation

DATE DATE AUTHORAUTHOR COMMENTCOMMENT DATE-OBSDATE-OBS
ORIGINORIGIN REFERENCREFERENC HISTORYHISTORY TELESCOPTELESCOP
BLOCKEDBLOCKED1 INSTRUMEINSTRUME

OBSERVEROBSERVER
OBJECTOBJECT
EQUINOXEQUINOX
EPOCHEPOCH1

(1)Deprecated.

59

D
R

AF
T

60

Table D.1: ASCII character set.

ASCII control ASCII text
dec hex char dec hex char dec hex char dec hex char
0 00 NUL 32 20 SP 64 40 @ 96 60 `
1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 ' 71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i
10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 0C FF 44 2C , 76 4C L 108 6C l
13 0D CR 45 2D - 77 4D M 109 6D m
14 0E SO 46 2E . 78 4E N 110 6E n
15 0F SI 47 2F / 79 4F O 111 6F o
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C |
29 1D GS 61 3D = 93 5D] 125 7D }
30 1E RS 62 3E > 94 5E ˆ 126 7E ˜
31 1F US 63 3F ? 95 5F _ 127 7F DEL1

1 Not ASCII Text

Appendix D: ASCII text

This appendix is not part of the FITSstandardFITS Standard; the material in it is based on the ANSI standard for ASCII (?) and is
included here for informational purposes.)

In Table ??, the first column is the decimal and the second column the hexadecimal value for the character in the third column.
The characters hexadecimal 20 to 7E (decimal 32 to 126) constitute the subset referred to in this document as the restricted set of
ASCII text ASCII-text characters.

Appendix E: IEEE floating-point formats

The material in this Appendix appendix is not part of this standardStandard; it is adapted from the IEEE-754 floating-point standard
(?) and provided for informational purposes. It is not intended to be a comprehensive description of the IEEE formats; readers
should refer to the IEEE standard.)

FITSFITS recognizes all IEEE basic formats, including the special values.

E.1. Basic formats

Numbers in the single and double formats are composed of the following three fields:

1. 1-bit a one-bit sign s,

2. Biased exponent e = E + bias a biased exponent e = E + bias, and

3. Fraction a fraction f = •b1b2 · · · bp−1.

60

D
R

AF
T

61

Table E.1: Summary of format parameters.

Format
Parameter Single Double

Single extended Double extended
p 24 ≥ 32 53 ≥ 64
Emax +127 ≥ +1023 +1023 ≥ +16383
Emin −126 ≤ −1022 −1022 ≤ −16382
Exponent biasbias +127 unspecified +1023 unspecified
Exponent width in bits 8 ≥ 11 11 ≥ 15
Format width in bits 32 ≥ 43 64 ≥ 79

Fig. E.1: Single Format. msbmsb means most significant bitmost-significant bit, lsblsb means least significant bitleast-significant
bit

1 8 23widths

s e f

msb lsb msb lsborder

Fig. E.2: Double Format. msbmsb means most significant bitmost-significant bit, lsblsb means least significant bitleast-significant
bit

1 11 52widths

s e f

msb lsb msb lsborder

The range of the unbiased exponent E shallshall include every integer between two values Emin and Emax, inclusive, and also two
other reserved values Emin − 1 to encode ±0 and denormalized numbers, and Emax+1 to encode ±∞ and NaNs. The foregoing
parameters are given in Table ??. Each nonzero numerical value has just one encoding. The fields are interpreted as follows: .

E.1.1. Single

A 32-bit single format single-format number X is divided as shown in Fig. ??. The value v of X is inferred from its constituent
fieldsthus .

1. If e = 255 and f , 0, then v is NaN regardless of s.
2. If e = 255 and f = 0, then v = (−1)s∞.
3. If 0 < e < 255, then v = (−1)s2e−127(1 • f).
4. If e = 0 and f , 0, then v = (−1)s2e−126(0 • f) (denormalized numbers).
5. If e = 0 and f = 0, then v = (−1)s0 (zero).

E.1.2. Double

A 64-bit double format double-format number X is divided as shown in Fig. ??. The value v of X is inferred from its constituent
fieldsthus .

1. If e = 2047 and f , 0, then v is NaN regardless of s.
2. If e = 2047 and f = 0, then v = (−1)s∞.
3. If 0 < e < 2047, then v = (−1)s2e−1023(1 • f).
4. If e = 0 and f , 0, then v = (−1)s2e−1022(0 • f) (denormalized numbers).
5. If e = 0 and f = 0, then v = (−1)s0 (zero).

E.2. Byte patterns

Table ?? shows the types of IEEE floating-point value, whether regular or special, corresponding to all double and single precision
double- and single-precision hexadecimal byte patterns.

61

D
R

AF
T

62

Table E.2: IEEE floating-point formats.

IEEE value Double precision Single precision
+0 00000000000000000000000000000000 0000000000000000
denormalized 00000000000000010000000000000001 0000000100000001

to to
000FFFFFFFFFFFFF000FFFFFFFFFFFFF 007FFFFF007FFFFF

positive underflow 00100000000000000010000000000000 0080000000800000
positive numbers 00100000000000010010000000000001 0080000100800001

to to
7FEFFFFFFFFFFFFE7FEFFFFFFFFFFFFE 7F7FFFFE7F7FFFFE

positive overflow 7FEFFFFFFFFFFFFF7FEFFFFFFFFFFFFF 7F7FFFFF7F7FFFFF
+∞ 7FF00000000000007FF0000000000000 7F8000007F800000
NaN1 7FF00000000000017FF0000000000001 7F8000017F800001

to to
7FFFFFFFFFFFFFFF7FFFFFFFFFFFFFFF 7FFFFFFF7FFFFFFF

−0 80000000000000008000000000000000 8000000080000000
negative 80000000000000018000000000000001 8000000180000001
denormalized to to

800FFFFFFFFFFFFF800FFFFFFFFFFFFF 807FFFFF807FFFFF
negative underflow 80100000000000008010000000000000 8080000080800000
negative numbers 80100000000000018010000000000001 8080000180800001

to to
FFEFFFFFFFFFFFFEFFEFFFFFFFFFFFFE FF7FFFFEFF7FFFFE

negative overflow FFEFFFFFFFFFFFFFFFEFFFFFFFFFFFFF FF7FFFFFFF7FFFFF
−∞ FFF0000000000000FFF0000000000000 FF800000FF800000
NaN1 FFF0000000000001FFF0000000000001 FF800001FF800001

to to
FF FFFFFFFF

1 Certain values maymay be designated as quiet NaN (no diagnostic when used) or signaling (produces diagnostic when used) by particular
implementations.

62

D
R

AF
T

63

Appendix F: Reserved extension type names

This Appendix appendix is not part of the FITSstandardFITS
Standard, but is included for informational purposes. It de-
scribes the extension type names registered as of the date this
standard Standard was issued.) A current list is available from
the FITSSupport Office web site FITS Support Office website at
http://fits.gsfc.nasa.gov.

F.1. Standard extensions

These three extension types have been approved by the
IAUFWG and are defined in Sect. ?? of this standard Standard
document as well as in the indicated Astronomy and Astrophysics
journal articles.

– 'IMAGE ' – This extension type provides a means of stor-
ing a multi-dimensional array similar to that of the FITSFITS
primary header and data unit. Approved as a standard exten-
sion in 1994 (?).

– 'TABLE ' – This ASCII table ASCII-table extension type
contains rows and columns of data entries expressed as
ASCII characters. Approved as a standard extension in 1988
(?).

– 'BINTABLE' – This binary table binary-table extension type
provides a more flexible more-flexible and efficient means of
storing data structures than is provided by the TABLETABLE
extension type. The table rows can contain a mixture of
numerical, logical, and character data entries. In addition,
each entry is allowed to be a single dimensioned single-
dimensioned array. Numeric data are kept in binary formats.
Approved as a standard extension in 1994 (?).

F.2. Conforming extensions

These conventions meet the requirements for a conforming ex-
tension as defined in in Sect. ?? of this standardStandard, how-
ever they have not been formally approved or endorsed by the
IAUFWG.

– 'IUEIMAGE' – This name was given to the prototype of
the IMAGEIMAGE extension type and was primarily used
in the IUE project data archive from approximately 1992
to 1994. Except for the name, the format is identical to the
IMAGEIMAGE extension.

– 'A3DTABLE' – This name was given to the prototype
of the BINTABLEBINTABLE extension type and was pri-
marily used in the AIPS data processing system devel-
oped at NRAO from about 1987 until it was replaced by
BINTABLEBINTABLE in the early 1990s. The format is de-
fined in the ‘Going AIPS’ manual (?), Chapter 14. It is very
similar to the BINTABLEBINTABLE type except that it does
not support the variable-lengtharray-array convention.

– 'FOREIGN ' – This extension type is used to put a FITSFITS
wrapper about an arbitrary file, allowing a file or tree of files
to be wrapped up in FITSFITS and later restored to disk. A
full description of this extension type is given in the Registry
of FITSFITS conventions on the FITSSupport Office web
siteFITS Support Office website.

– 'DUMP ' – This extension type can be used to store a
stream of binary data binary-data values. The only known
use of this extension type is to record telemetry header pack-
ets for data from the Hinode mission. The more general

FOREIGNmore-general FOREIGN extension type could also
be used to store this type of data.

F.3. Other suggested extension names

There have been occasional suggestions for other extension
names that might be used for other specific purposes. These
include a COMPRESSCOMPRESS extension for storing com-
pressed images, a FITSFITS extension for hierarchically embed-
ding entire FITSFITS files within other FITSFITS files, and a
FILEMARKFILEMARK extension for representing the equivalent
of an end-of-file mark on magnetic tape magnetic-tape media.
None of these extension types have been implemented or used in
practice, therefore these names are not reserved. These extension
names (or any other extension name not specifically mentioned
in the previous sections of this appendix) should notshould not
be used in any FITSFITS file without first registering the name
with the IAU FITS FITS Working Group.

Appendix G: MIME types

This Appendix appendix is not part of the FITSstandardFITS
Standard, but is included for informational purposes.

RFC 4047 (?) describes the registration of the
Multipurpose Internet Mail Extensions (MIME)
sub-types ‘application/fitsapplication/fits’ and
‘image/fitsimage/fits’ to be used by the international
astronomical community for the interchange of FITSFITS
files. The MIME type serves as a electronic tag or label that is
transmitted along with the FITSFITS file that tells the receiving
application what type of file is being transmitted. The remainder
of this appendix has been extracted verbatim from the RFC
4047 document.

The general nature of the full FITSstandard
FITS Standard requires the use of the media type
‘application/fitsapplication/fits’. Nevertheless, the
principal intent for a great many FITSFITS files is to convey
a single data array in the primary HDU, and such arrays are
very often 2-dimensional two-dimensional images. Several
common image viewing applications already display single-
HDU FITSFITS files, and the prototypes for virtual observatory
virtual-observatory projects specify that data provided by
web services be conveyed by the data array in the primary
HDU. These uses justify the registration of a second media
type, namely ‘image/fitsimage/fits’, for files which that use
the subset of the standard Standard described by the original
FITSstandard FITS Standard paper. The MIME type ‘image/fits’
mayimage/fits’ may be used to describe FITSFITS primary
HDUs that have other than two dimensions, however it is
expected that most files described as ‘image/fitsimage/fits’
will have two-dimensional (NAXIS NAXIS =2 2) primary
HDUs.

G.1. MIME type ‘application/fitsapplication/fits’

A FITSFITS file described with the media type ‘application/fits’
shouldapplication/fits’ should conform to the published
standards for FITSFITS files as determined by convention and
agreement within the international FITSFITS community. No
other constraints are placed on the content of a file described
as ‘application/fitsapplication/fits’.

63

http://fits.gsfc.nasa.gov

D
R

AF
T

64

A FITSFITS file described with the media type
‘application/fits’ may application/fits’ may have an
arbitrary number of conforming extension HDUs that follow
its mandatory primary header and data unit. The extension
HDUs may may be one of the standard types (IMAGE,
TABLE, and BINTABLEIMAGE, TABLE, and BINTABLE) or
any other type that satisfies the ‘Requirements for Conforming
Extensionsconforming extensions’ (Sect. ??). The primary
HDU or any IMAGEextension may IMAGE extension may
contain zero to 999 dimensions with zero or more zero-or-more
pixels along each dimension.

The primary HDU may use the random groups may use
the random-groups convention, in which the dimension of the
first axis is zero and the keywords GROUPS, PCOUNTand
GCOUNTGROUPS. PCOUNT and GCOUNT appear in the header.
NAXIS1 NAXIS1 =0and GROUPS 0 and GROUPS =T T is the
signature of random groups; see Sect. ??.

G.1.1. Recommendations for application writers

An application intended to handle ‘application/fits’
shouldapplication/fits’ should be able to provide a
user with a manifest of all of the HDUs that are present in the
file and with all of the keyword/value pairs from each of the
HDUs.

An application intended to handle ‘application/fits’
shouldapplication/fits’ should be prepared to encounter
extension HDUs that contain either ASCII or binary tables, and
to provide a user with access to their elements.

An application which can modify FITSthat can modify
FITS files or retrieve FITSFITS files from an external service
shouldshould be capable of writing such files to a local storage
medium.

Complete interpretation of the meaning and intended use of
the data in each of the HDUs typically requires the use of heuris-
tics that attempt to ascertain which local conventions were used
by the author of the FITSFITS file.

As examples, files with media type
‘application/fitsapplication/fits’ might contain any of
the following contents: .

– An empty primary HDU (containing zero data elements) fol-
lowed by a table HDU that contains a catalog of celestial
objects.

– An empty primary HDU followed by a table TABLE HDU
that encodes a series of time-tagged photon events from an
exposure using an X-ray detector.

– An empty primary HDU followed by a series of
IMAGEIMAGE HDUs containing data from an exposure
taken by a mosaic of CCD detectors.

– An empty primary HDU followed by a series of table TABLE
HDUs that contain a snapshot of the state of a relational
database.

– A primary HDU containing a single image along with key-
word/value pairs of metadata.

– A primary HDU with NAXIS1 NAXIS1 =0and GROUPS 0
and GROUPS =Tfollowed by random groups T followed by
random-groups data records of complex fringe visibilities.

G.2. MIME type ‘image/fitsimage/fits’

A FITSFITS file described with the media type ‘image/fits’
shouldimage/fits’ should have a primary HDU with
positive integer values for the NAXISand NAXISnNAXIS
and NAXISn keywords, and hence shouldshould contain
at least one pixel. Files with 4 four or more non-
degenerate axes (NAXISnNAXISn > 1) shouldshould be
described as ‘application/fitsapplication/fits’, not as
‘image/fitsimage/fits’. (In rare cases it may be appropriate
to describe a NULL image – a dataless container for FITSFITS
keywords, with NAXIS NAXIS =0or NAXISn 0 or NAXISn =0 0
– or an image with 4+ four or more non-degenerate axes
as ‘image/fitsimage/fits’ but this usage is discouraged be-
cause such files may confuse simple image viewer image-viewer
applications.)

FITSFITS files declared as ‘image/fits’ mayimage/fits’
may also have one or more conforming extension HDUs fol-
lowing their primary HDUs. These extension HDUs maymay
contain standard, non-linear, world coordinate world-coordinate
system (WCS) information in the form of tables or images. The
extension HDUs maymay also contain other, non-standard meta-
data pertaining to the image in the primary HDU in the forms of
keywords and tables.

A FITSFITS file described with the media type ‘image/fits’
shouldimage/fits’ should be principally intended to commu-
nicate the single data array in the primary HDU. This means
that ‘image/fits’ should notimage/fits’ should not be applied
to FITSFITS files containing multi-exposure-frame mosaic im-
ages. Also, random groups files mustrandom-groups files must
be described as ‘application/fitsapplication/fits’ and not as
‘image/fitsimage/fits’.

A FITSFITS file described with the media type
‘image/fitsimage/fits’ is also valid as a file of media
type ‘application/fitsapplication/fits’. The choice of
classification depends on the context and intended usage.

G.2.1. Recommendations for application writers

An application that is intended to handle ‘image/fits’
shouldimage/fits’ should be able to provide a user with a
manifest of all of the HDUs that are present in the file and with
all of the keyword/value pairs from each of the HDUs. An ap-
plication writer maymay choose to ignore HDUs beyond the pri-
mary HDU, but even in this case the application shouldshould
be able to present the user with the keyword/value pairs from the
primary HDU.

Note that an application intended to render
‘image/fitsimage/fits’ for viewing by a user has signif-
icantly more responsibility than an application intended to
handle, e.g., ‘image/tiff’or ‘image/gif’. FITS’image/tiff’ or
’image/gif’. FITS data arrays contain elements which that
typically represent the values of a physical quantity at some co-
ordinate location. Consequently they need not contain any pixel
rendering information in the form of transfer functions, and
there is no mechanism for color look-up tables. An application
shouldshould provide this functionality, either statically using a
more or less sophisticated more- or less-sophisticated algorithm,
or interactively allowing a user various degrees of choice.

Furthermore, the elements in a FITSdata array may FITS
data array may be integers or floating-point numbers. The dy-

64

D
R

AF
T

65

namic range of the data array data-array values may exceed that
of the display medium and the eye, and their distribution may be
highly nonuniformnon-uniform. Logarithmic, square-root, and
quadratic transfer functions along with histogram equalization
histogram-equalization techniques have proved helpful for ren-
dering FITSFITS data arrays. Some elements of the array may
have values which that indicate that their data are undefined or
invalid; these should should be rendered distinctly. Via WCS
Paper I (?) the standard permits CTYPEn Standard permits
CTYPEn =’COMPLEX’ ’COMPLEX’ to assert that a data array
contains complex numbers (future revisions might admit other
elements such as quaternions or general tensors).

Three-dimensional data arrays (NAXIS NAXIS =3with
NAXIS1, NAXIS2and NAXIS3 3 with NAXIS1, NAXIS2, and
NAXIS3 all greater than 1) are of special interest. Applications
intended to handle ‘image/fits’ mayimage/fits’ may default to
displaying the first 2D two-dimensional plane of such an image
cube, or they maymay default to presenting such an image in a
fashion akin to that used for an animated GIF, or they maymay
present the data cube as a mosaic of ‘thumbnail’ images. The
time-lapse movie-looping display technique can be effective in
many instances, and application writers shouldshould consider
offering it for all three-dimensional arrays.

An ‘image/fitsimage/fits’ primary HDU with NAXIS
NAXIS =1 1 is describing a one-dimensional entity such as
a spectrum or a time series. Applications intended to handle
‘image/fits’ mayimage/fits’ may default to displaying such an
image as a graphical plot rather than as a two-dimensional pic-
ture with a single row.

An application that cannot handle an image with dimension-
ality other than two shouldshould gracefully indicate its limita-
tions to its users when it encounters NAXIS NAXIS =1or NAXIS
1 or NAXIS =3 3 cases, while still providing access to the key-

word/value pairs.

FITSFITS files with degenerate axes (i.e., one or
more NAXISn NAXISn =1) may 1) may be described as
‘image/fitsimage/fits’, but the first axes shouldshould be
non-degenerate (i.e., the degenerate axes shouldshould be the
highest dimensions). An algorithm designed to render only
two-dimensional images will be capable of displaying such
an NAXIS NAXIS =3or NAXIS 3 or NAXIS =4FITS 4 FITS
array that has one or two of the axes consisting of a single
pixel, and an application writer shouldshould consider coding
this capability into the application. Writers of new applications
that generate FITSFITS files intended to be described as
‘image/fits’ shouldimage/fits’ should consider using the
WCSAXESWCSAXES keyword (?) to declare the dimensionality
of such degenerate axes, so that NAXISNAXIS can be used to
convey the number of non-degenerate axes.

G.3. File extensions

The FITSstandard FITS Standard originated in the era when files
were stored and exchanged via magnetic tape; it does not pre-
scribe any nomenclature for files on disk. Various sites within
the FITSFITS community have long-established practices where
files are presumed to be FITSFITS by context. File extensions
used at such sites commonly indicate content of the file instead
of the data format.

In the absence of other information it is reasonably safe to
presume that a file name ending in ‘.fits.fits’ is intended to be
a FITSFITS file. Nevertheless, there are other commonly used
extensions; e.g., ‘‘.fit.fit’, ‘.fts.fts’, and many others not suit-
able for listing in a media type registration.

Appendix H: Past changes or clarifications to the
formal definition of FITSFITS

This Appendix appendix is not part of the FITSstandardFITS
Standard, but is included for informational purposes.

H.1. Differences between the requirements in this standard
Standard and the requirements in the original FITSFITS
papers.

1. Sect. ??: The original FITSFITS definition paper (?) dis-
allows lower case lower-case letters in the keyword name,
but does not specify what other characters may or may not
appear in the name.

2. Sect. ??: The slash between the value and comment is ‘rec-
ommended’ in the original paper (?) whereas the standard
Standard requires that it be present, which is consistent with
the prescription of Fortran list-directed input.

3. Sect. ??: The original paper (?) speculated that FITSFITS
would eventually support the full range of flexibility that
is allowed by Fortran list-directed input, including dimen-
sioned parameters. The standard Standard restricts the value
field to a single value, not an array.

4. Sect. ?? and Sect. ??: The original paper (?) defined a
fixed format for complex keyword values, with the real part
right justified in bytesBytes 11 through 30 and the imaginary
part right justified in bytesBytes 31 through 50. There are no
known FITSFITS files that use this fixed format.
The standard Standard does not define a fixed format for
complex keyword values. Instead, complex values are repre-
sented in conformance with the rules for Fortran list-directed
input, namely, with the real and imaginary parts separated by
a comma and enclosed in parentheses.

5. Sect. 4.4.1.1 and Sect. 4.4.1.2: The paper that defines
generalized extensions (?) does not prohibit the appear-
ance of the SIMPLESIMPLE keyword in extensions nor the
XTENSIONXTENSION keyword in the primary header.

H.2. List of modification to the FITSstandardFITS Standard,
version 3Version 3.0

After the IAUFWG officially approved version 3 of the
FITSstandard Version 3.0 of the FITS Standard in 2008, the fol-
lowing additional corrections, clarifications, or format modifica-
tions have been made to the document.

1. Two typographical errors in Table ?? (previously Table 8.1)
were corrected. The last 2 two lines of the third column
should read ‘LONPOLEa LONPOLEa (= PVi 3a)PVi 3a)’
and ‘LATPOLEa LATPOLEa (= PVi 4a)’PVi 4a)’), instead
of PVi 1aand PVi 2aPVi 1a and PVi 2a, respectively.
(October 2008)

2. The latex LATEX text source document was reformatted to
conform to the Astronomy & Astrophysics journal page style
(June 2010). The visible changes include the following: .

65

D
R

AF
T

66

– The tables, figures, equations, and footnotes are num-
bered sequentially throughout the entire the document,
instead of sequentially within each chapter.

– The citations use the standard ‘Author (year)’ format in-
stead of being referenced by a sequential number. Also,
the ‘Bibliography’ section at the end of the document has
been replaced by a ‘References’ section in which the ci-
tations are listed alphabetically by author.

3. The following minor corrections or clarifications were made
during the refereeing process after submitting version 3 of
the FITSstandard Version 3.0 of the FITS Standard for publi-
cation in the Astronomy & Astrophysics journal (July 2010):
.
– A sentence was added to the end of Sect. ??: ‘This web

site website also contains the contact information for the
Chairman of the IAUFWG, to whom any questions or
comments regarding this standard Standard should be ad-
dressed.’

– A ‘Section’ column was added to Table ?? to reference
the relevant section of the document.

– The wording of the second sentence in Sect. ?? was re-
vised from ‘Except where specifically stated otherwise
in this standard, keywords may appear in any order.’ to
‘Keywords may appear in any order except where specif-
ically stated otherwise in this standardStandard.’

– A sentence was added to the end of the ‘Keyword name’
subsection in Sect. ??: ‘Note that keyword names that
begin with (or consist solely of) any combination of hy-
phens, underscores, and digits are legal.’

– A footnote to the description of the REFERENC
REFERENC keyword in Sect. ?? was added: ‘This bib-
liographic convention (Schmitz 1995) was initially de-
veloped for use within NED (NASA/IPAC Extragalactic
Database) and SIMBAD (operated at CDS, Strasbourg,
France).’

– In Sect. ??, the phrase ‘TFORMn TFORMn format code’
was corrected to read ‘TDISPn TDISPn format code’ (in
four places).

– The wording in the ‘Expressed as’ column in Table ??
for the ‘LOG’, ‘GRI’, ‘GRA’, and ‘TAB’ LOG, GRI, GRA,
and TAB spectral algorithm codes was clarified.

– In Table?? the EXTNAME, EXTVER, and
EXTLEVEL ?? the EXTNAME, EXTVER, and EXTLEVEL
keywords were moved under the ‘All HDUs’ column
because they are now allowed in the primary array
header.

– The last paragraph of Sect. 4.1.2.3 was corrected to state
that the ASCII text ASCII-text characters have hexadec-
imal values 20 through 7E, not 41 through 7E.

H.3. List of modifications to the latest FITS standardFITS
Standard

1. The representation of time coordinates has been incorporated
by reference from ? and is summarized in Sect. ??. Cross-
references have been inserted in pre-existing sections of the
Standard (namely in SectSects. ??, ??, ??.1, ??.2 and ??,
as well as in various places of Sect. ??, like ?? and such
as Sect. ?? and Sect. ??). New keywords are listed in a re-
arranged Table ??. Contextually an erratum was applied in
Sect. ??: keywords OBSGEO-[XYZ] were incorrectly marked

as OBSGEO-[XYZ]a; the TAI-UTC difference in Table ?? was
updated with respect to ? taking into account the latest leap
second; the possibility of introducing more sources for the
solar system Solar System ephemerides was re-worded (at
the end of Sect.?? and in Table ??).

2. The continued string keywords described in Sect. ??.2
were originally introduced as a FITSconvention since FITS
convention during 1994, and registered in 2007. The text of
the original convention is reported at http://fits.gsfc.
nasa.gov/registry/continue_keyword.html. The
differences with this standard concern : Standard concern
the following.

– In the convention, the LONGSTRNLONGSTRN keyword
was used to signal the possible presence of long strings in
the HDU. The use of this keyword is no longer required
or recommendedrequired or recommended.

– Usage of the convention was not recom-
mendednot recommended for reserved or mandatory
keywords. Now it is explicitly forbidden unless keywords
are explicitly declared long-string.

– To avoid ambiguities in the application of the previous
clause, the declaration of string keywords in sections
Sects. ??, ?? and ?? has been reset from the generic
‘character’ to ‘string’.

– It is also explicitly clarified there is no limit to the num-
ber of continuation records.

– The description of continued comment field is new.

3. The blank header space convention described in Sect. ??.4
was used since from 1996, and registered in 2014. The text
of the original convention is reported at http://fits.
gsfc.nasa.gov/registry/headerspace.html. It in-
cluded a recommendation about using the convention in
a controlled environment, which does not appear in this
standardStandard.

4. The INHERITINHERIT keyword described in Sect. ??.6 was
originally introduced as a FITSFITS convention in 1995,
and registered in 2007. The text of the original convention
is reported at http://fits.gsfc.nasa.gov/registry/
inherit.html. See also references and practical consid-
erations therein. The differences with the present document
concern a more precise RFC-2219 more-precise RFC 2119
compliant wording in a couple of sentences in Appendix ??.

5. The checksum keywords described in Sect. ??.7 were origi-
nally introduced as a FITSconvention since FITS convention
during 1994, and registered in 2007. The text of the orig-
inal convention is reported at http://fits.gsfc.nasa.
gov/registry/checksum.html. The differences with this
standard Standard concern:

– The the omission of some additional implementation
guidelines. , and

– The the omission of a discussion on alternate algorithms
and relevant additional references.

6. The table keywords described in Sect. ?? and ?? were
originally introduced as a FITSconvention since FITS con-
vention during 1993, and registered in 2006. The text of
the original convention is reported at http://fits.gsfc.
nasa.gov/registry/colminmax.html. The differences
with this standard concern: Standard are as follows.

66

http://fits.gsfc.nasa.gov/registry/continue_keyword.html
http://fits.gsfc.nasa.gov/registry/continue_keyword.html
http://fits.gsfc.nasa.gov/registry/headerspace.html
http://fits.gsfc.nasa.gov/registry/headerspace.html
http://fits.gsfc.nasa.gov/registry/inherit.html
http://fits.gsfc.nasa.gov/registry/inherit.html
http://fits.gsfc.nasa.gov/registry/checksum.html
http://fits.gsfc.nasa.gov/registry/checksum.html
http://fits.gsfc.nasa.gov/registry/colminmax.html
http://fits.gsfc.nasa.gov/registry/colminmax.html

D
R

AF
T

67

– The exclusion of undefined or IEEE special values when
computing maximum and minimum is now mandatory
while it was optional.

– The original text included the possibility of using the
fact TDMINnTDMINn were greater than TDMAXn(or
TLMINngreater than TLMAXnTDMAXn (or TLMINn
greater than TLMAXn) as an indication the values were
undefined. This clause has been removed

– The original text contained usage examples and addi-
tional minor explanatory details.

7. The Green Bank convention, mentioned in Sect. ?? and de-
scribed in Appendix ??, has been in use since 1989, and
was registered in 2010. The text of the registered convention
is reported at http://fits.gsfc.nasa.gov/registry/
greenbank/greenbank.pdf and contains some additional
details about the history of the convention.

8. The conventions for compressed data described in Sect. ??.
were originally introduced as a couple of FITSFITS
conventions registered in 2007 and 2013. The text of
the original conventions is reported at http://fits.
gsfc.nasa.gov/registry/tilecompression.html for
compressed images and at http://fits.gsfc.nasa.
gov/registry/tiletablecompression.html for com-
pressed binary tables. The differences with this standard con-
cern: Standard are listed below.

– In Sect. ?? the original text for FZALGn mentioned the
possibility that, ‘If the column cannot be compressed
with the requested algorithm (e.g., if it has an inappro-
priate data type), then a default compression algorithm
will be used instead.’ But there is no default algorithm.
This is irrelevant for the Standard.

– In Sect. ?? the alias ’RICE ONE’ is not adopted in the
Standard as a synonym for ’RICE 1’.

– In Sect. ?? a sentence was left out about requiring ad-
ditional instructions in PLIO to make it work for more
then 212 bits, since we aren’t allowing this possibility in
the Standard.

– In Sect. ?? the reference to a ‘smoothing flag’ was
dropped.

– Also in Sect. ?? the scale factor is now floating point,
while it was originally integer.

– In Table ?? (and Sect. ??) the ’NOCOMPRESS’ algorithm
is explicitly mentioned.

H.4. List of modifications for language editing

1. Apply systematically LATEX macros for keyword names and
values, and for RFC 2119 expressions, according to instruc-
tions reported in the LATEX source preamble (for future edi-
tors of the Standard).

2. The acronym FITS is always indicated in italics.
3. Use italics systematically for RFC 2119 obligations and rec-

ommendations.
4. Apply consistent use of italic and typewriter fonts, and ’

quotation marks around literal keyword values. Correct other
minor LATEX issues.

5. Apply systematic capitalization of the names of specific enti-
ties, where appropriate. These include Standard (when refer-
ring to the FITS Standard document), Version (where num-
bered), Byte, Column, Parameter, Field, and Axis. Start some

words with a lower-case letter that previously began with a
capital letter.

6. Address other typographical issues, such as the insertion of
commas in several places, adding a few non-breaking spaces,
and better handling of references to sections, etc.

7. Several cases of minor rewording.
8. Express small numbers in letter form (one to nine), not in nu-

merals (1 to 9), wherever sensible. However, there is the cus-
tomary exception for normalization in sentences and head-
ings that also contain numbers greater than nine.

9. Compound nouns are systematically hyphenated to high-
light the correct grouping (and hence meaning) of the com-
ponents. This includes the attributive references to ASCII-
table, binary-table, and random-groups.

10. Improve the aesthetics of some tables.

Appendix I: Random Number
GeneratorRandom-number generator

This Appendix appendix is not part of the FITSstandardFITS
Standard, but is included for informational purposes.

The portable random number random-number generator al-
gorithm below is from ?. This algorithm repeatedly evaluates the
function

seed = (a ∗ seed) mod m

where the values of a and m are shown below, but it is imple-
mented in a way to avoid integer overflow problems.

int random_generator(void) {

/* initialize an array of random numbers */

int ii;
double a = 16807.0;
double m = 2147483647.0;
double temp, seed;
float rand_value[10000];

/* initialize the random numbers */
seed = 1;
for (ii = 0; ii < N_RANDOM; ii++) {

temp = a * seed;
seed = temp -m * ((int) (temp / m));
/* divide by m for value between 0 and 1 */
rand_value[ii] = seed / m;

}
}

If implemented correctly, the 10 000th 10 000th value of seed
will equal 1 043 618 065.

Appendix J: CHECKSUMImplementation
GuidelinesCHECKSUM implementation guidelines

This Appendix appendix is not part of the FITSstandardFITS
Standard, but is included for informational purposes.

67

http://fits.gsfc.nasa.gov/registry/greenbank/greenbank.pdf
http://fits.gsfc.nasa.gov/registry/greenbank/greenbank.pdf
http://fits.gsfc.nasa.gov/registry/tilecompression.html
http://fits.gsfc.nasa.gov/registry/tilecompression.html
http://fits.gsfc.nasa.gov/registry/tiletablecompression.html
http://fits.gsfc.nasa.gov/registry/tiletablecompression.html

D
R

AF
T

68

J.1. Recommended CHECKSUMKeyword
ImplementationCHECKSUM keyword implementation

The recommendedCHECKSUMrecommended CHECKSUM key-
word algorithm described here generates a 16-character ASCII
string that forces the 32-bit 1’ s ones’ complement checksum
accumulated over the entire FITSFITS HDU to equal negative 0
(all 32 bits equal to 1). In addition, this string will only contain
alphanumeric characters within the ranges 0–9, A–Z, and a–z to
promote human readability and transcription. If the present algo-
rithm is used, the CHECKSUMkeyword value mustCHECKSUM
keyword value must be expressed in fixed format, with the start-
ing single quote character in column single-quote character in
Column 11 and the ending single quote character in column
single-quote character in Column 28 of the FITSFITS keyword
record, because the relative placement of the value string within
the keyword record affects the computed HDU checksum. The
steps in the algorithm are as follows: .

1. Write the CHECKSUMCHECKSUM keyword into the HDU
header with an initial value consisting of 16 ASCII
zeros (’0000000000000000’’0000000000000000’) where
the first single quote single-quote character is in column
Column 11 of the FITSFITS keyword record. This specific
initialization string is required required by the encoding al-
gorithm described in Sect. ?? ??. The final comment field of
the keyword, if any, must must also be written at this time.
It is recommended recommended that the current date and
time be recorded in the comment field to document when the
checksum was computed.

2. Accumulate the 32-bit 1’ s ones’ complement checksum over
the FITSFITS logical records that make up the HDU header
in the same manner as was done for the data records by inter-
preting each 2880-byte logical record as 720 32-bit unsigned
integers.

3. Calculate the checksum for the entire HDU by adding (us-
ing 1’ s ones’ complement arithmetic) the checksum accu-
mulated over the header records to the checksum accumu-
lated over the data records (i.e., the previously computed
DATASUMDATASUM keyword value).

4. Compute the bit-wise complement of the 32-bit total HDU
checksum value by replacing all 0 bits with 1 and all 1 bits
with 0.

5. Encode the complement of the HDU checksum into a 16-
character ASCII string using the algorithm described in Sect.
??

6. Replace the initial CHECKSUMCHECKSUM keyword value
with this 16-character encoded string. The checksum for the
entire HDU will now be equal to negative 0.

J.2. Recommended ASCII Encoding Algorithmencoding
algorithm

The algorithm described here is used to generate an
ASCII string, which, when substituted for the value of the
CHECKSUMCHECKSUM keyword, will force the checksum for
the entire HDU to equal negative 0. It is based on a fundamen-
tal property of 1’ s ones’ complement arithmetic that the sum
of an integer and the negation of that integer (i.e, the bitwise
complement formed by replacing all 0 bits with 1s and all 1 bits
with 0s) will equal negative 0 (all bits set to 1). This principle is
applied here by constructing a 16-character string, which, when

interpreted as a byte stream of four 32-bit integers, has a sum
that is equal to the complement of the sum accumulated over the
rest of the HDU. This algorithm also ensures that the 16 bytes
that make up the four integers all have values that correspond to
ASCII alpha-numeric characters in the range 0–9, A–Z, and a–z.

1. Begin with the 1’ s ones’ complement (replace 0s with
1s and 1s with 0s) of the 32-bit checksum accumu-
lated over all the FITS FITS records in the HDU af-
ter first initializing the CHECKSUMCHECKSUM keyword
with a fixed-format string consisting of 16 ASCII zeros
(’0000000000000000’’0000000000000000’).

2. Interpret this complemented 32-bit value as a sequence of
four unsigned 8-bit integers, A, B, C and D, where A is the
most significant byte and D is the least significanteight-bit
integers, A, B, C, and D, where A is the most-significant byte
and D is the least-significant byte. Generate a sequence of
four integers, A1, A2, A3, A4A1, A2, A3, A4, that are all
equal to A A divided by 4 (truncated to an integer if neces-
sary). If A A is not evenly divisible by 4, add the remainder
to A1A1. The key property to note here is that the sum of the
four new integers is equal to the original byte value (e.g., A
= A1 + A2 + A3 + A4A = A1 + A2 + A3 + A4). Perform
a similar operation on B, C, and DB, C, and D, resulting in
a total of 16 integer values, 4 four from each of the original
bytes, which should should be rearranged in the following
order:

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4.

Each of these integers represents one of the 16 characters in
the final CHECKSUMCHECKSUM keyword value. Note that
if this byte stream is interpreted as 4 four 32-bit integers, the
sum of the integers is equal to the original complemented
checksum value.

3. Add 48 (hex 30), which is the value of an ASCII zero char-
acter, to each of the 16 integers generated in the previous
step. This places the values in the range of ASCII alphanu-
meric characters ’0’ (ASCII zero) to ’r’. This offset is effec-
tively subtracted back out of the checksum when the initial
CHECKSUMCHECKSUM keyword value string of 16 ASCII
0s is replaced with the final encoded checksum value.

4. To improve human readability and transcription of the string,
eliminate any non-alphanumeric characters by considering
the bytes a pair at a time (e.g., A1 + A2, A3 + A4, B1 +
B2A1 + A2, A3 + A4, B1 + B2, etc.) and repeatedly incre-
ment the first byte in the pair by 1 and decrement the 2nd
second byte by 1 as necessary until they both correspond to
the ASCII value of the allowed alphanumeric characters 0–9,
A–Z, and a–z shown in Figure1. ??. Note that this operation
conserves the value of the sum of the 4 four equivalent 32-bit
integers, which is required for use in this checksum applica-
tion.

5. Cyclically shift all 16 characters in the string one place to
the right, rotating the last character (D4D4) to the begin-
ning of the string. This rotation compensates for the fact that
the fixed format FITScharacter string FITS character-string
values are not aligned on 4-byte four-byte word boundaries
in the FITSFITS file. (The first character of the string starts
in column Column 12 of the header card image, rather than
column Column 13).

68

D
R

AF
T

69

Fig. J.1: Only ASCII alpha-numeric characters are used to en-
code the checksum – punctuation is excluded

6. Write this string of 16 characters to the value of the
CHECKSUMCHECKSUM keyword, replacing the initial string
of 16 ASCII zeros.

To invert the ASCII encoding, cyclically shift the 16 charac-
ters in the encoded string one place to the left, subtract the hex
30 offset from each character, and calculate the checksum by in-
terpreting the string as four 32-bit unsigned integers. This can be
used, for instance, to read the value of CHECKSUMCHECKSUM
into the software when verifying or updating a HDU.

J.3. Encoding Exampleexample

This example illustrates the encoding algorithm given in Sect.
?? Consider a FITSHDU whose 1’ s FITS HDU whose

ones’ complement checksum is 868229149, which is equiva-
lent to hex 33C0201D33C0201D. This number was obtained
by accumulating the 32-bit checksum over the header and
data records using 1’ s ones’ complement arithmetic after
first initializing the CHECKSUMCHECKSUM keyword value to
’0000000000000000’’0000000000000000’. The complement
of the accumulated checksum is 3426738146, which is equiva-
lent to hex CC3FDFE2CC3FDFE2. The steps needed to encode
this hex value into ASCII are shown schematically below: .

Byte Preserve byte alignment
A B C D A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

CC 3F DF E2 -> 33 0F 37 38 33 0F 37 38 33 0F 37 38 33 0F 37 38
+ remainder 0 3 3 2

= hex 33 12 3A 3A 33 0F 37 38 33 0F 37 38 33 0F 37 38
+ 0 offset 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

= hex 63 42 6A 6A 63 3F 67 68 63 3F 67 68 63 3F 67 68
ASCII c B j j c ? g h c ? g h c ? g h

Eliminate punctuation characters
initial values c B j j c ? g h c ? g h c ? g h

. c C j j c > g h c @ g h c > g h

. c D j j c = g h c A g h c = g h

. c E j j c < g h c B g h c < g h

. c F j j c ; g h c C g h c ; g h

. c G j j c : g h c D g h c : g h
final values c H j j c 9 g h c E g h c 9 g h

final string "hcHjjc9ghcEghc9g" (rotate 1 place to the right)

In this example byte B1 Byte B1 (originally ASCII BB)
is shifted higher (to ASCII HH) to balance byte B2 Byte B2
(originally ASCII ??) being shifted lower (to ASCII 99).
Similarly, bytes B3 and B4 Bytes B3 and B4 are shifted by op-
posing amounts. This is possible because the two sequences of
ASCII punctuation characters that can occur in encoded check-
sums are both preceded and followed by longer sequences of

ASCII alphanumeric characters. This operation is purely for cos-
metic reasons to improve readability of the final string.

This is how these CHECKSUMand DATASUMCHECKSUM
and DATASUM keywords would appear in a FITSFITS header
(with the recommended time stamp in the comment field). :

DATASUM = '2503531142' / 2015-06-28T18:30:45
CHECKSUM= 'hcHjjc9ghcEghc9g' / 2015-06-28T18:30:45

J.4. Incremental Updating updating of the
Checksumchecksum

The symmetry of 1’ s ones’ complement arithmetic also means
that after modifying a FITSFITS HDU, the checksum may may
be incrementally updated using simple arithmetic without accu-
mulating the checksum for portions of the HDU that have not
changed. The new checksum is equal to the old total checksum
plus the checksum accumulated over the modified records, mi-
nus the original checksum for the modified records.

An incremental update provides the mechanism for end-to-
end checksum verification through any number of intermediate
processing steps. By calculating rather than accumulating the in-
termediate checksums, the original checksum test is propagated
through to the final data file. On the other hand, if a new check-
sum is accumulated with each change to the HDU, no informa-
tion is preserved about the HDU’s original state.

The recipe for updating the CHECKSUMCHECKSUM key-
word following some change to the HDU is: C′ = C − m + m′,
where C and C′ represent the HDU’s checksum (that is, the com-
plement of the CHECKSUMCHECKSUM keyword) before and af-
ter the modification and m and m′ are the corresponding check-
sums for the modified FITSFITS records or keywords only.
Since the CHECKSUMCHECKSUM keyword contains the com-
plement of the checksum, the correspondingly complemented
form of the recipe is more directly useful: ˜C′ = ˜(C + ˜m + m′),
where ˜ (tilde) denotes the (1’sones’) complement operation. See
???. Note that the tilde on the right hand side of the equation
cannot be distributed over the contents of the parentheses due to
the dual nature of zero in 1’ s ones’ complement arithmetic (?).

J.5. Example C Code code for Accumulating accumulating
the Checksumchecksum

The 1’ s ones’ complement checksum is simple and fast to com-
pute. This routine assumes that the input records are a multiple of
4 four bytes long (as is the case for FITS FITS logical records),
but it is not difficult to allow for odd length records if neces-
sary. To use this routine, first initialize the CHECKSUMkeyword
to ’0000000000000000’and initialize sum32 = 0CHECKSUM
keyword to ’0000000000000000’ and initialize sum32 = 0,
then step through all the FITSFITS logical records in the FITS
FITS HDU.

void checksum (
unsigned char *buf, /* Input array of bytes to be checksummed */

/* (interpret as 4-byte unsigned ints) */
int length, /* Length of buf array, in bytes */

/* (must be multiple of 4) */
unsigned int *sum32) /* 32-bit checksum */

{
/*

Increment the input value of sum32 with the 1's complement sum
accumulated over the input buf array.

*/
unsigned int hi, lo, hicarry, locarry, i;

69

D
R

AF
T

70

/* Accumulate the sum of the high-order 16 bits and the */
/* low-order 16 bits of each 32-bit word, separately. */
/* The first byte in each pair is the most significant. */
/* This algorithm works on both big and little endian machines.*/
hi = (*sum32 >> 16);
lo = *sum32 & 0xFFFF;
for (i=0; i < length; i+=4) {

hi += ((buf[i] << 8) + buf[i+1]);
lo += ((buf[i+2] << 8) + buf[i+3]);

}

/* fold carry bits from each 16 bit sum into the other sum */
hicarry = hi >> 16;
locarry = lo >> 16;
while (hicarry || locarry) {

hi = (hi & 0xFFFF) + locarry;
lo = (lo & 0xFFFF) + hicarry;
hicarry = hi >> 16;
locarry = lo >> 16;

}

/* concatenate the full 32-bit value from the 2 halves */
*sum32 = (hi << 16) + lo;

}

J.6. Example C Code code for ASCII Encodingencoding

This routine encodes the complement of the 32-bit HDU check-
sum value into a 16-character string. The byte alignment of the
string is permuted one place to the right for FITSFITS to left
justify the string value starting in column Column 12.

unsigned int exclude[13] = {0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40,
0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60 };

int offset = 0x30; /* ASCII 0 (zero) */
unsigned long mask[4] = { 0xff000000, 0xff0000, 0xff00, 0xff };

void char_encode (
unsigned int value, /* 1's complement of the checksum */

/* value to be encoded */
char *ascii) /* Output 16-character encoded string */

{
int byte, quotient, remainder, ch[4], check, i, j, k;
char asc[32];

for (i=0; i < 4; i++) {
/* each byte becomes four */
byte = (value & mask[i]) >> ((3 - i) * 8);
quotient = byte / 4 + offset;
remainder = byte % 4;
for (j=0; j < 4; j++)

ch[j] = quotient;

ch[0] += remainder;

for (check=1; check;) /* avoid ASCII punctuation */
for (check=0, k=0; k < 13; k++)

for (j=0; j < 4; j+=2)
if (ch[j]==exclude[k] || ch[j+1]==exclude[k]) {

ch[j]++;
ch[j+1]--;
check++;

}

for (j=0; j < 4; j++) /* assign the bytes */
asc[4*j+i] = ch[j];

}

for (i=0; i < 16; i++) /* permute the bytes for FITS */
ascii[i] = asc[(i+15)%16];

ascii[16] = 0; /* terminate the string */
}

Appendix K: Header inheritance convention

This Appendix appendix is not part of the FITSstandardFITS
Standard, but is included for informational purposes.

The reserved boolean INHERITBoolean INHERIT keyword
described in Sect. ??.6 is optionaloptional, but if present it
shallshall appear in the extension header immediately after the
mandatory keywords. The INHERITkeyword must notINHERIT
keyword must not appear in the primary header. Keyword inher-
itance provides a mechanism to store keywords in the primary
HDU, and have them be shared by one or more extensions in the
file. This mechanism minimizes duplication (and maintenance)
of metadata in multi-extension FITS FITS files.

It shouldshould only be used in FITSFITS files that have a
null primary array (e.g., with NAXIS NAXIS =0 0). to avoid
possible confusion if array-specific keywords (e.g., BSCALEand
BZEROBSCALE and BZERO) were to be inherited.

When an application reads an extension header with
INHERIT INHERIT =T, it should T, it should merge the key-
words in the current extension with the primary header key-
words. The exact merging mechanism is left up to the appli-
cation. The mandatory primary array keywords (e.g., BITPIX,
NAXIS, and NAXISnBITPIX, NAXIS, and NAXISn) and any
COMMENT, HISTORYCOMMENT, HISTORY, and blank key-
words in the primary header must notmust not be inherited.
It is assumed also that the table-specific keywords described
in Sect. ?? and ??, and the table-specific WCS keywords de-
scribed in Sect. ??, cannot be inherited since they will never
appear in the primary header. If the same keyword is present
in both the primary header and the extension header, the value
in the extension header shallshall take precedence. If INHERIT
INHERIT =F F in an extension header, the keywords from the
primary header shouldnot should not be inherited.

An application which that merely reads a FITS FITS file is
authorized by INHERIT INHERIT =T T to look in the primary
HDU for an expected keyword not found in the current HDU.
However if the application writes out a modified file, it has
to be very careful to avoid unwanted duplication of keywords,
and preserve the separation of primary and extension headers.
If an application modifies the value of an inherited keyword
while processing an extension HDU, then it is recommended
recommended to write the modified value of that keyword into
the extension header, leaving the value of the keyword in the
primary header unchanged. The primary array keywords should
should only be modified when the intent is to explicitly change
the value that will subsequently be inherited in the extensions.

Also if the FITS FITS file is read in sequentially (e.g., from
tape or Internet downloads), the reader would need to cache the
primary header in case it turns out that a later extension in the
file uses the INHERIT INHERIT keyword.

Appendix L: Green Bank convention

This Appendix appendix is not part of the FITSstandardFITS
Standard, but is included for informational purposes.

The Green Bank convention was developed at a meet-
ing in October 1989 at the US National Radio Astrononomy
Astronomy Observatory in Green Bank, West Virginia, to dis-
cuss the use of FITS for single dish radio astronomy FITS for
single-dish radio-astronomy data, and has since been widely
used in conjunction with the SDFITS convention16. It was de-
vised primarily to record WCS keywords independently for each
row of a table containing an image array column, but subse-
quently it has found more general more-general application.

16 http://fits.gsfc.nasa.gov/registry/sdfits.html

70

http://fits.gsfc.nasa.gov/registry/sdfits.html

D
R

AF
T

71

The basic idea is that of expanding header keywords into
binary table binary-table columns, and vice versa, of collaps-
ing unvarying binary table binary-table columns into header key-
words.

For example, the standard header keyword DATE-OBS, which
records the date and time of observation, could be expanded into
a column with TTYPEnTTYPEn = ’DATE-OBS’’DATE-OBS’ to
record the date and time independently for each row of a binary
table. Conversely, a binary table column with TTYPEn binary-
table column with TTYPEn= ’HUMIDITY’’HUMIDITY’ con-
taining the same value in each row, could be collapsed into a
keyword, HUMIDITY, that recorded the constant value.

When the Green Bank convention is used (and arguably
otherwise)a keyword should not , a keyword should not coexist
with a column of the same name within a single binary table.
Should this situation occur, the column value takes precedence
over the keyword.

When expanding keywords into columns, the Green Bank
convention applies to all FITS FITS keywords that may appear
in a binary table except for the following, most of which de-
scribe the structure or identity of a binary table HDU: XTENSION,
BITPIX, NAXIS, NAXISn, PCOUNT, GCOUNT, TFIELDS, EXTNAME,
EXTVER, EXTLEVEL, , , , , , , TTYPEn, TFORMn, TUNITn, TSCALn,
TZEROn, TNULLn, TDISPn, THEAP, TDIMn, DATE, ORIGIN,
COMMENT, HISTORY, CONTINUE, and END.

In order to collapse a column into a keyword, the name of
the column (given by) must TTYPEn) must be a valid keyword
name, and the column’s constant value must must be amenable
to representation as a valid keyvalue.

Software that implements the Green Bank convention must
must take into account the possibility that any “keyword” (apart
from those on the proscribed list), such as DATE-OBS, may
change value from row to row of a table. Moreover, when search-
ing the header for a particular keyword, it must first consider
the values of the TTYPEn keywords in case the desired keyword
has been expanded as a column. Likewise, it must consider each
header keyword potentially as a collapsed column, so that a re-
quest for the value in a particular row or rows of the non-existent
’HUMIDITY’HUMIDITY column would be satisfied by the value
of the HUMIDITY keyword.

References
Note: Many of these FITSFITS references are available electronically from the

NASA Astrophysics Data System (ADS) and/or the FITSSupport Office web
sites FITS Support Office websites at
http://adswww.harvard.edu and
http://fits.gsfc.nasa.gov/fits_documentation.html.

Allen, S. & Wells, D. 2005, IETF RFC 4047,
http://www.ietf.org/rfc/rfc4047.txt

ANSI 1977, American National Standard for Information Processing: Code
for Information InterchangeAmerican National Standard for Information
Processing: Code for Information Interchange, ANSI X3.4–1977 (ISO 646)
New York: American National Standards Institute, Inc.

Braden, R. T., Borman, D.A., and Partridge, C. 1988 ACM Computer
Communication Review, 19, no. 2, 86, IETF RFC 1071,
https://tools.ietf.org/html/rfc1071

Bradner, S. 1997, IETF RFC 2119, http://www.ietf.org/rfc/rfc2119.
txt

Bunclark, P. & Rots, A. 1997, Precise re-definition ofDATE-OBSKeyword en-
compassing the millenniumPrecise re-definition of DATE-OBS Keyword en-
compassing the millennium,
http://fits.gsfc.nasa.gov/year2000.html

Calabretta, M. R. & Greisen, E. W. 2002, A&A, 395, 1077

Calabretta, M. R. & Roukema, B. F. 2007, MNRAS, 381, 865
Cotton, W. D., Tody, D. B., & Pence, W. D. 1995, A&AS, 113, 159
Cotton, W. D., et al. 1990, Going AIPS: A Programmer’s Guide to the NRAO

Astronomical Image Processing SystemGoing AIPS: A Programmer’s Guide
to the NRAO Astronomical Image Processing System, Charlottesville: NRAO

Deutsch P. 1996, RFC 1951, Network Working Group; available online: http:
//tools.ietf.org/html/rfc1951

Folkner, W. M., Williams, J. G., & Boggs, D. H. 2009, Interplanetary Network
Progress Report 42-178, available online: http://tmo.jpl.nasa.gov/
progress_report/42-178/178C.pdf

Folkner, W. M. et al. 2014, Interplanetary Network Progress Report 42-
196, available online: http://ipnpr.jpl.nasa.gov/progress_report/
42-196/196C.pdf

Greisen, E. W. & Calabretta, M. R. 2002, A&A, 395, 1061
Greisen, E. W., Calabretta, M. R., Valdes, F. G., & Allen, S. L. 2006, A&A, 446,

747
Greisen, E. W. & Harten, R. H. 1981, A&AS, 44, 371
Grosbøl, P., Harten, R. H., Greisen, E. W., & Wells, D. C. 1988, A&AS, 73, 359
Grosbøl, P. & Wells, D. C. 1994, Blocking of Fixed-block Sequential Media and

Bitstream DevicesBlocking of Fixed-block Sequential Media and Bitstream
Devices, http://fits.gsfc.nasa.gov/blocking94.html

Hanisch, R., et al. 2001, A&A, 376, 359
Harten, R. H., Grosbøl, P., Greisen, E. W., & Wells, D. C. 1988, A&AS, 73, 365
IAU 1983, Transactions of the IAUTransactions of the IAU, XVIIIB, 45
IAU 1988, Transactions of the IAUTransactions of the IAU, XXB, 51
IAU 1997, Resolution B1 of the XXIIIrd General Assembly – Transactions of the

IAU Vol. XXIII B, Ed. J. Andersen, (Dordrecht: Kluwer). Available online:
http://www.iau.org/static/resolutions/IAU1997 French.pdf

IEEE 1985, American National Standard – IEEE Standard for Binary Floating
Point ArithmeticAmerican National Standard – IEEE Standard for Binary
Floating Point Arithmetic, ANSI/IEEE 754–1985, New York: American
National Standards Institute, Inc.

Irwin, A. W. & Fukushima, T. A. 1999, A&A348, 642
ISO 2004, Information technology – Programming languages –

FortranInformation technology – Programming languages – Fortran, ISO/
IEC 1539-1:2004, Geneva: International Organization for Standardization

ISO 2004b, International Standard ISO 8601:2004(E), Data elements and in-
terchange formats – Information interchange – Representation of dates and
times

NASA/JPL Planetary Ephemerides 2014a, available online: http://ssd.jpl.
nasa.gov/?ephemerides

NASA/JPL Solar and Planetary Ephemerides 2014b, available online: http:
//ssd.jpl.nasa.gov/?planet_eph_export

Mallory, T. & Kullberg, A. 1990, IETF RFC 1141,
https://tools.ietf.org/html/rfc1141

McNally, D., ed. 1988, Transactionsof the IAU, Proceedings of the Twentieth
General AssemblyTransactions of the IAU, Proceedings of the Twentieth
General Assembly (Dordrecht: Kluwer)

Park, X. & Miller, X. 1988, Comm. ACM, 31, Issue 10, 1192; available online:
http://dl.acm.org/citation.cfm?id=63042

Pence, W. D., Seaman, R., & White, R. L. 2009, PASP, 121, 414
Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., & Stobie, E. 2010, A&A,

524, A42
Pence, W. D., Seaman, R., & White, R. L. 2013, Tiled Table Convention

for Compressing FITS Binary Tables, FITS FITS Support Office;
available online: http://fits.gsfc.nasa.gov/registry/
tiletablecompression.html

Ponz, J. D., Thompson, R. W., & Muñoz, J. R. 1994, A&AS, 105, 53
Rice, R. F., Yeh, P.-S., & Miller, W. H. 1993, in Proc. 9th AIAA Computing in

Aerospace Conf., AIAA-93-4541-CP, American Institute of Aeronautics and
Astronautics

Rijsinghani, A. (ed.) 1994, IETF RFC 1624,
https://tools.ietf.org/html/rfc1624

Rots, A. H., Bunclark, P. S., Calabretta, M. R., Allen, S. L., Manchester, R. N.
& Thompson, W. T. 2015, A&A, 574, A36

Schmitz, M., et al. 1995, Information & On-line data in AstronomyInformation
& On-line data in Astronomy, eds. D. Egret & M. A. Albrecht (Kluwer
Academic Pub.), 259

Standish, E. M. 1990, A&A, 233, 252
Standish, E. M. 1998, JPL Memo IOM 312.F-98-048
Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 363
Wells, D. C. & Grosbøl, P. 1990, Floating Point Agreement forFITSFloating

Point Agreement for FITS, http://fits.gsfc.nasa.gov/fp89.txt
White, R. L. 1992, in Proceedings of the NASA Space and Earth Science Data

Compression Workshop, ed. J. C. Tilton, Snowbird, UT; available online:

71

http://adswww.harvard.edu
http://fits.gsfc.nasa.gov/fits_documentation.html
http://www.ietf.org/rfc/rfc4047.txt
https://tools.ietf.org/html/rfc1071
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://fits.gsfc.nasa.gov/year2000.html
http://tools.ietf.org/html/rfc1951
http://tools.ietf.org/html/rfc1951
http://tmo.jpl.nasa.gov/progress_report/42-178/178C.pdf
http://tmo.jpl.nasa.gov/progress_report/42-178/178C.pdf
http://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf
http://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf
http://fits.gsfc.nasa.gov/blocking94.html
http://ssd.jpl.nasa.gov/?ephemerides
http://ssd.jpl.nasa.gov/?ephemerides
http://ssd.jpl.nasa.gov/?planet_eph_export
http://ssd.jpl.nasa.gov/?planet_eph_export
https://tools.ietf.org/html/rfc1141
http://dl.acm.org/citation.cfm?id=63042
http://fits.gsfc.nasa.gov/registry/tiletablecompression.html
http://fits.gsfc.nasa.gov/registry/tiletablecompression.html
https://tools.ietf.org/html/rfc1624
http://fits.gsfc.nasa.gov/fp89.txt

D
R

AF
T

72

https://archive.org/details/nasa_techdoc_19930016742
White, R. L., & Greenfield, P. 1999, in ADASS VIII, ASP Conf. Ser. 172, eds.

D. M. Mehringer, R. L. Plante, & D. A. Roberts (San Francisco: ASP), 125
White, R. L., Greenfield, P., Pence, W., Tody, D. & Seaman, R. 2013, Tiled

Image Convention for Storing Compressed Images in FITS FITS Binary
Tables, FITS FITS Support Office; available online: http://fits.gsfc.
nasa.gov/registry/tilecompression.html

Ziv, J., & Lempel, A. 1977, IEEE Transactions on Information Theory, 23 (3),
337

72

https://archive.org/details/nasa_techdoc_19930016742
http://fits.gsfc.nasa.gov/registry/tilecompression.html
http://fits.gsfc.nasa.gov/registry/tilecompression.html

D
R

AF
T

Index

Nbits, 11, 12, 17

angular units, 10, 31
ANSI, 3, 56
ANSI, IEEE, 16, 26
array descriptor, 22–24, 26–29
array size, 11, 12, 17
array value, 3, 4, 14, 20
array, multi-dimensional, 5, 24, 30, 59
array, variable-length, 1, 24, 27–29, 59
ASCII character, 3, 16, 19, 21, 56
ASCII table, 19
ASCII text, 3–5, 7, 13, 21, 25, 56
ASCII, ANSI, 66
AUTHOR, 13

binary table, 4, 16, 22, 54
BITPIX, 11, 12, 14, 16–19, 22
BLANK, 14, 16
blocking, 6
BSCALE, 14, 16
BUNIT, 14
byte order, 5, 16, 26
BZERO, 14, 16

case sensitivity, 6, 7, 10, 20, 23
character string, 3, 7, 21, 24, 25
checksum, 15, 45, 48, 49, 62–65
COMMENT, 6, 13
complex data, 9, 23, 26, 27
compressed binary tables, 48, 54, 62
compressed images, 44, 54, 62
compression algorithms, 44, 49, 50
compression, lossy, 48
conforming extension, 3–5
CONTINUE, 6, 7, 62
coordinate systems, 29

DATAMAX, 14
DATAMIN, 14
DATE, 12, 42
DATE-OBS, 13, 42
DATExxxx, 13, 42
deprecate, 3, 4, 6, 9, 13, 16, 22, 30, 31, 34
dithering, 47
durations, 43

END, 5, 11, 17, 18, 20, 22, 28
EPOCH, 34
EQUINOX, 34
EXTEND, 12
extension, 3–5, 15, 16, 59, 61
extension registration, 5, 11
extension type name, 3, 5, 11, 15
extension, conforming, 3–5
extension, standard, 4, 5
EXTLEVEL, 15
EXTNAME, 15
EXTVER, 15

field, empty, 22, 25, 26
file size, 4
fill, 5, 6, 11, 18, 20, 21, 24, 25, 28
FITS structure, 3, 4, 6, 12
floating-point, 8, 26, 56
floating-point FITS agreement, 67
floating-point, complex, 9, 26
format, data, 16
format, fixed, 7
format, free, 7, 8, 52
format, keywords, 7
Fortran, 5, 19–21, 24, 66

GCOUNT, 12, 17–19, 22
Green Bank convention, 31, 62, 66
group parameter value, 3, 17, 18
GROUPS, 17
GTI tables, 43
GZIP compression, 50

H-compress algorithm, 51
HDU, 4, 11
HDU, extension, 3, 4
HDU, primary, 3–5
header space, preallocation, 14, 62
heap, 4, 12, 22–24, 26, 28
HISTORY, 6, 14
hyphen, 6, 20, 23, 31, 34

IAU, 1, 4, 66
IAU Style Manual, 10, 67
IAUFWG, 1, 4–6, 11, 29, 41, 59
IEEE floating-point, 16
IEEE special values, 4, 14, 16, 56
image extension, 18
INHERIT, 15, 62, 65
INSTRUME, 13
integer, 16-bit, 16, 26
integer, 32-bit, 16, 26
integer, 64-bit, 16, 26
integer, complex, 9
integer, eight-bit, 16, 26
integer, unsigned, 14, 16, 23, 26
ISO-8601 date, 37

JD, 37

keyword record, 5, 6
keyword, commentary, 6, 13
keyword, indexed, 4, 6, 11
keyword, mandatory, 7, 10, 17–19, 22, 54
keyword, new, 16
keyword, order, 11, 17, 19
keyword, required, 4, 10, 11, 17, 18, 22, 44, 48
keyword, reserved, 4, 12, 17, 18, 20, 22, 30, 31, 42, 45, 49,

54
keyword, valid characters, 6

logical value, 8, 25, 26

73

D
R

AF
T

74

magnetic tape, 6
min and max in columns, keywords, 20, 24, 62
MJD, 37

NaN, IEEE, 16, 26, 56, 57
NAXIS, 4, 5, 11, 12, 17–19, 22
NAXIS1, 17, 19, 21, 22, 24, 25, 28
NAXIS2, 19, 21, 22, 24, 25, 28
NAXISn, 5, 11, 12, 17, 18
NULL, ASCII, 3, 25

OBJECT, 13
OBSERVER, 13
order, byte, 5, 16, 26
order, extensions, 5
order, FITS structures, 4
order, keyword, 6, 11, 17, 19
ORIGIN, 12

PCOUNT, 12, 17–19, 22, 28
phase, 43
physical value, 3, 4, 14, 17, 18, 20, 23
PLIO compression, 50
primary data array, 3–5, 17, 18
primary header, 3, 4, 11, 17
PSCALn, 17, 18
PTYPEn, 17, 18
PZEROn, 17, 18

quantization of data, 46, 63

random groups, 3, 16, 17
random-groups, 14
random-groups array, 17
REFERENC, 13
repeat count, 4, 22, 25
Rice compression, 50

scaling, data, 17, 18, 20, 23
sign bit, 16
sign character, 8, 21
SIMPLE, 5, 11, 17
slash, 7, 10
solar system ephemeris, 41
special records, 3–5
special values, IEEE, 26
standard extension, 4, 5

TABLE, 19
TBCOLn, 19
TDIMn, 24
TDISPn, 20, 24
TELESCOP, 13
TFIELDS, 19, 22
TFORMn, 19, 22, 25, 26, 28
THEAP, 24, 28
time, 12, 13, 34, 36, 37
time keywords, 42
time reference, 38
time reference direction, 40
time reference position, 39
time resolution, 42
time scale, 37, 38

time units, 41
time, universal, 12, 38
timelag, 43
TIMESYS, 37
TNULLn, 20, 21, 24, 26
TSCALn, 20, 23, 28
TTYPEn, 20, 23
TUNITn, 20, 23
two’s complement, 16, 26
TZEROn, 20, 23, 28

underscore, 6, 20, 23
units, 4, 10, 14, 20, 23, 31, 36

value, 6, 7, 12
value, undefined, 7, 14, 16, 20, 21, 24, 60
variable-length array, 1, 24, 27–29, 59
variable-length arrays, compression, 49

WCS, 29
WCS, celestial, 34
WCS, spectral, 34
WCS, timing, 36, 62

XTENSION, 3, 5, 11, 15, 18, 19, 22

74

