
Solicited talk at the 5th Intnl. Workshop on 'Data Analysis in Astronomy',

Erice, Oct 27-Nov 3 1996, to be published by World Scientific Publishing Corp.

1

THE XAS DATA ANALYSIS SYSTEM

 L.CHIAPPETTI
Istituto di Fisica Cosmica (IFCTR), CNR, via Bassini 15, I-20133 Milano, Italy

 D.DAL FIUME
 Istituto TeSRE, CNR, via Gobetti 101, I-40129 Bologna, Italy

The X-ray astronomy Analysis System (XAS) has been developed as a prototype
software in view of the SAX mission . In this paper a description of the XAS
architecture and implementation is given.

1 Introduction and history

The X-ray astronomy Analysis System (XAS) is a software package developed in the
framework of the SAX mission,1 with particular regard to the support of the Italian
Narrow Field Instruments.2-4

Discussions about analysis software for SAX started within SAX Consortium
Institutes since 1985 (with a very inhomogeneous computer base, from IBM
mainframes to HP minis and early VAXes). A request was soon placed to the Italian
Space Agency for procurement of common (VAX) hardware, but the need for
portability to Unix (unknown to most of us until 1990) was already a clear design
goal. Most of the early design was done during 1988-90, resulting in an ambitious
Proposal for XAS specifications (the "XAS dream book"). This idea for an overall,
mission independent X-ray astronomy reduction and analysis package was soon
descoped due to chronical lack of dedicated manpower, although the basic guidelines
(see Sec. 2) were preserved. Coding of the system-dependent library started in 1991,
and a first prototype of XAS was available internally at the end of 1992. The work
continued since then intermittently, compatibly with our activities within and
outside SAX, and with very limited manpower. XAS-compatible ad-hoc programs
have been used within SAX Italian Institutes for the analysis of ground calibrations
since 1994. A central "compensation chamber" for maintenance of a SAX software
archive (at SAX SDC5) has been created only in late 1995. During 1996 XAS was
tailored to real flight data, and final adjustments are in progress.

2 Design guidelines

Portability at least to VMS and Unix has been achieved isolating system dependent
features in a small number of routines in a single library (the VOS library, Sec.3.4).
We also chose to support only the minimum number of features really needed (a
"reduced instruction VOS"). This approach proved successful and 93% of the code is

2

system independent (actually for a long time we kept a single physical set of master
sources on a VMS disk NFS-mounted from Ultrix and Sun machines).

Ease of installation implies that no system privileges (any user can install XAS)
and no excessive disk space are required , there are no excessive or unusual resource
requirements, and there is a simple directory organization (Sec. 3.5).

We wanted the software to be under full control of the developers, therefore we
use our own XAS file format (Sec. 3.7), do not depend on commercial libraries (but
use only home-grown or public domain code), do not use any overarching externally-
designed environment.

Also for ease of programming we adopted a layered design of library routines,
isolated specific competences (e.g Xlib or Postscript graphics programming, or SAX
instrument knowledge) in single modules (allowing in principle to have separate
persons doing independent development), and, chiefly, coded almost entirely in
Fortran (the language of election in our scientific community). Actually only 5% of
our Unix code (and less than 1% of our VMS code) is written in C (and with the
exception of one Xlib front-end this is all concentrated in VOS "jacket" routines).

Efficiency has been achieved using small, layered, library routines, using native
internal representation in the XAS file format, making use of dynamical memory
allocation, adopting a client-server approach to graphics (Sec. 3.8).

Ease of use is achieved by a consistent and versatile user interface (supporting
command line, interactive query-and-answer and parameter files), avoiding the use of
an overarching monitor or shell, allowing access to system environment variables,
and replacing simple procedures by front-end dispatcher programs.

Mission independence is achieved using an ad-hoc XAS file format for reduced
data products, accumulated as soon as possible from the mission-dependent telemetry,
and using environment variables and file keywords to control mission- and
instrument-specific items.

We also wished XAS to be open to users' favourite analysis packages, therefore
the XAS file format was designed to be easily mappable to FITS (for easy
exchange/export to/with major packages). XAS files are immediately usable from
IDL or SAOImage. Interface problems are isolated in specific conversion modules
(to/from plain and OGIP flavours of FITS), which allow to simplify maintenance.

3 Architecture

3.1 User interface

In XAS there is no monolithic data pipeline, and no overarching monitor program,
but simple standalone programs which are called on the command line. Command
procedures (scripts) are left at host shell level (according to users' preferences).

3

Each command can be invoked in a fully interactive manner (just issuing the
program name), in which case the user will be prompted for all necessary arguments.
Otherwise all arguments can be passed on the command line, e.g. as in

accumulate hk file parameter pkt yy mm dd hh mm ss yy mm dd hh mm ss binsize

or some arguments only are passed on the command line (those missing will be
prompted). Runstring arguments are usually echoed simulating query-and-answer
dialogue. Finally one can put all or part of the arguments in a command file (one
query per line) and use a global variable (see Sec. 3.2) to signal the program to use
the command file instead of the terminal for input. Any argument present on the run
string has precedence over command file, and is also possible to force a command file
to always prompt interactively for a specific argument, using an escape character..
Command files are useful as standard setup parameter files, e.g. one can do

xasset command mysetup
accumulate hk myfile ,, m1dir002

in order to accumulate an HK profile myfile from MECS unit 1 direct packets, using
standard setup with 60 sec binsize, for counts above minimum energy, where
mysetup.command is

! ! filename (escape to terminal query)
valemin ! parameter name
! ! packet type (escape to terminal query)
,,,,,, ! start time = default
,,,,,, ! end time = default
60 ! binsize

The global variable command is peculiar as it retains its value only across the
execution of the next program. It can however be forced to permanent (e.g to analyse
different datasets with a common setup).

It shall be noted also that a command may actually run different programs (this
uses a VOS call; Sec. 3.4). This is used (instead of system-dependent scripts) as a
mechanism to implement dispatchers. E.g. a command like accumulate hk or
accumulate image etc. will actually run a program saxhkaccum or saxiaccum etc.
dedicated to the accumulation of HK time profiles, images, etc. Or a command like
display file will run a program splot, tplot or idisp to display graphically a spectrum,
time profile or image, sensing the type of file (from the extension or from
environment settings). This also allows to keep an English-like syntax for
commands.

4

3.2 The environment

Communication between the user and the programs run by hir (other than program
arguments described above), as well as between programs run in sequence, is obtained
using global variables. XAS global variables are implemented as VMS global
symbols, or Unix environment variables. The collection of XAS and non-XAS
global variables is termed the environment.

XAS global variables are set either programmatically via a VOS call or by the
user via the dedicated command xasset variable value. Some (graphics-related)
variables whose value is a comma-separated list of items are set via command
xasplot (e.g. xasplot xaxis 0.1 10). One should always use xasset (or xasunset) to
handle XAS variables and operating system commands to use non-XAS variables.

The two environments (XAS and system) shall coexist and be disjoinct (each one
shall appear as a readonly environment to the other), so that XAS program may
access also the system environment and shell scripts may access the XAS
environment. XAS global variables have a system name obtained prefixing XAS_ to
the XAS name (i.e. xasset pinco panco will set environment variable XAS_PINCO).
A query of the value of a non-existing XAS variable may fall back to the value of a
system variable of the same (unprefixed) name if one exists. Coexistence of both
environments is easy in VMS, while in Unix there might be problems since children
inherit the environment from parents but do not pass back any modified
environment. This is overcome saving the XAS environment to an intermediate file,
which is linked to the duration of the login session. A dedicated command is needed
in Unix to import back the XAS environment to scripts wishing to use it.

Global variables are extensively used to control and tune the behaviour of
programs (alter default) in all cases in which this is done infrequently and it would
not be worth cluttering the command line with extra arguments. Some examples are:
to set the "chat level" of some programs (quiet); to define a default data type (images,
spectra etc.) to be assumed by following commands (context); to set paths for
datafiles (Sec. 3.3); to enable or disable HK conversion to engineering units
(hkconvert); to apply time windows or corrections (and relevant options) to
accumulations; to control axis, scaling, colours, style etc. of graphics

A list of all global variables and their usage will be placed in the XAS HTML
help files (preliminary version at http://sax.ifctr.mi.cnr.it/Xashelp).

3.3 Data directory organization

A XAS user does not have to type long path names, but usually needs to indicate
just a filename. The system supplies the filetype (e.g. .image, .spectrum etc.) and
the directory path according to context and environment information. Nevertheless
the user is able to create files elsewhere than in the current working directory.

5

This is done via a set of global variables (Sec. 3.2), which define : a virtual root
(rootdir); a directory for FOT telemetry files (fotdir); a directory for reduced data files
(datadir); a directory for "printouts" (printdir). In addition one can specify a
substructure by target, observation date and instrument, and select the order in
which the latter information are arranged in a hierarchy. A BUILDPATH routine takes
care of creating the proper path (e.g. /re/Monitor/CygX1/Sep12/tpm1.time).

The same routine is also used to locate calibration files in the instrument
specific directory (e.g. $XASTOP/calib/sax/mecs/mecs.pcf) allowing portable
programs not to be affected by system-dependent filenames. The mycaldir
environment variable allows the user to use private calibration files in preference of
the XAS-supplied ones.

3.4 The VOS (Virtual Operating System) library

The VOS library isolates all system dependent code. VOS routines (whose name
starts with Z_) have the same calling interface on all systems.

On VMS systems all of them (with the exception of a couple of memory
allocation/deallocation routines which mimic the Unix ones) are written in Fortran
and call directly VMS system or library services. Auxiliary routines are hidden to the
user and located in the same source code file.

On Unix systems top level routines are written in Fortran. Most of them call C
"jacket" routines (zc_), whenever possible POSIX-compliant, which take care of all
adaptions (conversion of exotic argument types, linking system calls when they are
not Fortran callable, ...). The differences between different flavours of Unix is
confined in about 10 routines.

The following is the list of functionalities implemented at VOS level.
In the file access area (see also Sec. 3.6), there are calls to: open a file (replacing

Fortran OPEN); return file information (replacing/supplementing Fortran INQUIRE);
converting VOS file names to system-dependent names; delete a file ; rename a file.

In the environment access area (Sec. 3.2), there are calls to: retrieve the run
string; return or set a global variable ; terminate program passing back a status code.

In the inter-process operation area there are calls to: run a program concatenating
it to the current process (in VMS activating another image in the same process, in
Unix execvp'ing a command); spawn a program as a separate process (subprocess in
VMS) which then runs independently ; create, open and test a communication
channel among two programs ; perform i/o across it. Communication channels are
implemented in VMS as mailboxes, and in Unix as named pipes.

Some miscellaneous utilities are available to : allocate and deallocate memory
(in a Fortran-friendly way) ; detect a control-C interrupt to handle "gracious
termination" ; convert REAL and DOUBLE floating data (IEEE to/from VMS).

It is also possible to do some miscellaneous queries like : return the current

6

operating system; return the host name; return current terminal device name and size
(rows and columns); return user name (userid and full name) ; return current system
time; return time current login session started.

Since August 1996 the current development system for XAS is Digital Unix
(formerly OSF/1); formerly the VOS library had been fully developed in parallel
under VMS and Ultrix. Support to XAS on VAXes is now somewhat limited due to
the discontinuation of hardware maintenance of such machines at our Institutes
Unsupported ports to SunOS 4.1.X (at IFCTR Milano and later at SAX SDC) and to
HP-UX (at ITESRE Bologna) are also available. Port to AXP VMS on Alpha
platform has been investigated, and should involve limited changes. However, since
there is no availability of such hardware, no work in this area is planned. For similar
reasons no work on a port to Solaris 2 on Sun platforms is planned.

3.5 Software directory organization

The following diagram illustrates the directory tree of the XAS software distribution.
The config directory is present only on Unix (see Sec. 4). The top directory is

site-dependent and shall be stored in a (system) global variable XASTOP. Italics
indicate directories whose content is system-dependent (but instlib indicates a
multiplicity of instrument specific libraries (mecslib, pdslib, hpgslib).

$XASTOP____________ _________ bin program executables
________ calib calibration file sub-tree
______ config xasbuild sub-tree
________ doc bug list and misc doc
_____ external _____ ________ fitsio external library sources
______ include Fortran include files
__________ lib relocatable libraries
___ libsource _____ ________ fotlib library sources SAX tlm

______ general utilities
____ graphserv low level graphics
_______ instlib instrument specific
____ xasgraph high level graphics
_______ xaslib XAS file handling

________ local for local customization
______ source main program sources
________ vos VOS library source

The total size of XAS sources is some 25000 lines of code (excluding comment), or
about 2 Mbyte with comments. The size of the binaries is system dependent (e.g. 10
Mbyte for OSF but 40 for Ultrix) according to loader details.

7

3.6 Input-output

XAS deals with two basic kinds of file : binary data files and auxiliary/ancillary files.
Binary data files are intended for Fortran DIRECT access and include SAX-specific

telemetry files (FOT files), and mission-independent reduced data files (XAS files).
Auxiliary and ancillary files are plain ASCII files, intended for sequential access.

For portability reasons they are implemented on all operating systems as newline-
terminated files (STREAM_LF in VMS parliance), allowing NFS access inclusive of
the VMS<->Unix case.

A VOS routine layer allows generic file access using Fortran in a portable
manner with a minimum of change to usual coding practice (the OPEN and INQUIRE
calls are replaced, but normal READ and WRITE are used).

An exception to the above restriction (direct access unformatted, and sequential
formatted access only) is made only for the interprocess communication across a
channel (Sec. 3.4) which occurs on the operating systems which supports it using
Fortran unformatted sequential access, and otherwise through a layer of C routines.

3.7 XAS file formats

XAS reduced data files are binary files in native machine representation, sharing a
common design (all files are direct access with a natural record length corresponding
e.g. to the image or table width, and a number of records corresponding to the
number of image or table rows ; also all files share the same kind of header).

Two main classes of data files exist : image format data include images, pseudo-
images (any 2-d equispaced data) and response matrices ; tabular format data include
spectra, time profiles (both count rate and housekeeping), photon lists and any
generic table.

XAS files are logically divided into a data part (organized as described above) and
a header. The header is logically made of a number of keywords, which can be
numeric- or string-valued. Keyword naming is consistent with FITS (8 character
names etc.), and so is the maximum allowed length of a string value. Numeric data
are however kept in binary representation, and a keyword value may also be an array
of values. The entire header is read in memory with one operation.

For practical reasons the header proper is located at the end of the file, allowing
this to be freely extensible (e.g. to add HISTORY or comments after file
manipulation). A mini-header of no less than 28 bytes is located in the first record(s)
of the file and contains basic information (a magic number, the record length and the
number of data and header records).

A layer of system-independent routines (above the VOS i/o ones, Sec. 3.4)
allows basic access to XAS files, and handling of header keywords. An higher layer
allows handling of specific data classes (images, spectra, time profiles, etc.)

8

XAS files can be used as they are from IDL (see Sec. 6) or SAOimage (a
saodisp command constructs the adequate runstring), or can be exported to MIDAS,
IRAF,XSPEC after conversion to FITS. An additional utility (localize) allows to
convert XAS files among different operating system internal representations.

A "XAS ASCII" file format (defined as tabular data preceded by a specially-
formatted "magic" header) is used for some calibration files and for access via IDL
add-on software (see Sec. 6).

3.8 Graphics

The design goal for XAS graphics was to provide a limited set of simple utilities
able to produce standard quick look plots, not publication quality graphics, which is
left to each user's favourite tool (e.g. IDL, SAOimage, MIDAS, QDP, etc.).

From an user perspective all graphics occur via two commands, display and
overtrace, followed by a XAS file name (be it of type image, spectrum or time
profile). The former command draws on a fresh frame, the latter overplots on an
existing one. These commands are just dispatchers to the appropriate filetype-
dependent utility. Additional programs allow graphic input (e.g. to use the mouse to
define time or intensity windows).

From a programmer perspective any graphics (client) program uses high level
calls (axes, labels, error bars ...) from the xasgraph library, and lower level calls
from the graphserv library. These lower level calls correspond to a small set of
graphics primitives (move, draw, plot text, plot image ...) which are all implemented
sending a device-independent message (opcode + operands) across a communication
channel (Sec. 3.4). Cursor readout is returned on a separate communication channel.

On the other side of the communication channel there is a graphic server, which
handles all device dependent chores. In particular we have adopted the principle "let
the server do the scaling" among world, normalized and device coordinates.

There are two implementation of a graphic server, one for X11 and one for
Postscript. More than one instance of a given type of server can be started (via the
createserver command), and addressed separately using the plotter global variable.

The X11 server uses Xlib, however it is written almost entirely in Fortran, and
handles each primitive loading the necessary information in a common block, and
making an argument-less call to a C routine afterwards. These C routines are all
entry points in a single f2x.c source (less than 400 lines of code), which has global
access to the common block as an external struct, and does the Xlib calls.

The Postscript server exists in three flavours (black&white, colour, and colour
Level 2), which are actually handled by a single program issuing the same Postscript
macros, while all differences between flavours are handled loading a different prologue
file with macro definitions.

9

4 Development tools

While day-to-day development of XAS was done according to taste of the authors, the
Unix version of XAS includes xasbuild, a front-end used to generate and mantain
Makefiles. It is a collection of shell scripts which allows to generate dependencies for
each module (this relies on an analysis of the linker map, and is currently available
only under Ultrix and OSF/1), to create makefiles from prototypes and to mantain or
archive "configurations". If suitable xasbuild files are distributed along with a partial
software update, it will be possible to recreate the full set of makefiles for local use.

The way dependencies are arranged is somewhat unusual : a program or routine
source depends on the include files it refers; a library depends on the routines it
contains; a main program executables depends only on the sources of all the routines
it calls and not on the library (therefore if a routine is updated, only the programs
actually calling it are re-made); object files are ignored.

The way the Fortran compiler is invoked by xasbuild is such to resolve correctly
include statements (since they contain file names they are usually system dependent),
which shall be of the form INCLUDE 'filename.inc' (pathless and lower case). All
include files are located in $XASTOP/include.

5 SAX analysis data flow
The starting point for SAX data analysis are the Final Observation Tapes

(FOTs), the medium on which SAX telemetry files (with a minimum of
reformatting) and auxiliary files are distributed to observers.6 Tape files related to one
pointing (an Observing Period, divided into observations with a given instrument
configuration) are kept in a fixed-blocked format. The first step is therefore FOT
filing . The program fotfile is somewhat unusual since it solves the problems of
system-dependencies of different tape drives just demanding this to external utilities
(for Unix the mt and dd commands). The program actually runs as a chain of steps in
which a Fortran program writes a script, passes control to it, which in turn passes
control to the next Fortran step, etc.

The next step (for each instrument) is the inspection of the instrument
configuration, a summary of which is produced by check_expconf. As a result of
this one defines in the environment which are the observations to be chained (with
concatenate). Different chains may be used for science or housekeeping reduction.

The accumulate front-end program allows to produce (from the FOT files)
system-independent data structures like images, spectra, time profiles or photon lists.
In principle system-independent cross-accumulation (xaccumulate) programs allow
to do the same from XAS photon lists. Usually we find more efficient and/or
appropriate to accumulate straight from FOT files, including on the fly - when
enabled - all necessary instrument-specific corrections2-4 (spatial, energy and time
dependent corrections, application of time windows, selections).

10

The description of the telemetry format is kept in packetcap files (modelled after
Unix termcap or printcap), so that support to a given format can be added without
recompilation (we took advantage of this to support peculiar ground calibration
formats), since most of the code is independent from the original telemetry format.

Other programs allow graphical presentation of data (Sec. 3.8) and cursor-assisted
generation of time and intensity windows. One can therefore iterate accumulations
after selecting the best time, energy and position ranges. It is also possible to use
IDL or SAOimage at this stage, as well as to export XAS files to FITS.

As a particular kind of accumulation the accumulate matrix front-end allows the
generation of instrument response matrices in XAS and OGIP formats.

6 Add-on software

In addition to the minimal set of software necessary to reduce SAX data, other
software related to XAS (which should however be considered no more than
unsupported contributions) includes : EPOS, simulation software for EPIC using
XAS library and files; xasread, elementary utilities to access XAS files from IDL;
xasplot, a widget-oriented IDL front-end to XAS data display; some add-on pre-
existing spectral and timing analysis ported to XAS compatibility.

Acknowledgments

A key role in the early design was played by M. Morini (at the time at IFCAI). The
following persons contributed to single XAS modules or instrument specific
modules: F.Giambertone, T.Mineo, A.Santangelo, G.Fazio (IFCAI), M.Orlandini.
L.Nicastro (ITESRE, the latter also for the IDL contributed software xasplot),
F.Fiore, S.Signorile and M.Guainazzi (SAX SDC, the latter in particular for overall
maintenance of the SAX software archive). Finally thanks are due the SAX Data
Analysis Working Group (DAWG) chaired by M.C.Maccarone since 1991.

References

1. L.Scarsi, "The SAX Mission", these proceedings
2. B.Sacco et al. , "The MECS Experiment onboard SAX...", these proceedings
3. S.Giarrusso, "The HPGSPC Experiment onboard SAX...",, these proceedings
4. D.Dal Fiume et al. , "The PDS Experiment onboard SAX...",, these proceedings
5. P.Giommi, "The SAX Scientific Data Centre", these proceedings
6. L.Chiappetti, Sec. 5.4 of SAX Observers' Handbook 1.0, ed. by L.Piro (1995)

